
Notes on projective structures and Kleinian
groups

Katsuhiko Matsuzaki
and

John A. Velling ∗

1 Introduction

Throughout this paper, C will denote the complex plane, Ĉ = C ∪ {∞}
the number sphere, and D = {z : |z| < 1} ⊂ C the unit disk. We use
PSL(2,C) = SL(2,C)/ ± id for the group of Möbius transformations of Ĉ.
With Γ an arbitrary Fuchsian group, possibly having elliptic elements, let R
be the hyperbolic orbifold D/Γ.

A projective structure P = (M, f) on R is a representation (the mon-
odromy representation) M : Γ → PSL(2,C) and a locally univalent holo-
morphic M -equivariant map (the developing map) f : D → Ĉ, so that
f ◦ γ = M(γ) ◦ f for all γ ∈ Γ (see [2, ch.9]). Let M(Γ) denote the im-
age of Γ by M . The kernel of a projective structure means ker(M), and a
projective structure is called faithful if its kernel is trivial. Two projective
structures (M1, f1) and (M2, f2) are said to be equivalent if and only if there
is a g ∈ PSL(2,C) so that f1 = g ◦ f2 (and hence M1 = gM2g

−1). It is
well known that the space of equivalence classes of projective structures is in
one–to–one correspondence with the affine space of holomorphic quadratic
differentials on R, Q(R).

We choose an origin in the space of quadratic differentials by fixing an
equivalence class of projective structures. In this case the Fuchsian equiva-
lence class will be denoted by 0 ∈ Q(R), making Q(R) a vector space. Now
∗Partially supported by PSC-CUNY grant #661365.
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the mapping from equivalence classes of projective structures to quadratic
differentials is readily expressed: P = (M, f) corresponds to the quadratic
differential Sf ∈ Q(R), where Sf is the Schwarzian derivative of f : D→ Ĉ.
This indeed determines a map from the equivalence classes of projective struc-
tures to Q(R); for any g ∈ PSL(2,C), Sg◦f = Sf , implying that equivalent
projective structures correspond to the same quadratic differential. This map
is actually a bijection (see either [2, ch.9] or [4, §II.3]), and we will identify
equivalent projective structures and use the identification with Q(R) implic-
itly. Thus PQ means a representative of the equivalence class of projective
structures corresponding to Q. Note that ker(MQ) depends only on Q, not
on a choice of representative.

Letting ρR|dz| denote the metric of curvature −1 on R induced by pro-
jection of that on D, where ρD(z) = 2

(1− |z|2)
, we norm Q(R) by ‖Q‖ =

supD |Q(z) · ρ−2
D (z)| = supR |Q(z) · ρ−2

R (z)|. We denote by Q∞(R) ⊂ Q(R)
the space of norm-bounded quadratic differentials on R, and the correspond-
ing projective structures will be called bounded projective structures. Un-
less otherwise stated, all quadratic differentials considered will be presumed
bounded. Nehari [18] showed that if ‖Q‖ ≤ 1

2 then fQ is univalent, while it
follows from a standard theorem of Kraus [12] that {Q : fQ is univalent} is
a closed subset of {Q : ‖Q‖ ≤ 3

2}.
The behavior of fQ when it is not univalent is not well understood. Gun-

ning [3] showed that for compact R either fQ maps D onto Ĉ or else fQ is a
covering map of a domain Ω. Kra [8], [9] added that MQ(Γ) acts discontin-
uously on Ω = fQ(D) if and only if fQ is a covering map of Ω and extended
these results to finite area R in the case when Q ∈ Q∞(R). Whether or not
this is the case clearly depends only on Q.

Given these considerations, for an arbitrary hyperbolic Riemann surface,
we define three classes of projective structures on R, listed in order of de-
creasing size:

1. bounded discrete projective structures (or simply discrete projective
structures, if boundedness is either assumed or dropped) — D(R) =
{PQ : Q ∈ Q∞(R),MQ(Γ) is discrete },

2. bounded Kleinian projective structures (or Kleinian projective struc-
tures) — K(R) = {PQ ∈ D(R) : MQ(Γ) has a nonempty region of
discontinuity in Ĉ},
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3. bounded covering projective structures (or covering projective struc-
tures) — S(R) = {PQ ∈ K(R) : fQ is a covering map of its image
and MQ(Γ) acts discontinuously there }.

It follows that the space of faithful covering projective structures corresponds
precisely to those Q ∈ Q∞(R) for which fQ is univalent. Note that both
Maskit [13] and Hejhal [5] have given examples of projective structures where
MQ(Γ) is discrete but fQ is not a covering map. Hence, in general, S(R)
is a proper subset of K(R). More recently Kra [10], following Hejhal [6],
completely classified the geometrically finite isolated points in S(R).

Assuming for the moment that R is compact, Kra and Maskit showed in
[11] that S(R) ⊂ Q∞(R) is compact. Shiga showed in [20] that Int(K(R))∩
S(R) coincides with the Bers embedding, centered at R, of the Teichmüller
space of R. In theorem 3 and 4, we extend these results in non-compact
cases.

The second author would like to thank the International Center for The-
oretical Physics in Trieste, Italy, for their generous hospitality during part of
the work contained herein.

2 Bounded covering projective structures with
distinct kernels are separated

Throughout this section we will only be concerned with bounded projective
structures.

In personal conversation, Fred Gardiner asked whether or not quadratic
differentials whose corresponding classes of projective structures are covering
and have distinct kernels are in distinct components of S(R). We answer this
in the positive with theorem 1 of this section, under rather loose conditions
on the hyperbolic geometry of R. These conditions include R having finite
hyperbolic area. But first we set the stage for the theorem.

Definition. We say a Fuchsian group Γ is maximal if it is not properly
contained in any other Fuchsian group. The corresponding R will also be
called maximal.

It is immediate that all maximal Fuchsian groups are of the first kind.
The following proposition simplifies considerations of S(R) for R maximal.
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Proposition 1: If R is maximal then for any covering projective structure
PQ on R, fQ(D)/MQ(Γ) is conformally equivalent to R.

Proof: We have the following commutative diagram:

D −→ fQ(D)
↓ ↓
R −→ fQ(D)/MQ(Γ)

If R is maximal then fQ(D)/MQ(Γ) ∼= R. 2

Lemma 1. If Q ∈ S(R), then MQ(Γ) is a non-elementary Kleinian group
whenever

1. R has finite hyperbolic area, or

2. R is maximal and has cusps.

Proof: In case (1) the proof may be found in [2] or [8, th. 1]. For case (2),
by proposition 1 we have fQ(D)/MQ(Γ) ∼= R. Here, if MQ(Γ) is elementary,
the planar surface fQ(D) must have a cusp. The following proposition shows
that |Q(z) · ρ−2(z)| is not bounded. Thus PQ 6∈ S(R). 2

Proposition 2. Let Ω be a planar domain with cusps and f : D → Ω a
locally univalent covering map. Then |Sf · ρ−2

D | is unbounded on D.

Proof: By conjugation we may assume that 0 ∈ Ĉ \ Ω is a cusp, that the
group

Γ′ = 〈z 7→
(1 + i

π
)z − 1

z − (1− i
π
)
〉

is a subgroup of the deck group under which a horodisk B tangent to the
unit circle at 1 is precisely invariant, and that B/Γ′ is a neighborhood of the
cusp under via f . Then there is a conformal map h on some neighborhood
of 0 such that h(0) = 0 and h ◦ f(z) = exp z + 1

z − 1 on B.
By the Cayley identity, we have

|Sh◦f (z) · ρ−2
D (z)| = |Sh(f(z)) · ρ−2

Ω (f(z)) + Sf (z) · ρ−2
D (z)|.
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As z → 1 radially in B, the left-hand side of this equality, which is equal
to

| 2
(z − 1)4

(1− |z|2)2

4
|,

goes to ∞. At the same time, on the right-hand side, Sh(f(z)) is bounded
near 0, and

lim
f(z)→0

ρ−2
Ω (f(z)) = 0.

Hence we have |Sf (z) · ρ−2
D (z)| → ∞ as z → 1 radially in B, and |Sf · ρ−2

D | is
unbounded. 2

We now have

Theorem 1. Let R satisfy one of the conditions of lemma 1. If PQ1, PQ2

are covering projective structures corresponding to Q1, Q2, and ker(MQ1) 6=
ker(MQ2), then PQ1 and PQ2 are in different components of S(R).

The proof requires several facts . . .

Lemma 2. If Q ∈ S(R), and α ∈ Γ\ker(MQ) then there is some β ∈ Γ such
that MQ(α) and MQ(β) generate a non-elementary discrete group.

Proof of Lemma 2: For any β ∈ Γ, the discreteness of the group generated
by MQ(α) and MQ(β) is given, as Q ∈ S(R). Since MQ(Γ) is non-elementary
(lemma 1), for any α ∈ Γ with MQ(α) 6= id there is some β ∈ Γ \ ker(MQ)
such that the fixed points of MQ(α) and of MQ(β) are distinct. For such β,
MQ(α) and MQ(β) generate a non-elementary group (see, for example, [15,
p.23]). 2

Now, for any α, β ∈ Γ, let S(R, α, β) = {Q ∈ S(R) : 〈MQ(α),MQ(β)〉 is
not elementary }.

Lemma 3. For any α, β ∈ Γ, S(R, α, β) is both open and closed in S(R) .

Proof of Lemma 3: That S(R, α, β) is open is seen as follows. Let Q0 ∈
S(R, α, β). Since 〈MQ0(α),MQ0(β)〉 is non-elementary, it contains a Schottky
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group of rank 2, i.e. there exist α′, β′ ∈ 〈α, β〉 ⊂ Γ so that 〈MQ0(α′),MQ0(β′)〉
= MQ0(α′) ∗ MQ0(β′) is Schottky. Since small deformations of Schottky
groups are also Schottky [15], there is an ε > 0 such that if ‖Q − Q0‖ < ε
then 〈MQ(α′),MQ(β′)〉 is also a Schottky group of rank 2. Hence when
‖Q − Q0‖ < ε and Q ∈ S(R) we have 〈MQ(α),MQ(β)〉 is non-elementary.
This implies that Q ∈ S(R, α, β).

To show that S(R, α, β) is also closed, proving the lemma, we use the
ensuing lemma.

Lemma.[7] The algebraic limit of a sequence of non-elementary discrete groups
with a bounded number of generators is also a non-elementary discrete group.

Thus we assume {Qn} is a sequence in S(R, α, β) with Qn → Q as n→
∞. Since the 〈MQn(α),MQn(β)〉 are non-elementary and 〈MQn(α),MQn(β)〉
→ 〈MQ(α),MQ(β)〉 algebraically, we conclude that 〈MQ(α),MQ(β)〉 is a non-
elementary discrete group, i.e. Q ∈ S(R, α, β). 2

We are now ready to prove our theorem.
Proof of Theorem 1: Suppose PQ1 and PQ2 are discrete projective struc-
tures representing Q1 and Q2, respectively, such that ker(MQ1) 6= ker(MQ2).
Without loss of generality let α, β ∈ Γ satisfy the following conditions:
α ∈ ker(MQ2) \ ker(MQ1) and MQ1(α), MQ1(β) generate a non-elementary
discrete group. This is always possible by lemma 2 and the hypotheses of
our theorem.

By lemma 3, whether Q ∈ S(R, α, β) or not is determined on components
of S(R). Since by our choice of α, β we have Q1 ∈ S(R, α, β) while Q2 /∈
S(R, α, β), it follows that Q1 and Q2 are in distinct components of S(R). 2

It is interesting to ask to what extent ker(MQ), as a subgroup of Γ,
determines the component of S(R) in which Q lies. We cannot answer this
at present, so we instead ask to what extent does ker(MQ) determine the
conformal equivalence class of fQ(D). One sees easily that if Q ∈ S(R) has
trivial kernel then fQ(D) is simply connected and conformally equivalent to
D. More generally we show

Theorem 2. If ker(MQ) is such that D/ker(MQ) is conformally a plane do-
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main (i.e. simple closed curves separate), then fQ(D) is conformally equiv-
alent to D/ker(MQ).

Proof: We let Γ′ be a Fuchsian extension of Γ such that D/Γ′ = R′ is
conformally the surface fQ(D)/MQ(Γ), and ker′ the kernel of the monodromy
map from Γ′. Let R̂ = D/ker(MQ), and R̂′ = fQ(D) is conformally D/ker′.
We have that the diagram

D
↙ /ker ↘ /ker′

R̂ f̂Q−→ R̂′
↓/(Γ/ker) ↓/(Γ′/ker′)

R f̃Q−→ R′

commutes (see [11]).
We will establish the theorem by assuming that f̂Q is not a conformal

equivalence and showing that R̂ must have a nonseparating simple closed
curve. To do this we use

Lemma 4. There exists γ′ ∈ ker′ \ Γ corresponding to a simple closed curve
on R̂′.
Proof of Lemma 4: The γ′ ∈ ker′ corresponding to simple closed curves on
R̂′ generate ker′, if such a γ′ does not exist then ker′ < Γ, whence ker′ = ker
and f̂Q is a conformal equivalence. 2

Let Ωi (i = 1, 2) be two sheets of R̂ over R̂′, with cuts Ai and Bi to be
determined. The first criterion for this choice is that A+

1 (B+
1 ) are identified

with A−2 (B−2 , respectively) by the covering, a simple closed curve corre-
sponding to γ′ of lemma 4 crosses from A−1 to A+

2 , and Bi is the image of Ai
by some non-trivial element of Γ/ker. See figure 1.

We choose the Bi, moreover, so that simple arcs α±i may be taken from A±i
to B±i in Ωi, with the same endpoints on the respective cuts. By monodromy
this is always possible. The curve α+

2 (α−1 )−1 is a closed curve in R̂. See figure
2. It does not separate R̂, as we may connect any two points in Ωi \ α+

i or
Ωi\α−i by a simple arc in Ωi since neither α+ nor α− disconnects Ωi, and using
the action of the infinite group Γ/ker we may connect any Ωi to any other
Ωj through a finite number of other Ωk while staying away from α+

2 (α−1 )−1.
2
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Figure 1:

Figure 2:

3 Boundedness of S(R)

By considering the boundedness of S(R) for more general R, we extend the
Kra–Maskit result mentioned earlier.

Theorem 3. Let R be maximal. Then S(R) is bounded in Q∞(R) precisely
when the lengths of simple closed geodesics on R are bounded away from 0.

Proof: For a covering map fQ : D → Ω ⊂ Ĉ, with Q ∈ S(R), let us
consider the injectivity radius. Assume that the lengths of simple closed
geodesics on R are bounded away from 0. Then the injectivity radius of the
universal covering map π : D → R is bounded away from 0 for any z ∈ D
except in the cusped regions, and so is fQ. Since Q ∈ Q∞(R), again by [9,
lem. 1], fQ is univalent on the cusped regions.

Hence we know there exists a positive constant δ such that the injectivity
radius of fQ for any Q ∈ S(R) is larger than δ at any z ∈ D. By the Kra–
Maskit lemma [11, lem. 5.1a] we have ‖Q‖ ≤ 6 tanh−2 δ, so that S(R) is
indeed bounded.

Conversely, let {γn} be a sequence of simple closed geodesics on R whose
lengths `(γn) → 0 as n → ∞. For each n, we construct a special Kleinian
group Gn. Cutting R along γn and using the combination theorems [15], we
construct Gn, with an invariant component Ωn of the region of discontinuity
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such that Ωn is conformally the normal cover of R corresponding to γn and
R = Ωn/Gn.

Let fn be the locally univalent covering map D→ Ωn and set Qn = Sfn .
They belong to Q(R). Furthermore, since

inf
z∈D
{ injectivity radius of fn at z} =

`(γn)
2

,

Qn is actually in Q∞(R).
Now using [11, lem. 5.1b], ‖Qn‖ → ∞ as n→∞, since `(γn)→ 0. 2

Remark: The above condition on R has arisen recently in related settings
([16], [17], and [19], for example).

Corollary. Compactness of S(R) is equivalent to R having finite hyper-
bolic area. (Recall the topology of S(R).)

Proof: Since S(R) is closed [8], and as the ability of R to cover only
finitely many other Riemann surfaces (see [10]) implies that S(R) is bounded
(of course, finite area is used here), the result follows as Q∞(R) is finite
dimensional. 2

The following proposition shows that the presence of cusps does allow,
however, for the existence of unbounded covering projective structures.

Proposition 4. If R has cusps there are necessarily unbounded covering
projective structures on R.

Proof: Let R be conformally R′ \ {p}, where R′ = U/Γ′, U ⊂ Ĉ is a
holomorphic universal cover of R′, and Γ′ is a subgroup of PSL(2,C). Now
suppose U 3 0 7→ p ∈ R′ via the universal covering of R′. In this case the
universal covering of U \ Γ′(0) by D is the developing map f of a discrete
projective structure on R. The kernel of the monodromy group here is the
normalizer of a parabolic element in Γ corresponding to the cusp on R. That
|Sf · ρ−2| is unbounded on D was shown in proposition 2. 2

4 The structure of Int(D(R))

Shiga [20] studied the structure of Int(K(R)) for a compact hyperbolic sur-
face. We extend this by considering the case whereR = D/Γ is of finite type,
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possibly with cone points, and studying Int(D(R)). Though our argument
is the same as Shiga’s, we present it in full for the reader’s convenience.

Lemma 5. For R = D/Γ arbitrary, if Q ∈ Int(D(R)), then MQ is a type
preserving isomorphism.

Proof: For Q ∈ Q∞(R), the homomorphism MQ preserves parabolic el-
ements and the type of elliptic elements. Thus if there exists some Q0 ∈
Int(D(R)) such thatMQ0 is not a type preserving isomorphism, then there ex-
ists a hyperbolic element γ ∈ Γ such that tr2(MQ(γ)) is a non-constant holo-
morphic function of Q ∈ Q∞(R) and MQ0(γ) is either elliptic or parabolic. In
either case, since tr2(MQ(γ)) is an open mapping, there is a Q1 ∈ Int(D(R))
near to Q0 such that MQ1(γ) is elliptic with infinite order. But a discrete
subgroup of PSL(2,C) cannot have such elements, yielding a contradiction.
2

Lemma 6. Let R = D/Γ have finite hyperbolic area. For Q ∈ Int(D(R)),
MQ(Γ) has a non-empty region of discontinuity in Ĉ. Thus Int(D(R)) =
Int(K(R)).

Proof: Assume Q0 ∈ Int(D(R)) is such that MQ0(Γ) is not Kleinian.
Since MQ0(Γ) is finitely generated, it is Mostow–Sullivan rigid [21, th. 5].
Take a small ball B with center at Q0 in Int(D(R)). By Lemma 5, we
can define a family {MQ ◦M−1

Q0
} of type-preserving isomorphisms depending

holomorphically on Q ∈ B. Then by Bers [1] (see also Shiga [20, th. 1]),
we see MQ0(Γ) and MQ(Γ) are quasiconformally equivalent for each Q ∈
B \ {Q0}. But the rigidity of MQ0(Γ) implies that the representations MQ

and MQ0 are actually conformally equivalent. This means that Q = Q0,
which is impossible. 2

Theorem 4. For R of finite area, Int(D(R))∩ S(R) = T(R), where T(R)
is the Bers embedding, centered at R, of the Teichmüller space of R.

Proof: The inclusion Int(D(R)) ∩ S(R) ⊃ T(R) is clear. For the other
direction, let Q be a point in Int(D(R)) ∩ S(R). By the above two lemmas,
we know Q ∈ Int(K(R)) and MQ is a type preserving isomorphism. So by a
theorem of Maskit, [14, th. 6], MQ(Γ) is quasi-Fuchsian or totally degenerate
without accidental parabolics, and the developing map fQ is univalent.
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By the same reasoning as given by Shiga in [20, th. 2], we see that MQ(Γ)
cannot be totally degenerate. Hence MQ(Γ) is quasi-Fuchsian, and Q ∈ T(R)
as desired. 2
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