CHAPTER TEN

The Time

Dependent
chrodinger
Equation

Up to this point we considered problems in which the essential characteristics
of the particle, such as its energy and probability function y{x), were not
functions of time. The eigenfunction of a particle with encrgy K, was obtained
by solving the time-independent Schridinger equation

K g2 = E,(e) (10.1)

~ v + V() |u,(r)= Eu,(r .

In the case of a free particle [F(r)=0], we found in Section 2.2 that the
sobution of (10.1) is [see (2.6)] in the form of a plane wave

ulr,p)ace® ¥/ (10.2)

We have, however, learned that certain experimental situations such as
electron diffraction in crystals, for example, can only be n%_wmn&. by
postulating a wavelike wavefunction that, by its nature, must be time-
dependent [see (1.20)1:

(r, ) 0 /A E/D) . (10.3)

We conclude that the time-independent Schridinger equation does so." tell
the whole story. What is needed is thus an extension of the Schrédinger
equation that accounts explicitly for the effects of time. A clue to :.—n form of

the sought equation is obtained by realizing that (10.3) satisfies

2
|w|s +V(r, 1) i::ﬂﬁmﬁu: (10.4)
or, in general,
,ﬁrlmq.c_:ﬁcusw&r: _ (10.5)

Equation (10.5) is the time-dependent Schridinger equation. The justification
for its use is: (a) When the Hamiltonian does not depend on time the
predictions of the theory are identical with that of the time-independent
Schridinger equation; (b} the prediction of the theory agrees with experi.
ment; and {c) in the limit 4 -0 with classical physics.

We find by substitution that in the special case when % does not depend
explicitly on time, the general solution of {10.5) can be taken as

Ylr,t)= Fau,(v)eEist (10.6)
where #, is the eigenfunction of 9 with energy E,;

Ju,(£)= B, () (10.7)
and a, does not depend on lime,

The probability of finding the system in the state #, with energy E, is
then'

B =Ml

=|a,|®

10.1 THE STATISTICAL INTERPRETATION. OF (r, 1}

The interpretation of J{r, ¢) is similar to that postulated in Section 3.1 for
yAr). The probability P(r, ) of finding a particle inside a differential volume
d®r at time ¢ is

Plr, )=|¢{r, )2 d% (10.8)

Since the probability of finding the particle somewhere in space is unity, we
must have

flg, )2ar=1

so that

w\_ﬁp;{fno (10.9)




This last statement of the conservation of probability is proved as follows:

d ]
afpeen= [ Gy er

= [, L B v s
=[lv v e
Substituting for 8¢/9¢ and dy* /8¢ from (10.4) leads to
d # .
M\_\_&m%qnmﬂ\_\g*qééqm%v%a (10.10)

We use Green’s theorem! to rewrite the last integral as
4 25— 20 ol 3
n:\_\_,_: dor= g [ (W0 v ) &
h
= — #* — AT
mshg VU Y V) Ada (10.11)
Since ¥ vanishes at infinity, the last integral is zero when ¥ extends over all

space. This completes the proof.

10.2 EXPECTATION VALUES OF OPERATORS

The expectation value of some physical quantity whose quantum mechanical
operator is A is obtained according to (3.12) by

Qvu?*?i@?:} (10.12)

and is, in general, time dependent. The time evolution of {A) can also be
expressed in a convenient differential form. To do so we start with the
Schridinger equation (10.5) using the Dirac notation:

%= (Wy=g1w) (10.3)
s0 that
= >yl de= (il (10.14)
and (10.12) is written as

(Ay= (bl Al (10.15}

'Green’s theorem states that for any two scalar functions f(r) and g(r),
J{rve-gvy)din= [ (7 Ve eV ) nds

A is the surface bounding the arbitrary valume P, n is the unit outward aormal vector, #%r and dz
are, respectively, dilferential volume and area elements.

Taking the time derivative of (10.13),
9 ay= 1A+ A+ 1Al
== Lol KAy + LA dly)  (1016)
The last result can be rewritten as
don e .
4i=1as. A+ (0.7

which is the sought result. We next make use of (10.17) to prove some
important results,

Ehrenfest's Theorem
According to Ehrenfest’s theorem the classical equations
dr _ dp _ _ 18
m—r=p and -~ = \24 . {10.18)

[P(x) is the potential energy function] are also valid in quantum mechanics,
provided we replace all the classical quantities by the expectation values of
their corresponding quantum mechanical operators.

Progf: We apply (10.17) to the operator .

L0 - 2,

dt

=4 A!ww.,dfﬁi;

Iu. mmm ,
I.m— mR.Q.L ,

= [y (T x v
but ¥ 2¢=x w2 —2(3/9x); therefore,

.m m
H) = -2 fyrg s

=)

where we used §, = — (3 /3x) and [F(r), x] = 0. This completes the proof of
the first of relations (10.18).




The second proof starts, again, with (10.17) applied to §,;

mmwlvuw_:%%

| i 50
= A m +w\v_|&mﬂ

(%)

fefr)ov g
I.?*w%‘%na..

-(3)

where we used { V2,0 ,/8x]=0,
This completes the proof.

il

PROBLEMS

1. I the dominant term in Y(r, #) (r — o0) varies as *™", what values can #
possess in order that the integral in (10.11) taken over the surface at
infinity is to vanish?

2. Show that if Y(r, {} defined by
{1\
e?&lﬁmﬂmv hs /0 (p, 1) d°p.
is to satisfy Schridinger’s-equation, ®{p, ¢) satisfies the equation
% . _90(p,1)
A.MM..I\A_.IV&Q_E?HVH@@LVH& 5
where r—+ 13 ¥, means that x, is to be replaced by i%(3/3p,).

Hint: Show that
too g i gt
=gt gy — ipxfh
.\.JS 3 1] ap A Pe dp

for ®{— o)== P(+0)=0.
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CHAPTER ELEVEN

Perturbation
Theory

In the first part of this book we dealt with a variety of problems in which the
eigenfunctions and eigenvalues of some operators were obtained. Special
emphasis was placed on solutions of the energy eigenvalue problem (the
time-independent Schridinger equation):

%ﬁona = _m.ﬂ#s

In this chapter we copsider the effect on the energies E, and on the
eigenfunction u,, of small perturbations of the Hamiltonian %ﬁo. Such per-
turbations arise in practice from the presence of electric and magnetic fields
or from the interactions with other particles when these effects are not
included in the unperturbed Hamiltonian %mo. Since exact solutions of the full
Schrédinger equation are scldom possible, the perturbation methods discussed
below are some of the main practical tools in quantum mechanics.

11.1 TIME-INDEPENDENT PERTURBATION THEORY

The problem we pose is the following: Given a Hamiitonian %ﬁo, its eigen-
functions u,,, and the eigenvalues E,, so that

ot = B0,y (ir.1)

What are the new eigenfunctions and cigenvaiues when the Hamiltonian is

* perturbed from %mo to u.nc+%m$ One method of mﬁm._uwmos would be to

diagonalize the matrix of qﬁc +90" in some »%EB representation as
discussed in Section 8.3, This method is often used ih practice. If %ﬁc » %Q, we-
can employ perturbation technigques and obtain expressions for the perturba-
tion of 1, and E,, to any desired order, This is the concern of this section.




First-Order Perturbation

The Hamiltonian operator is taken as %mc +ad , where 0<<A<1 is a
parameter that “turns the perturbation on” (A =1) or “off” (A =0). We are
tocking for the energies ¥ and functions  that satisfy

(9, + A5 Yy =wy (11.2)
Expanding ¢ and ¥ in a power series in A,
e A A T
W=y + AW+ W, 3 (11.3)
and substituting ms.ﬁ 1.2), gives

(Feo +ATC) gy + Ay + W0y + - )=y + AW+ 2, + - )

X + Ay + Ry + - )

Equating the coefficients for 3, A, and A? on both sides of the last equation
gives

%mo_n__\c =Wy
%mcff +3g, =W Wil (11.44)
o S0y = Wi + Wity + Wiy

respectively. Comparing the first of Eqgs. {11, Aav with (11.1) identiftes the
zero-order solutions as

..vc“za_ .
W,=E, (11.48)

where 1, and E_ are the eigenfunctions and eigenvalues at the absence of
perturbation, Next we expand ¢, in terms of #, as

= 3alu, (11.5)

—»\.\J'(:)f:k.}!!!
and substitute it in the second of Eqs, {11.44). The result is

SalEu, + 9, = E, ZaVu +Wu
n : n

premultiplying by u¥, and integrating and recalling that {u_ {u,) = 8,,, gives

B+ X, = E ol +W8,, (11.6)
which for £+ m yields
o) =2t (kA m) (11.7)
G F

Putting £ =m in (11.6) gives

W= 1.8
=% (11.8)

!

According to (11.3) and (11.4), W, is the First-order correction to energy E,,.
We still need to evaluate al), This is done by requiring that the first-order
corrected wavefunction ¢ = ¢, + ¢, be normalized to unity:

:gs + yMam:i*Ta +>M&:i dr=1+Aa® + gt + A2 T o 0yx)
n 5 "

=1 {11.9)

which, neglecting the second-order term, gives ¢{’ =0 as a possible solution.
The eigenfunction and eigenvalue to first-order pertwrbation are thus given as

@ﬁ-
y=u,+ 3 %f (£1.102)
N .\\xﬁa?mwn/m%&ﬁfa!*
W=E, +% {(1£.106)
o™ N

Second-Order Perturbation

Qur aim here is to obtain expressions for #, and i, The second order correction
to the eigenfunction, {,, may be exponded as

=Sa,
This expansion is next used In the third of Eqs. (11.44)
RaPEu,+ 30 Falu, = D aPE,u, + Wby + Wy

Substitufing for ¥ its expansion accerding to (11. 3“ then multiplying by u} and
integroting, results in

aPE, + 3 a7, = alDE,, + Wal + W8, (11.11)
H

Setting & = m gives
W= 3 a0, —Wal
n

= 2 V3, +ali, — Wal)
n¥m

Using (11.7) for at and m: 8) for W, the las! two terms cancel each other with
the result

z
W= 3 im (11.12)
:»a
J.\..).fa
Going bock fo (11.11) for s cass £ m, using (11.7), (11.8), and the result

all) =0, gives

’ e
nﬁmV - M ™ nm _ mm
hq_ME nFEM ﬁ@,ﬂl@:vhﬁ.ﬁ'.mwwv A.m,an.l.m.»vm




To find ¢ we go back te the normalization imtegral (11.9). Adding the
second-order correction Yo ¢ gives

\‘Ts...?Mam_:f +%M&.&:L;?a+ VMnm_vxh._.ymMaMm@m“v =1
n n K ¥

Using the result al) =0, the last equation yields
o= =4 Bla0)?
n
T (11.1)
== 11.13
avm Am ~E)*

Finclly, we let A =1 and write the eigenfunction and the energy, fo second order,
os

v
Y=y, + oy
hmi E,—E,
’ ¢ mﬁ‘ ’ _mﬁ‘ _N
T M M kaVam _ ke u, — km m
pam| \nwem B B En— Ey) ﬁm.slm.LN Y ooE,-E) "
(11.14)
m.ﬁ‘ 2
W=E,+3 o+ 2 ,._.u aw (11.15)
ngm Sm T

AN
Notice that the second-order correction fends, according to (11.12), to increase
the energy separation | E,, — E,|. This fact Is often expressed in the physics jargon
os '‘energy levels repel each other.”

11.2 TIME-DEPENDENT PERTURBATION THEORY
Time-dependent perturbation theory is the main analytical tool for treating
the transitions of quanium mechanical systems from one energy state to
another. )

We have shown [see (10.6)] that if the Hamiltonian of a system does not
depend on time, the general solution of the Schrédinger equation

By (r, ¢)

%ﬁo%? y=h— N

(11.16)

is in the form of

0, 1= oy, ()e= s (11.17)

where the coefficients g, are constant and Fon, = B,u,. If the system is found

to possess at some time, say ¢ =0, an energy E,,, then we have
a,=1
4. =0 {n+m) (11.18)

for all subsequent times,
Let us assume next that the system is perturbed in such a way that the
Hamiltonian is modified from %n to

Fe()=9, + 9() {(11.19)
The wavefunction §{¢} is now a solution of the Mnr«m&smﬂ, equation .
[, + 9] im (11.20).

At some particular time ¢, we may, using the ociv_oﬁggm property, expand
Y(r, t) in terms of u:

r, )= Ya,(t)u,fr)e” Bt 11,21
)= T wa)

Singe.the Hamiltonian is-time &nﬁg&oa the goefficients a,, unlike C_ 17},

- As,!.l. e B

wnmb@ﬁ.mr_w iciions of.-time. The Em:;_owdnn of this time dependence is of
fundamental _Ewoﬁm:ao. Let us assume that a measurement of the unper-

turbed energy at some time, say ¢ =0, yields £,. We thus have

a,{0)=1
2,(0)=0

Since the coefficients &, evolve with time, a subsequent measurement of
the energy, say at time ¢, may yield the value E,. The probability of such an
event is |a,(t)|% which is thus the probability of finding the system in the
state k at time ¢ given that at ¢ =0 it occupied the state m. The solution of the
time-dependent Schrodinger equation thus provides a description of the
manner in which the probability of finding the system in the various ejgen:

R

m%ﬁﬁm.mw @Yﬁk@ evolves with time under the influence of the perturbation
To describe the evolution of the system we thus need to solve for the
coefficients a,(¢). We substitute (11.21) in (11.20), obtaining

M : T A m. Tl.,m;.\b + a.rml_,m..\b_ “ IW Mnaa,mo + %vaanl_.m._{a
ki

(n+m) {11.22)

which after multiplying by u} and integrating becomes

T

where ,, is defined by S

!;._m“.» I.m.._
Wpn = I3




Up to this point the analysis is exact, and solving Eqs. (11.23) is fully
equivalent to a solution of the Schrédinger equation. In a manner similar to
that used in Section 11.1, we introduce the “turning on” parameter A by
taking the perturbation as A%’ so that the Hamiltonian becomes

G, + A% (6)
The power-series expansion for a_ is written as
a, = + Aol + M@ 4 ...
which, when substituted in (11.23), becomes

4P+ A+ WD+ = w T (a9 + Nall + Nea@ + + o YAIC giomt
Equating the same powers of X results in the set of relations
a?=0

&,: = — 7 Mam_emmrtvm..er‘
a

32
a;

= 5 ZaPIL (1 )atont (11.24)

0= 5 e
L

The solution of the zero-order equation is a{® =constant. The o are
. e

Hrcwbw.mw«@ W@Wwﬁ@,\&h z problem. These are chosen as
©—
a) =1

aP=0 (ns=m)

so that at { =0 the system is known with nnnmmmsg to occupy a state with

energy E,_. The second of Eqs. (11.24) now reduces to
. : ) f i 13Kz

== 290 gewt L (11.25)

| | A fm @

laf(£)|? is the probability to first order of finding the system at time ¢ n the

state £ given that at ¢ =0 it i5 in the state m,

Harmonic Perturbation

As a special case we consider a perturbation that varies sinusoidally with
time:

Gr(e)= Bremiot . (1)t (11.264)

The breakdown of u”m\Qv into the two parts is done so as to ensure its
Hermiticity. The result of substituting %QQV inte (11.25) and performing the

integration is

aMe)y= .HIMV L (el ot gy
ORINE I AG!
gy}t _ q et a)l |
—— 1| gy £ &
B Hi gy — @ A Wy + @ (11.262)

where the lower limit of the integration is zero, since a}'k .(0) = 0. We limit
ourselves next to a case in which & is nearly equal to |w,,|—that is,
hw=|E,— E_|. The transition probability from the state m to & is then

)2 Ri.ﬂmin mmmmmwﬁs.»aﬁw Sv&
i = jaf)|? =

(11.27)

where the (—) sign is to be used when w,,, = « while the (+) sign applies
when @, = . The cross terms with a denominator involving the product
(02, + W} w0y, — @) have been left out since, for the conditions of interest,
| 69y,| = 0, their contribution can be neglected. The first’ expression on the
right side of (11.265) dominates when E, > E,, and E, ~ E, ~ hw, while the
second expression dominates when E, < E, and E, — E; ~ hw: Theharmenic
erturbation_gan thus cause both upward and downward transitions from
stalé m to staies)k, separated in energy by ~hw.
—=""T'5 be specific, let us calculate the transition probability from m to a group
of states t state k, where £, > E, . Let the density of these final
g 0 ‘am\?ﬁmﬁ@éu. Since w,,, = w, we use the (—) sign in (11.27)
and obtain H

‘2 -
_nm:_»H»H.. +8Aﬂs_mm_= _Hwﬁa*a SVL

2 2
A%z _”W m Wy W UH_
If | H] |? is not a strong funection of %@@wﬂmﬁ we can take it
outside the integral sign. The remaining .ﬂﬁm\_,/m.wm_\mm then a product of two

functions:
_ sinf[3{wpm— ©)1]

A_.v AS.‘::““V.I 7
¢ _”WﬁEwE..!Svm

These functions are plotted in Fig. 11.1, the independent variable being
@z The interval in ,,,, where the function
v ol _ .
sin?| (w0, sv.m_
glegn, )= EICH ; (11.29)
Hw {wim— H_
is appreciable, is.~27/¢ and can be made arbitrarily small by %ﬁ@»@w\
timg of dhservatioh ¢, The area under this function is
.\;8 sit?] 4 (e, — EVNU_
- 2
e Wﬁaka - az

@ﬁ?#g hr Y

plwy, ) duy,  (11.28)

and (2} e(w;,)

dus,,, =2t (¥1.30}
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Figure 11.7  The two components: the density of final states function #(e8,,) and the

:ﬁ&ionEocm_uzwq?noaozm?hmwim._.ele__.»Im.
in the integral of Eq. (11.28), s =S L :\EE; W)l volved

Let us consider the case when ¢ is big enough so that 27/¢, the width of
(W, £}, is very much smaller than Aw, the width of p{w;,, ) The integral
(11.28) becomes

1, sin®[ ${w,,, — w)i
_%Smnmlm_m;_ﬁesusis Lo, s:m.a;.,

= MWAE»S!SVH_M

27 \
= S Hinl 0= ) (11.31)
and the transition rate \_u..mux,\mw._mﬁ jme is . .
d
Wk = 21a0(0)
|ma. 4|2
=2, o (= B, % 1) (11.92

where p(E) is the density of final states expressed as a function of energy
{p(@)=hp(E)]. The minus sign is to be used when E, < E, and is due to the
second term on the right side of (11.26).

The result (1 #.mwu is consistent with writing the fransition rate from |m’y
to [k, where |k} is a single state within a contj :S:AM

4
k=Sl

L
= == | H,|*8( By~ E, — hw) (11.33)

If E,—E, =- % we replace the argument of the & function by (E,—E,+

m.suv. In writing (1133}, we used the fact that for sufficiently long_¢,

sinf(xt /2) /(x /2)t = 2meS(x). Faatacy . 9
o o

'
|
}

AJ.
i
B

R

-

Eqjuation (11.32) is known as Fer
when applying (11.32) that it 2ppliés to transitions from a single state m (o a
Sf.amnnacmmnwwnmh.Hmﬂ?nmmg_mnmﬁo*wmmmum_ngm:oﬁﬁwﬁomm noﬁmbEmW\(

we née \"o/m\o/mMmm to (11.27).

Step Function Perturbation

ﬂmm Golden Ruler We must remember

A second case of interest is one in which the perturbation has the form of a
step function applied at ¢ =0, that is,

F(y=0 (1=0) :
(=8 {1=0) (i1.34)

This situation may be regarded as a Emiting case of the harmonic perturba-
tion discussed above with w—0.

Using the second of Egs. (11.24) with a¥’(0)=§,, (-, the system is
initially in the state m) and repeating the steps leading to (11.32), yields

W,

m

2
l*“ﬂ_mha_“n.mﬁ.m..i|.mhw

H i
me_m»a_mm?alfv (11.35)
The form of W, is similar to that of {11.33). The important difference is in
the argument of the delta function, which involves an initial state (m) and a
final state of the sgame n:nmmﬁ.(ﬁ must be emphasized that (11.35) applies, as

465 (11.33), To s case where the single state & is part of a continuum. The

LaLe o 1y part o 1L
total transition rate out of |m) is obtained by summing W, over all final
states, ’ _x.
' )
PR
Y

Limits of Validity of the Golden Rule
BN ‘ x
.H,Eoncs&ﬂ.—cmmiaacma&wsamzismmbm.A:.mCmzaﬁm.mwu.qfnmﬁnémm

that 27/¢ be small compared with the width 2#Ap of p(w,,). The second
condifion results from our use of first-order vnnmﬂ_wmrmmos theory and requires
that {a{’(£)|2<1; otherwise higher-order terms must be considered. This
second condition can be stated using (11.27) as

En o 2 (11.36)

VNN .
e results.of first-oxder. perturbation. theory
he: probability for transitions out

Fm..ba&nw_ significance is that

are only valid for times short enough so

of the initial staté’m is very.small compated with unity. Combining these two

‘conditions leads to

Spa W ..,

r
ﬁm»_s; ﬁM < Ap
fi ¢

WY e




as the validity limits for Egs. (11.33) and (11.35), Cases in which the last
condition is not fulfilled have ﬂ% wn treated separately. This is done in
Section 13,153, e G@tad

11.3 THE DENSITY MATRIX FORMALISM

Hﬁ%ﬁfﬁﬁt@ﬁg to be introduced in this section is one of the
most powerful idely used methods eseribing the time n¢owtmbb/wh
indisti ic icles, because it is constructed in
such a way that it is especially convenient for ensemble averaging. We will
put it to work in Chapter I3 in describing absorption and dispersion of
electromagnetic radiation in atomic media.

Consider the wavefunction (r, £} of a single isolated atomic systemn. This
function satisfies the time-dependent Schrisdinger equation

(e ple, )= i 2200 (1137

Y{r, ) can be expanded in some arbitrary but complete orthonormal set u, ()
according to Cn S gpunss b
¥lr, 1)= 3 G,(1)u, ) }4%%

=2 C.in (11.38)
Using
(n|lm)=8,,
we obtain from (11.38)
C,= furplr,t)d%=(n]y) (11.39)

The expectation value of some observable 4 is given by (10.13) as
(Ay= [y dydr=(y| Ay (11.40)
which, using (2.324), can be written as
(d)= M m ($lmy(m| Aln)(al 0
=3 20 A, (11.41}
nom

..W. :
Equation (11.41) applies to a single wmmwwﬁﬂ\mno i e mm (to be called,
in what follows, the atom). In mest real §ystems the observations involve a
very large number of identical atoms. In such cases the measured quantity is
not (A4} but involves an averaging of (4) over the ensemble of similar

particles, We denote this average by a bar on top of the affected variables:

We find it convenient to define .

e J143)
P = CCE e X?E

= TP 800 > () ,
50 that ' QX o wﬂ m//?w, f i
(A) = Z X PonAua = 2 (p4),,,
#om "
=ir(pd) (11.43)
1t follows directly from {11.44) and the definition of matrix products that p,,,
may be viewed formally as the am matrix element of the operator ot .W,k} ”
TBYC , % “
PRI =5 p ) R e
which is referred to as the deniity operator. X . E%p
We note that according to (11.43) p,,, = o}, so0 nrwwh/nwn ovﬂw%ﬂﬁ ol
Hermitian. i ) o o %«ac
It is often advantageous to use a differential equation for obtaining p{¢). & y&\_\?\s/
We start with (£1.46):
d —_—
9B =15 + (11.47)
We can rewrite (11.37) as .
W= (11.475)
)= 2514
Using the Hermiticity of 5C, we write!
= —L , 11.476)
W=y (1% (
which substituted in (11.47) gives .
1 |~
B = LTS - 5 A%
1 [—
== {90, O]
Using (11.46),
4, {
B 2l%0] (11.48)

Equation (1147 is a formal and concise way of staling that since 9 is Hermitian,
1

Aﬁ_MvHA.\ng_alewmAf@mﬁv

where f and  are ml....m»an state {unctions,




In practice one solves the series of equations

d,
.“_-__“a = % [, & nm T relaxation terms (11.49)

The relaxation terms are added phenomenologically to account for the
ensemble aspects of the problem. A representative example of such an
application will be found in Chapter 13, where (11.49) will be used to

describe the absorption and dispersion of electromagnetic waves in atomic
media,

PROBLEMS ’

1. According to Eq. (11.27) or Fig. 11.1, a transition can take place due to
an electrical field oscillating at a radian frequency w between two states &
and m where E, — E_=w-+ 8. The energy discrepancy 8 can be as large
as ~2w/t where t is the observation time.

Is this result a violation of the law of conservation of encrgy? Is it
consistent with the uncertainty principle relating the measurement of time
and energy? ]

2. Consider a circularly polarized electric field

E = Eycoswi

£,= Eysinewt
interacting with hydrogenic atoms initially in the state |2, &, m=0) and
causing an induced transition to the state [2’, I, '), :

What are the necessary relations between »', ', m’ and n, f,m for a
transition to take place when:

AWV ._W{ - m.:
(v) E,<E,

3. Same as Problem 2 except that the sense of circular polarization of the

applied is reversed; that is, ,

£ = F,cos wt
E,=— E;sinwi
4. Same as Problem 2 except that now the field is linearly polarized, in the z
direction; that is,
E=£E, cosw!?
3. (a} Show that one can resolve a linearty polarized electric field, say
E=2E cos we
into two oppositely circularly polarized fields in the x — 7 plane.
(b) What are the selection rules, that is, the necessary relations between

n, ¢, mand o', ', m' for transitions to take place between states |#, I, m
and |#', ¥, m") due to this field?

CHAPTER TWELVE

The Interaction of
Electromagnetic
Radiation with
Atomic Systems

In this chapter we consider the interaction of atomic systems with efectromag-
netic fields. We will apply these concepts to describe the processes of sponta-
neous and induced transitions and the phenomena of absorption and amplifi-
cation of radiation. The material of this chapter will serve as background for
the treatment of laser oscillators.

12.1 SOME BASIC ELECTROMAGNETIC BACKGROUND

The Maxwell equations describing the propagation of electromagnetic fields

are ﬁnau
qunl.@u v-D=p W
ot
qunu+w|_wu v-B=0 (12.1)

where J is the current density; the other symbols have their conventional
definitions. In a homogeneous isotropic medium B and D are related to H and
E by

B=pH

D=¢E (12.2)

where p and e are, respectively, the magnetic permeability and the dielectric
constant of the medium,




