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§1. Introduction.

Univalent maps f : D → D have been much studied by many authors.
See [1], [2], [5], for just a few references. A quick scan of the content of these
references shows that such mappings occur in a number of different settings
for a variety of reasons. We will consider here whether or not such mappings
exist satisfying certain rather restrictive boundary conditions.

To state our problem, and its partial solution, precisely, it will be helpful
to summarize several known results. These may be found in [3] and [4].

Theorem A: Given two collections of distinct points, z1, . . . , zn ∈ S1, and
w1, . . . , wn ∈ S1, there exists a locally univalent f : D → D, continuous up
to S1, such that f(zi) = wi and if z ∈ S1 \ {z1, . . . zn} then |f(z)| < 1.

Similar in flavor is

Theorem B: If z1, . . . , zn and w1, . . . , wn from theorem A are ordered cycli-
cally then there exists a univalent f satisfying the conclusion of theorem A.

The modulus of the rectangle with vertices at ±a±i in the complex plane
is a > 0. Any convex proper subdomain of C with four distinct boundary
points z1, . . . , z4 marked cyclically is conformally equivalent to a unique such
domain by a conformal map satisfying z1 7→ a− i, z2 7→ a+ i, z3 7→ −a+ i,
z4 7→ −a− i. Thus we refer to a as the modulus of such a marked domain.
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Given four points z1, . . . , z4 ∈ S1 ordered cyclically, we let Ω(z1, . . . , z4)
denote a convex domain contained in D with z1, . . . , z4 in its boundary.
Let mod(Ω(z1, . . . , z4)) denote its modulus as a quadrilateral with vertices
z1, . . . , z4. If in this paper the zj are understood, Ω and mod(Ω) will be
used. We have

Theorem 1: For fixed z1, . . . , z4 cyclically ordered in S1, infΩ mod(Ω) is
realized uniquely by the convex domain having linear segments from z1 to
z2 and from z3 to z4, and circular arcs in S1 from z2 to z3 and from z4 to
z1. Similarly supΩ mod(Ω) is realized uniquely by the convex domain having
circular arcs in S1 from z1 to z2 and from z3 to z4, and linear segments from
z2 to z3 and from z4 to z1.

If z1, . . . , z4 ∈ S1 are ordered cyclically, letQ(z1, . . . , z4) denote the convex
domain which is the circle with the four points marked. We will show

Theorem 2: Let zj, wk be cyclically ordered 4-tuples in S1. There exists
univalent f : D → D, continuous to S1, with f(zi) = wi, |f(z)| < 1 for
z ∈ S1 \ {z1, . . . , z4}, and f(D) convex, if and only if the inequalities

inf
Ω(w1,...,w4)

mod(Ω(w1, . . . , w4)) < mod(Q(z1, . . . , z4))

and

mod(Q(z1, . . . , z4)) < sup
Ω(w1,...,w4)

mod(Ω(w1, . . . , w4))

hold, where Q(z1, . . . , z4) is D marked at the four points z1, . . . , z4.

We give the proofs of these two theorems in §2. It is easy to see that
similar results hold when we consider convexity with respect to the Poincaré
hyperbolic metric on D.

In greater generality, suppose we ask whether a result like that of theorem
2 above holds when we are given two cyclically ordered n-tuples of points in
S1. To be precise, given z1, . . . , zn and w1, . . . , wn cyclically ordered n-tuples
of points in S1, does there exist a univalent map f : D → D extending
continuously to S1 such that f(zk) = wk, f(D) is convex, and |f(z)| < 1 if
z ∈ S1 \ {z1, . . . , zn}? By comparing moduli of a finite number of rectangles,
we obtain necessary conditions for the existence of such a function. This is
explained in §3. Again, similar conditions hold when considering the Poincaré
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hyperbolic metric on D. Whether or not these conditions are sufficient is not
clear to this author.

§2. Proofs of theorems 1 and 2.

Let Ω(z1, . . . , z4) be a convex quadrilateral, and label the four boundary
components z1 to z2 by R, z2 to z3 by T , z3 to z4 by L, and z4 to z1 by B.
Theorems 1 and 2 depend on the following standard lemma. (See the version
of Löwner’s theorem in [6], for example.)
Lemma: If Ω1 ⊂ Ω2 are two convex quadrilaterals sharing opposite sides T
and B (L and R, respectively), then

mod(Ω1) ≤ mod(Ω2)
(mod(Ω1) ≥ mod(Ω2)).

Equality holds if and only if Ω2 = Ω1.

To see theorem 1, if z1, . . . , z4 are cyclically ordered, let Ω1 and Ω2 be the
convex regions described in theorem 1 as yielding the minimum and maxi-
mum moduli. If Ω ⊂ D is a convex quadrilateral with corners at z1, . . . , z4

then Ω1 ∩Ω and Ω2 ∩Ω are both convex regions sharing opposite sides with
Ω. By the above lemma we have

mod(Ω1) ≤ mod(Ω1 ∩ Ω) ≤ mod(Ω) ≤ mod(Ω2 ∩ Ω) ≤ mod(Ω2),

and theorem 1 follows.
The necessity of the condition in theorem 2 now follows, as conformal

univalent maps preserve modulus. The sufficiency also follows readily, as
one may consider regions bounded by circular arcs of decreasing curvature
through w1, w2, etc.

We see that if the condition of theorem 2 holds then Q(z1, . . . , z4) maps
to an uncountable number of convex Ω(w1, . . . , w4).

§3. A necessary condition for the general problem.

The general problem of mapping the disk to a convex region with pre-
scribed boundary points in S1 seems to some extent accessable via consider-
ation of moduli of rectangles. If we have an n-tuple z1, . . . , zn of points in S1

ordered cyclically we may consider convex subdomains of D which contain
all of the zk in their boundary. For any choice of four of the zk ordered
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cyclically, we can identify among the convex domains here considered, as in
theorem 1, the unique such domains for which the modulus is maximized
and minimized. In the following extension of theorem 1, Ω will denote such
a convex domain with four specified boundary points.

Theorem 1′: For fixed z1, . . . , zn cyclically ordered in S1, let zk1 , . . . , zk4 de-
note four of the zk ordered cyclically. In the collection of convex subdomains
of S1 having all zk in the boundary and marked by the choice of zki as ver-
tices, infΩ mod(Ω) is realized uniquely by the convex domain having linear
segments from zk1 to zk1+1, zk1+1 to zk1+2, . . ., zk2−1 to zk2, and from zk3 to
zk3+1, zk3+1 to zk3+2, . . ., zk4−1 to zk4, and circular arcs in S1 from zk2 to
zk3 and from zk4 to zk1. Similarly supΩ mod(Ω) is realized uniquely by the
convex domain having circular arcs in S1 from zk1 to zk2 and from zk3 to zk4,
and linear segments from zk2 to zk2+1, zk2+1 to zk2+2, . . ., zk3−1 to zk3, and
from zk4 to zk4+1, zk4+1 to zk4+2, . . ., zk1−1 to zk1.

The proof of this is the same as that of theorem 1.
Again, since conformal maps preserve modulus, the following necessary

conditions on moduli are immediate.

Theorem 2′: Let zj, wk be cyclically ordered n-tuples in S1. For there to
exist a univalent f : D → D, continuous to S1, with f(zi) = wi, |f(z)| < 1
for z ∈ S1 \{z1, . . . , zn}, and f(D) convex, we must have, for every choice of
four cyclically ordered points zk1 , . . . , zk4, the satisfaction of the inequalities

inf
Ω(wk1 ,...,wk4 )

mod(Ω(wk1 , . . . , wk4)) < mod(Q(zk1 , . . . , zk4))

and

mod(Q(zk1 , . . . , zk4)) < sup
Ω(wk1 ,...,wk4 )

mod(Ω(wk1 , . . . , wk4))

where Q(zk1 , . . . , zk4) is D marked at the zki.

As mentioned in §1, whether or not these conditions suffice is not known
to this author.
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