CHAPTER FOUR

One-Dimensional
- Energy
Figenvalue
Problems

Among eigenvalue problems, the problem of finding the eigenfunctions and
eigenvalues of the energy operator (the Hamiltonian) plays a special role. Hﬁw

m@%ﬁ%o%ﬁé and is thus an important characteristic,

Anothér reason is that the energy levels (i.e., energy eigenvalues) of a system
often determine properties such as chemical bonding, crystal structure, electri-
cal and optical properties, and rates of chemical reactions. The nature of the
energy levels thus has a direct bearing on the way we perceive materials
(color, as an example) and utilize them, )

In this chapter we consider some simple one-electron, one-dimensional
energy cigenvalue problems. In each case we solve the time-independent
Schrijdinger equation

Awl,w +§i§€um§€ (4.1)

where the energy operator (Hamiltonian) £/2m+V(x) is the sum of the
kinetic and potential energies of a particle. The solution yields the energy
eigenvalues £ and the eigenfunctions ug{x). V(x) is the potential encrgy
function.

4.1 INFINITE POTENTIAL WELL

Consider a particle of mass m moving in a potential one-dimensional well that
is zero over the interval —a< x <4 and infinite elsewhere, as shown in Fig,

Figure 4.1 ‘Hr.n infinite potential well and the first
two (r =0, 1) eigenfunctions of the bound particle.

4.1. The energy eigenvalue equation is given in (4.1), where, following (3.20),
we set f— —ih3/0x. The result is
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The solution in the region — a < x <&, where F(x)=0, is of the form
up=coskr or wp=sinkr (4.3)
where

k=y2mE/n? (4.4)

O_..:wEo the region —a<\x<g, #g(x) must be zero. This follows from
(4.2), since the potential F{x) is infinite. In order that ng{x) vanish at
* = ® g, we must choose
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Tﬁi:mm (n=0,1,2,3,..) {4.5)

in the case of the even (cosine) solution, and

»HMLWV (1=1,2,3) | (4.6)

for the odd (sine) functions,
The-even and odd solutions thus assume, respectively, the form

ammxvﬁkng:a+wvmw ‘ (4.7
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where the normalization factor (2¢)'/? was added so that [ u3(x)dy=1.




The energy expression

A%k
E=—— . (+9)
becomes, combining (4.5} and (4.6),
252
E=1Z mw (1=1,2,3,...) (4.10)
8ma

The odd values of ¢ belong to even solutions and vice versa. The lowest energy
is associated with the even solution (cosine) with =0 (or /=1). The next
highest energy is that of the odd solution with n=1 (! =2}, It follows from
(4.5) and (4.6) that the solutions alternate between those of odd and even
symmetry as the energy increases.

4.2 FINITE POTENTIAL WELL

Next consider the motion of an electron in a potential well with finite barriers
of height ¥, as shown in Fig. 4.2. Since the potential well is symmetric
[F(x)=V¥(— x}], the solutions of the Schridinger equation
mm .m..w
!mmﬂixz, =m€nm§?v {4.11)
maust possess odd symmetry [#z{— ¥}=—uz(x)] or even %EEQQ. {ug(x)
=y p(~ x)]. It i3 convenient to consider two different cases.

Case 1: E<V
In the internal region jx|< a the solution of (4.11) is-of the form
15 x) =cos kox, sin kgx (412}
2mE / h? (4.13)

The solution for x> g is of the form?
wp(x)=Ce" (lx|>a) . (4.14)

=y2m(V— E)/#* (#.15)

The alternate selution exp(kx) has been eliminated on physical grounds, since
:nmaxv_m dx must be finite, Since F(x), and with it #%(x), are finite every-
where, u(x) and ug(¥) must be continuous everywhere including = *a.
We apply the continuity condition to the een solution and its derivative at

iThe refation between the symmetry of the eigenfunction and that of P(x) is discussed more fully
in Chapter 5/
2The solution for £ << — a can be obtained directly from the symmetry condition.
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Figure 4.2 The finite potential well.

x=a o._u"u.ma:m

cos kya = Ce ** : (4.16)
and

— kysin kya = — kCe e

so that

koatan kya=ka {(4.172)}
Applying the boundary conditions to the odd solutions results in
, {4.078)

In either case, the constants &y and « must satisfy (4.17) while simultanecusly
being related through (4.13) and (4.15). The Iast two mentioned equations
can be combined as

koacot kga = —Ka

Mﬂi.\ ar N
k2a%= S a? - : (4.18)
which is the equation of a circle in the ka, kg plane with a radius y2mVa?/#2,
We thus need to soive (4.17) and (4.18} for .mo and k. A graphical procedure
for obtaining £, and % is shown in Fig. 4.3.

The solutions correspend to the intersections in the upper hali-plane
(1> 0) of the circle (4.18) with a plot of (4.172). The first three solutions are
designated as n = 0,2,4. We refer to the corresponding eigenstates as ug, i, ;.

The constants k and &, of the odd solutions are obtained in a similar
manner as the coordinates of the intersections of the circle (4.18) with a plot
of (4.174), These are designaied as »=1,3,... . The corresponding eigenstates
are Uy, Uy, .

1t is evident from the graphical construction of Fig. 4.3 that the number
of bourid states—that is, the number of manan:osm|503mmmw s&: V. If the
value of ¥ is such that Y v ,\?\ SN

l_l

r< 2mPa’ AT.:TCI (4.19)

2 #
there exist exactly s-+1 bound states. The state index n is thus equal to the
number of zero crossings of #,(x). The first three elgenfunctions n=0,1,2 are
shown in Fig, 4.4. We note from Fig. 4.3 that the higher the state index n, the
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Figure 4,3 The graphical solution for obtaining the «
and #,, of the eigenfunction of a particle in a one-dimen-
sional rectangular potential well. These are determined
by the intersections {black dots) of the plots of (4.17a) (for
even modes) and (4.178) (for odd moedes) with the circles
{4.18). The radius of the circles is V2mVa/h. (A given
problem involves only one circle)  ~
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Figure 4.4 The first three bound states of a particle in a finite

potential well.

W
smaller the value of &, hence the deeper the penetration of the corresponding
u,(x) into the | x| > a region. '

The energy of the eigenstate #,(x) is, according to (4.13),
£ = Bk,
" 2m
where &g, is the value of £y of the mode u,,.
The solutions discussed in this section were all subject to the constraing
E <V, Classical particles with energics £ <V cannot penetrate beyond the
barrier to |%|>4. Yet in quantum mechanics we find that the probability

distribution |ug{x)|? is finite even for |#!>a The quantum mechanical
particle rushes in where its classical counterpart fears to tread.

Case 2: E>V

In this regime the particle energy exceeds that of the barrier and
k=y2m(V—E) /% is imaginary so that the solution for (4.12)-(4.14) for
ug(x) is sinusoidal everywhere. Consequently, the probability density is
distributed over all space and the particle 5 not sound, Here it makes physical
sense to consider the case ofva particle” approaching the well from one
direction, and H%p&w\ug:wﬂmn prohability of either its passing across the

R

barrier or its reflection {rom it. This subject is considered in the next section.

4.3 FINITE POTENTIAL BARRIER

Here we consider a particle incident from the left on a barrier of height V and
width ¢, as shown in Fig. 4.54. Our results will also apply to the potential well
of Fig. 4.2 by replacing ¥ with —V, We first consider the case when £ <V, so
that classically the particle would be turned back at x =0, .ﬁbm\mmwu@om\ocrm
mmwu...& er equation {(4.2) is satisfied by taking :

n.,_mxlTs&mFm»x ANAOV

A
ug{a)=4 Be™™ & Co** %&ARAE (4.20)
D) {(x>a)

k={2mE /b, w=2m(V-E) /& (¢.21)

In (4.20) we take the incident wave as exp(#x) with a unity amplitude. The
wave Aexp(— fkx) corresponds to a reflected wave (its momentum eigenvalue
— Ak is negative). At ¥ > a, #,(x) isin the form of a particle wave traveling to
the right, The form of juz(x)|? for E <V is sketched in Fig. 4.56. By imposing
the continuity condition on #(x) and 4%(x) at the boundaries x =0, x = a,
we obtain four linear equations with the unknown coefficients 4, B,C, D.
Their solution is

2ikk

D=
2iickcosh ke +{£* — k®)sinh ke

(4.22)
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Figure 4.5 (2) The potential profile F(x). (5) A plot of a typical probability
distribution juz(%)|? for £<F. The plot inside the well, 0<x <a; is for the case
wa® |, where it approaches an expenential decay |1 g(x)}7 o« exp(— 2Kx).

The tunneling probability; that is, the probability that an incident particle
penetrates beyond the barrier {x > ), is given by _LEM“

T(E<V)=|D|?

It

o o [2m(V=E) o
~ sink’ e @ (4.25)
e - )

We note that when E <V the transmissivity T(£) is always less than unity.
When the incident particle energy exceeds that of the barrier Am.v V), the
constant k becomes imaginary, and instead of (4.23) we have

wm(E~-v) ||
sin? ik 5 a
N..mm.vu\'v” ki . m.mmnmv

1+
4(E/VHE/ V1)
The behavior of T(E) for both regimes, E<F and £ >V, is sketched in

Fig. 4.6. Also plotted is the reflectivity ® =) 4|2, Tt wilt be left as an exercise to
show that

R+T=1 (4.25)

Figure 4.6 ‘Fransmission and reflection coefficients of a rectan-
gular potential barrier,

Two important features of (4.23) and (4.24) stand out: (1) When the incident
particle energy E <V, a region where classically the particle is turned back at
# =0, there still exlsts a finite probability for penetrating— tunneling—through
the barrier. This probability is given by (4.23). In the limit of small tunneiing
probability, [2m(¥ — E)]'/%(a/8)> 1, we may approximate (4.23) by

imuniw:TWTx@ - Wsﬁ,a (4.26)

(2) At E>V the transmission T(E) goes through a series of unity
maxima. Two such neighboring peaks, say E, and E, in Fig. 4.6, are
characterized by having the electronic round trip “phase shift”
y8m{E=V)a /4 differ by 2m. At each such ‘peak the reflections from the
barriers at x =0 and ¥ = 4 interfere destructively so that the reflection is zero.
In this regime the behavior of the barrier is reminiscent of that of the optical
Fabry-Perot interferometer {etalon).’ This is an optical device that in its :
simplest embodiment consists of a slab of trapsparent solid with flat and ¢}l A/;mﬂe}
parallel end faces. The transmission as a function of frequency of light S
incident on the etalon is described by a function similar to (4.24) and the o
mathematics involved in treating it is identical to that used in this section. o~ S

In conclusion we may note that the case of the inverted barrier, shown as 'vf,\?lﬂ(c
a dashed curve in Fig, 4.5, is obtained by merely replacing ¥ with —|¥] in ) u..mﬂ h.,nsa
{(4.24). The potential well in this case is identical to the one considered in ?&x b .
Section 4.2, except that here £>V and, consequently, the soluticns for £ ey fé
larger than 0 are unbound (sinuscidal everywhere), while in Section 4.2 we 4w w
considered bound states only, In the unbound regime the energy £ may take n wis..
on any value. In other words, we can obtain a solution of the Schrédinger *
equation in the form (4.20) satisfying the boundary coriditions for any X, In (o;.IA A
the bound regime discussed in Section 4.2, only a finite number of discrete A !
eigenvalues £ exist. We thus find that the complete spectrum of eigenvalues £
of the potential well is part discrete and part continucus.

3M. Born and E. Wolf, Pririgitles of Optics, 3rd ed. (Pergamon, New York, 1965), Chapter 7.




4.4 PHYSICAL MANIFESTATION OF PARTICLE TUNNELING

a Decay of Nuclei

The decay of nuclei by emission of an « particle can be viewed as a tunneling
process. The nucleus before a decay event can be thought of as an & particle
(a helium nucleus) trapped in a spherical potential well, which represents its
interaction with the rest of the nucleus. The potential energy of the a particle
as a function of its distance r from the rest of the nuclear mass is sketched in
Fig. 4.7. The behavior at large 7 is due to Coulomb repulsion between the like
charges, while at # < R (R~10""¢m) it is dominated by the nuclear forces
and is attractive. ‘The particle of energy F less than the maximum in the
potential weli may be thought of as bouncing between the two sides of the
well with a small probability of tunneling through and escaping upon each
incidence.

The tunneling probability per unit time (the inverse of the decay
lifetime) is equal to the number of bounces per unit time multiplied by the
tunneting probability per incidence. The bouncing rate is approximately
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Figure 4.7 Energy diagram of the mutual poten-
tial between an o-particle (# =2) and “daughier”
nucleus whose charge=(z-—-2)2. For large dis-
tances (r 107 m) it iy simply the Coulomb
repulsion, At short distances it is dominated by the
nuclear atfraction.
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Figwre 4.8 A  metal-insulator /metal-sandwich,
When a voltage is applied across the structure, a
current flow is established. The electrons cross the
insulating material by tunneling.

tunneling probability per incidence is given by (4.26) as
E E V8m{V~E)

imvi»ﬁﬂ:wlﬂveﬁ - g k)

The decay rate is thus determined predominantly by the exponential factor in
T(E). Its actual value is very sensitive to the exact shape of the potential
curve and can vary by many orders of magnitude from nucleus to nucleus.

Tunneling 5, Solids

Another manifestation of tunneling occurs in solid state physics. Consider two
conductors {(Fig. 4.8) (this may include superconductors and semiconductors)
that are separated by a thin (~ 10 A) layer of an insulator. When a voltage is
impressed across the “sandwich” a current will be observed to flow. This
current is due to electrons crossing from one metal to another by tunneling
through the potential barrier presented by the insulator.® The tunneling
nature of this current is established by noting its expenential dependence on
the insulator thickness @ in accordance with (4.26).

For the student of electromagnetic theory we may point out the exact
formal similarity of electron tunneling and propagation of electromagnetic
modes in waveguides below cutoff.’

PROBLEMS

1, Obtain the solution uz(x) for a potential well
P(x)=o0 (x<0); V(x)=0{0<x<a); F{x)=V, (x>a).

*This potential barrier is due to the fact that when dissimilar materials are brought ito contact
their chemical potentials are equalized through electric charge transfer so that potential gradients
are set up,

*See, for example: 8. Ramo, J. R, Whinnery, and T. Van Duzer, Fields and Waves in Commaunicativn
Elestronics (John Wiley and Sons, New Yorlk, £965), p. 422,
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Figure 4.9

(a) Complete the algebra and devive D in (4.22).

(b) Prove (4.25).

Using any convenient references, describe the formal analogy _uagoﬂ: the
evanescent phenomena of electron tunneling and that of propagation of
electromagnetic waveguide modes at frequencies below cutoff.
Formulate the one-dimensional problem of the transmission and reflection
of an incident electron from two potential barriers, each of the form of
Tig, 4.5a, which are separated by a distance 4.

Hint: It will prove profitable to develop a matrix formalism to describe
the effect of any single well on the eigenfunction. The matrix should
relate the incident and reflected waves at one plane to those at some other
plane.

Extend the matrix technique of Problem 4 to describe the propagation of
an electron through an arbitrary sequence of rectangular barriers.

Estimate the lifetime of a particle of mass m trapped in the potential weil
shown in Fig. 4.9.

Hint: The system shown does not possess trapped particle eigenstates
corresponding to a trapped particle, since such a particle will “leak”
away through tunneling. For the purpose of the approximate estimate of
the lifetime, we may assume that }"= oo when deriving the eigenfunctions
of the trapped particle. The latter may be assumed to be incident on the
boundary x = 0 with a velocity v= & /m and a frequency v/a.

CHAPTER FIVE

'The Harmonic
Oscillator

In this chapter we consider the eigenvalue problem of the harmonic oscillator.
The idealized harmonic oscillator is taken as a point mass connected to the
i end of a frictionless idealized spring (i.e., a spring in which the restoring force
i - is proportional to its elongation). A number of very important vgv“naml
including the quantum treatment of electromagnetic modes, lattice v m«mﬂo:m“ i »%Fm
1 . and even the electrical engineer’s RLC “tank” circuit—can be modeled as a
; harmonic oscillator. The study of the harmonic oscillator is thus of fundamen-
tal importance in guantum mechanics. The mathematical techniques em-
ployed are very elegant and are crucial to consideration of quantum optics,
fluctuation theory, neise, and coherence. Obviously, this is one topic we
cannot avoid,

! m Pty
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5.1 w&z_i xﬂm .ﬁ@ﬂ?
] Before %_cwmw.wm%ao the problem of the rE,Ech oscillator So E_“Bm:nn the
concept of parity to which we wunam&. o
Consider the time-independent w&.:.o%m m%&x _.tmz,an mov-

ing in a potential field “Auv.

ws 4 B (x) + V{r)ug(r) = Bug(r) (5.1)
Let the potential function F{r) possess inversion symmetry, that is,
, V(1) =V} (5.2)
] It follows that

—a Zugl—0) +V{r)ug{—r)= Eug(—r) (5.3}

so that ug(—r) is an eigenfunction of the same Hamiltonian as #z(r) with the




