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Abstract

A set of conditions are given, each equivalent to the constancy of
mean curvature of a surface in H3. It is shown that analogs of these
equivalences exist for surfaces in S2

∞, the bounding ideal sphere of H3,
leading to a notion of constant mean curvature at infinity of H3. A
parametrization of all complete constant mean curvature surfaces at
infinity of H3 is given by holomorphic quadratic differentials on Ĉ, C,
and D.

1 Introduction

Let H3 denote the usual hyperbolic 3-space, with the upper half-space model
{(X,Y, T ) ∈ R2 ×R+} or {(Z, T ) ∈ C×R+} and metric line element given
by the expression

ds2 =
dX2 + dY 2 + dT 2

T 2 =
|dZ|2 + dT 2

T 2 .(1.1)

We will denote the corresponding inner product by 〈·, ·〉, and note that H3

is a symmetric space with constant sectional curvature −1. There are other
∗Key words and phrases: Hyperbolic space, Constant mean curvature, Quasiconformal

deformations
∗Mathematics Subject Classification: 53C42, 30C62
†Partially supported by PSC-CUNY grant #661365.

1



models of H3 which may facilitate calculations or geometric observations,
but for convenience the upper half-space model will be used exclusively.

In various computations throughout the paper we will use the summation
convention implicitly, so that if gij, hkl ∈ C for i, j, k, l ∈ 1, · · · , n then gijhjk

means
∑n
j=1 gijh

jk.
This paper concerns an apparently new use of quasiconformal analysis

in surface theory, and a criterion the satisfaction of which is equivalent to a
surface Σ0 ↪→ H3 having constant mean curvature, H(Σ0) = c. Briefly:

For a smooth surface Σ0 ↪→ H3, consider unit speed normal geodesic
flow. This gives a deformation of Σ0 in H3, with the image of Σ0 under the
flow denoted by Σt after time t. Let Nt : Σ0 → Σt denote this map. For
the moment let us assume that Σt is smooth. In this case both Σ0 and Σt

inherit metrics from H3, and therewith conformal structures. The conformal
deformation by the map Nt is measured from a conformal parameter Z on
Σ0 by the Beltrami differential

µt =
∂Z̄Nt

∂ZNt

(1.2)

on Σ0.
The space of Beltrami differentials on Σ0 is a vector space, and µt is a

point in this space. Thus there is natural a map [−∞,+∞] → (Beltrami
differentials) ∪{∞} on Σ0, where t 7→ µt. (The images of ±∞ are obtained
from the hyperbolic Gauss mapsG± : Σ0 → S2

∞ = ∂H3.) As N0 = id, µ0 ≡ 0,
and the curve of realized Beltrami differentials passes through the origin. It
turns out that H(Σ0) = c if and only if this curve is a radial segment, i.e.
if and only if there is some Beltrami differential µ′ so that µt = f(t)µ′ with
f : [−∞,+∞]→ R ∪ {∞} injective.

This is the first point of the paper, and is presented in §5. In §2–4
background is presented to make this precise: normal flow in H3, harmonic
maps between surfaces, the hyperbolic Gauss maps, and several related top-
ics. Much of the background material is a recapitulation of unpublished
results of C. L. Epstein. One consequence of this development is that sev-
eral apparently new characterizations of minimal surfaces are given in the
main theorem (theorem 1) of §5. One example: Σ0 is minimal if and only
if this radial segment is symmetric with respect to 0. Though much of the
development herein holds for R3 or S3, the treatment is restricted to H3.

2



The second major point of the paper is that the characterizations of con-
stant mean curvature surfaces in H3 (from §5) can be used to give a notion of
constant mean curvature surfaces immersed in S2

∞. A surface Σ+∞ immersed
in S2

∞ with constant mean curvature must necessarily satisfy H(Σ+∞) = ±1.
This is expected: if one considers spheres concentric about x ∈ H3, Sρ(x) of
radius ρ, their mean curvatures are ± coth ρ, which tend to ±1 as ρ → ∞.
Similarly, all horospheres Σ0 ⊂ H3 have H(Σ0) = ±1. The development
of the local theory of constant mean curvature surfaces at infinity is found
in §6, the point (theorem 4) of which is to show that theorem 1 holds in
this boundary case. When this boundary equivalence is satisfied we say that
Σ+∞ has constant mean curvature at infinity. One example of this equiv-
alence: considering a family {Σt}t∈R of parallel surfaces in H3, as above,
and letting N t

+∞ : Σt → Σ+∞ denote the forward Gauss map from Σt, let
N+∞
t = (N t

+∞)−1 : Σ+∞ → Σt. This is a potentially multivalued map. If the
maps N t

+∞ are sufficiently nice, we can give Σ+∞ a conformal structure (the
limit of the structures on the Σt as t → ∞). Letting Z now be a complex
parameter on Σ+∞, we look at

µ+∞
t =

∂Z̄N
+∞
t

∂ZN
+∞
t

(1.3)

as a Beltrami differential on Σ+∞. The constancy of mean curvature for
Σ+∞is equivalent to the map t 7→ µ+∞

t , given by [−∞,+∞] → (Beltrami
differentials on Σ+∞ ∪ {∞}), having image on a radial line.

Examples of such surfaces are known. They are precisely the images of
D = {z ∈ C : |z| < 1} by locally univalent maps, up to Möbius transforma-
tion, with the infinitesimal form of the metric on each sheet being the push-
forward of the Poincaré metric on D. The corresponding family of parallel
surfaces Σt interpolate between this possibly multisheeted conformal image
of D and a generally not conformal (and often not even smooth) image of D
obtained by a construction of Ahlfors and Weill. These are presented briefly
in §7. In §8 an apparently new class of such surfaces is given, generalizing to
flat structures the above interpolation and the Ahlfors–Weill construction.

Now if Σ0 is a complete surface of constant mean curvature, its second fun-
damental form pulls back to its universal cover Σ̃0, furnished with a complete
metric. This form splits and gives a holomorphic quadratic differential on Σ̃0

which is invariant under the deck transformations of the covering. It is nat-
ural to ask to what extent this quadratic differential, plus the completeness
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condition, characterize the surface Σ0. This has been considered by other
authors, and is discussed in the beginning of §9. Much of the motivation
for this paper comes from this question. The essential existence/uniqueness
issues in this setting remain unresolved.

It turns out that for constant mean curvature surfaces at infinity the
second fundamental form again splits and gives a holomorphic quadratic
differential. With notions of both completeness and second fundamental
form for surfaces immersed in S2

∞ (given in §4), the same sorts of existence
and uniqueness questions as were asked above may be asked in this case.
Here much more satisfactory answers are obtained. A full classification of
complete constant mean curvature surfaces at infinity of H3 is established.

To put it simply, the space of complete constant mean curvature surfaces
at infinity of H3, up to ambient isometry, is parametrized by the holomorphic
quadratic differentials on one of S2 = Ĉ, C, or D. The parametrization
is given by solving the Schwarzian differential equation arising on one of
the given spaces from a given quadratic differential, and one can recover
the quadratic differential by reading off the holomorphic part of the second
fundamental form of our surface at infinity (sense must be made of this).
In this way it is seen that the examples of §7 and 8, plus S2

∞ as the limit
of a family of concentric spheres in H3, are precisely the complete examples
arising. This terminates the mathematical content of the paper, which is
intended to be relatively self-contained and as such includes some proofs of
known results.

The author thanks Dennis Sullivan for his interest and support as this
paper developed. IHES is also thanked for their wonderful hospitality while
the author visited Bures–sur–Yvette. This work also benefitted from the
regular comments of Isaac Chavel and Józef Dodziuk.

In closing, a special word of thanks is extended to the author’s thesis
adviser, Newton S. Hawley, who died of cancer in early 1988. He was irascible
and witty, feisty and gentle. He was a spellbinding instructor who breathed
life into the content of his lectures. He pursued his interests with unbounded
childlike energy, pulling those who knew him along with him. But most of
all he was the author’s dear friend. This paper is dedicated to his memory.
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2 Normal flow

Let Σ0 ⊂ H3 be a smooth, embedded oriented surface patch parametrized by
Ω ⊂ R2. Let ~n be a continuous unit normal vector field on Σ0. This induces
a directed geodesic field on Σ0, with γp the geodesic in H3 passing through
p with ~n(p) a unit tangent to γp at p. Define a positive direction for each γp
using ~n(p), and define the maps Nt : Σ0 → H3 by

Nt(p) = expp(t~n(p)),(2.1)

for p ∈ Σ0.
Denote by Σt the image Nt(Σ0), and henceforth consider Nt as a map

from Σ0 to Σt. Note that although the Σt may not always be manifolds the
singularities occurring in this deformation are rather well understood [14]. In
an unpublished document [7], C. Epstein studied the geometry of the Σt in
terms of the geometry of Σ0. The family of {Σt}t∈R will be called a family of
parallel surfaces, even though some of the Σt may be singular or degenerate.
This paper makes liberal use of Epstein’s treatment and, as [7] has not seen
print, some of that work will first be reviewed.

If X1, X2 are standard positively oriented smooth coordinates on Ω, and
∂1, ∂2 the corresponding unit vector fields on Σ0, the metric on Σ0 induced
by its embedding is denoted by (g0)ij, with inverse (g0)ij = (g0)−1

ij . Let ∇0

denote covariant differentiation on Σ0, and ∇̃ that on H3. The Weingarten
map on Σ0 is thus

(II0)ij = (g0)ik(II0)kj(2.2)

where
(II0)ij = 〈∇̃j∂i, ~n〉 (∇̃i = ∇̃∂i).(2.3)

is the second fundamental form.
Note in passing that if k1

0(p), k2
0(p) are the two eigenvalues of (II0)ij(p),

i.e. the principal curvatures of Σ0 at p, the Gauss and mean curvatures, K(p)
and H(p), are defined by

K(p) = k1
0(p)k2

0(p)− 1
H(p) = 1

2(k1
0(p) + k2

0(p)) = 1
2(II0)ii.

(2.4)

Using Nt we define the forms (gt)ij(p), (IIt)ij(p), and (IIt)
i
j(p) on Σ0:

(gt)ij(p) = 〈(Nt)∗(∂i(p)), (Nt)∗(∂j(p))〉,
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(IIt)ij(p) = (gt)(∂i(p), ∇̃(∂j(p))~n(p)),

(IIt)
i
j(p) = (gt)

ik(p)(IIt)kj(p).

These are the pullbacks via Nt to Σ0 of the metric, second fundamental form,
and Weingarten map on Σt, and they evolve via the differential equations

d(gt)ij
dt = −2(IIt)ij,

d(IIt)
i
j

dt = (IIt)
i
k(IIt)

k
j − δij,

d2(IIt)ij
dt2

= 4(IIt)ij

(2.5)

which one solves explicitly by

(gt)ij = (g0)ik ·
[
(II0)kl sinh t− δkl cosh t

]
·
[
(II0)lj sinh t− δlj cosh t

]
,

(2.6)

etc. We see that both (gt)ij and (IIt)ij are finite for all time, with (gt)ij always
non-negative definite. Furthermore, Epstein shows that the only singularities
in (IIt)

i
j arise when (gt)ij is degenerate. In doing so, he considers the vector

fields ∂̃i obtained from parallel translation of ∂i(0) along the geodesic field,
i.e. ∂̃i(0) = ∂i(0) and ∇̃~n∂̃i = 0. Then if ∂i(0) is a characteristic vector of
II lm(0) corresponding to the i-th characteristic value ki0, i.e. ∂i(0) is one of
the directions of principal curvature, then so is ∂i for all t ∈ R and

∂i(t) =
1
2

[(1− ki0)et + (1 + ki0)e−t]∂̃i.(2.7)

It is this equation which tells us how lengths deform under Nt, hence how
the geometries of the Σt evolve.

Note 1. How the Σt’s may degenerate can be seen from (2.5). This
has been analyzed thoroughly by Epstein. In particular, if Σ0 is a smooth
surface patch with directional curvatures ki0 satisfying |ki0| ≤ 1 then Σt is
smooth for all t ∈ R. If, however, p ∈ Σ0 with some directional curvature
ki0(p) > 1 then for t > 0, Σt is degenerate at γp(t) only for t = coth−1 ki0, and
similarly if ki0(p) < −1. Thus Σt can degenerate at γp(t) only for at most
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two values of t. It follows that if in a sufficiently small neighborhood of p the
directional curvatures of Σ0 are bounded away from ±1 then Σt are smooth
for |t| sufficiently large.

At any rate, it will be useful to have at our avail the corresponding ex-
pression in complex notation. Thus if Z = X1 + iX2, and Z̄ = X1 − iX2, we
will use the standard notation for complex derivatives

∂Z =
1
2

(∂1 − i∂2),

∂Z̄ =
1
2

(∂1 + i∂2).

Similarly will ∇Z and ∇Z̄ denote 1
2(∇1− i∇2), and 1

2(∇1 + i∇2), respectively,
etc. These live in the complexified tangent bundle of Σ0 and if necessary in
the complexified tangent bundle of either Σt or H3.

At times it will be convenient to write these forms and other geometric
entities on Σt in terms of these complex parameters. To this end we make a
couple of purely formal observations.

If E dX2 + 2F dX dY +GdY 2 denotes the symmetric quadratic form(
E F
F G

)

on Σt, then the corresponding hermitian form is AdZ2 + 2B dZ dZ̄ + Ā dZ̄2,
i.e. (

B A
Ā B

)

where A = 1
4(E − 2iF −G), and B = 1

4(E +G). Thus, for example, 4(B2 −
AĀ) = EG − F 2 tells us how determinants of the real and hermitian forms
are related. Similarly, if the quadratic form is a square, i.e.(

E F
F G

)2

in real coordinates, in complex notation it becomes

2
(
B A
Ā B

)2
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with A and B as above. In the same fashion the form E dX ∂X+2F (dX ∂Y +
dY ∂X) + GdY ∂Y becomes, in complex notation, 2AdZ ∂Z + 2B (dZ ∂Z̄ +
dZ̄ ∂Z) + 2Ā dZ̄ ∂Z̄ with A and B as above.

We will denote by ht, (Πt)ij and (Πt)ij the hermitian forms of gt, (IIt)ij
and (IIt)ij respectively. If we have h = AdZ2 + 2B dZ dZ̄ + Ā dZ̄2, then we
will say A = hZZ , B = hZZ̄ , etc., so that

h =
(
hZZ̄ hZZ
hZ̄Z̄ hZZ̄

)
.

Finally we note that Σ0 ↪→ H3 inherits a conformal structure, i.e. a
notion of an infinitesimal circle, via the immersion. In particular, the Gauss
equations for isothermal coordinates (conformal coordinates) on Σ0 are

dξ =
1

λ
√
g11

(g11 dx1 + g12 dx2)

dη =

√
g11g22 − g2

12

λ
√
g11

dx2

as is well-known [10, §17]. In ξ, η–coordinates the metric is ds2 = λ2(dξ2 +
dη2). If ζ = ξ+iη, then the hermitian form h is, with respect to this complex
parameter, λ2 dζ dζ̄. These coordinates will be used presently.

3 Harmonic maps and the deformation of sur-
faces

This section reviews several phenomena associated with differentiable maps
from a smooth surface (with either a Riemannian or a conformal structure)
into Riemannian manifolds. Most of this is well known, but we recount it here
for the sake of completeness. It will be useful but not required herein to keep
in mind the example of normal flow of surfaces discussed in the preceding
section.

We consider

1. harmonicity of maps from a surface,

2. harmonicity of quadratic differentials, and
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3. quasiconformal deformation and surface maps.

Each of these will be considered in turn.

(1) Harmonic maps. Given Riemannian manifolds (M, gM) and (N, gN)
and a smooth map

f : (M, gM)→ (N, gN),

suppose Xi are coordinates on M . By f∗(gN) (f∗(hN) respectively) will be
meant the quadratic form (hermitian form) which is the pull-back by f of gN
(hN - the Hermitian form corresponding to gN). When f is understood we
will use (gN)∗ ((hN)∗) for f ∗(gN) (f ∗(hN) respectively). We let ∇ denote the
metric covariant differentiation on M . This is defined for quadratic forms
[15, ch.6].

The map f is said to be harmonic if and only if

−∇k(gM)ij(gN)∗ij + 2(gM)ij∇i(gN)∗jk = 0

for all k [6, §3]. Since ∇i(gM)ij = 0 we may rewrite this as

(gM)ij(−∇k(gN)∗ij + 2∇i(gN)∗jk) = 0.

In the case when M is a surface and gM is given in conformal parameters,
we have (gM)ij = λ2δij and the equations for harmonicity become

−∇k(gN)∗ii + 2∇i(gN)∗ik = 0(3.1)

for k = 1, 2.
If we rewrite these as

∇1((gN)∗11 − (gN)∗22) + 2∇2(gN)∗12 = 0
∇2((gN)∗22 − (gN)∗11) + 2∇1(gN)∗12 = 0

and let Z = X1 + iX2, etc., we find that these are the Cauchy–Riemann
equations for (hN)∗ZZ , i.e. the above equations are the real and negative
imaginary parts of the expression

∇Z̄(hN)∗ZZ = 0.

Thus we have the following standard.
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Lemma 1. If M is a surface, the map f : (M, gM) → (N, gN) is harmonic
only if the ZZ–part of the induced hermitian form (hN)∗ is holomorphic.

(2) Harmonic Quadratic Differentials. There are various notions of har-
monicity for tensor fields over manifolds with certain features – like a Rie-
mannian metric or a Kähler structure, etc. Here we have a conformal metric
and call a symmetric 2–tensor Q = AdZ2 + 2B dZ dZ̄ + Ā dZ̄2, written in
conformal coordinates, a quadratic differential. We will follow Kodaira and
say that Q is harmonic if and only if

∇Z∇Z̄(AdZ2) + (∇Z∇Z̄ +∇Z∇Z̄)(B dZ dZ̄) +∇Z̄∇Z(Ā dZ̄2) = 0.

The explicit covariant derivatives of quadratic differentials in conformal co-
ordinates are precisely

∇Z̄(AdZ2) = ∂Z̄AdZ
2

∇Z∇Z̄(AdZ2) = λ4 ∂Z(λ−4∂Z̄A) dZ2

∇Z(B dZ dZ̄) = λ2 ∂Z(Bλ−2) dZ dZ̄
(3.2)

and their conjugates. Thus AdZ2 + 2B dZ dZ̄ + Ā dZ̄2 is harmonic if and
only if

∂Z(λ−4(∂Z̄A)) = ∂Z∂Z̄(λ−2B) = 0.

We sum this up in lemma 2.

Lemma 2. If Q = AdZ2 + 2B dZ dZ̄ + Ā dZ̄2 is a harmonic quadratic
differential on (M, g) in conformal coordinates, with the hermitian form of
the metric h given by h = λ2|dZ|2, then ∂Z(λ−4 ∂Z̄A) = 0 and Bλ−2 is a
harmonic function on M . In particular, if A is holomorphic and B is a
constant multiple of the metric, the quadratic differential is harmonic.

Lemma 3. Given Q, (M, gM) as in the preceding lemma, with Q the hermi-
tian form of the Weingarten map for some isometric immersion M

ι
↪→(N, gN)

into a Riemannian manifold N of dimension ≥ 3 then Q is harmonic if and
only if Bλ−2 is constant, or equivalently if and only if A is holomorphic.

Proof: The Codazzi–Mainardi equations for the image ofM are∇Z̄(AdZ2) =
∇Z(B dZ dZ̄) and its conjugate. Thus the holomorphicity of A is equivalent
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to the constancy of Bλ−2 and, as noted in the preceding lemma, both imply
the harmonicity of Q.

Now assume Q is harmonic. Covariant differentiation of the first Codazzi–
Mainardi equation with respect to Z plus the fact that ∇Z̄∇Z(B dZ dZ̄) = 0
gives that ∇Z(B dZ dZ̄) = cλ2 dZ dZ̄ where c is globally constant. From
(3.2) we deduce that ∂Z(Bλ−2) = c. Conjugation gives the conclusion that
∂Z̄(Bλ−2) = c̄. Thus Bλ−2 = cZ + c̄Z̄ + d, i.e. is real affine, for any choice
of conformal coordinate, whence c = 0 and ∇Z̄(AdZ2) = ∇Z(B dZ dZ̄) = 0.
The lemma follows. 2

(3) Quasiconformal Deformations. Let M again be a surface with Rie-
mannian structure and assume we have conformal coordinates thereon. Let
f : (M, gM) → (N, gN) be a map to a general Riemannian manifold N . If
the hermitian form induced by f has the matrix form

(hN)∗ =
(
β α
ᾱ β

)2

(3.3)

then the Beltrami differential of f is easily expressed by the entries of this
matrix. The proof is a straightforward and formal computation.

Lemma 4. The Beltrami differential of f is µ = ᾱ
β .

Assuming (3.3), we make the following definition.

Definition: The Beltrami differential µ of f is given by

µ =
ᾱ

β
.

We will sometimes call this the “conformal deformation” of M by f .

Definition: The space of Beltrami differentials on M will be denoted by
B(M) = F(M) ⊗ T 0,1(M) ⊗ T−1,0(M), where F(M) is the vector space
of measurable functions on M . Similarly we define B∞(M) = L∞(M) ⊗
T 0,1(M)⊗T−1,0(M). We give B∞(M) the topology inherited from L∞(M).

If gM is not given in terms of the conformal structure, one lets

hM =
(
βM αM
ᾱM βM

)2
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be the metric hermitian form on M and (hN)∗ the induced hermitian form
from f of (3.3). It is readily checked that if(

β α
ᾱ β

)2

=
(
βM αM
ᾱM βM

)−1 (
βN αN
ᾱN βN

)2 (
βM αM
ᾱM βM

)−1

then

µ =
ᾱ

β
.

Note 2. It is important that lemmas 1 and 4 make sense even if N is not a
manifold. All that is necessary is that N carries a symmetric quadratic form
gN so that the expression (gN)∗ makes sense. We thus make the following
definition.

Definition: The map f : (M, gM)→ (N, gN) is said to be harmonic if and
only if ∇Z̄(hN)∗ZZ = 0. The Beltrami differential of f is given by µ = ᾱ

β .

Note 3. The notions of harmonic maps, holomorphic differentials and
conformal deformation are determined by the conformal structure on M ,
and up to scalar multiplication of the appropriate quadratic forms.

Lemma 1 and the above definition can be generalized a bit if N is also a
surface.

Proposition 1. Let (M, gM) and (N, gN) be surfaces. Suppose that f :
M → N is a local diffeomorphism. The map f is harmonic if and only if the
ZZ–part of (gN)∗ is holomorphic on M .

Proof: Let Z (W ) be a conformal parameter on M (N) such that at x ∈M
(f(x) ∈ N) the metric gM (gN) is given by |dZ|2 (|dW |2), and the metric
connection vanishes. The rest of the proof now takes place at x ∈ M . The
form |dW |2 on N pulls back to |WZ dZ+WZ̄ dZ̄|2 = WZWZ dZ

2 +(WZW̄Z̄ +
WZ̄WZ) dZ dZ̄ +WZ̄W Z̄ dZ̄

2 on M . The ZZ–part of this is WZWZ .
Now if f is harmonic then WZZ̄ = WZZ̄ = 0 so that ∂Z̄(WZWZ) = 0

as desired. In the other direction, if ∂Z̄(WZWZ) = 0 we suppose WZZ̄ 6= 0.
Since f is a local diffeomorphism at every point either WZ or WZ̄ is nonzero.
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We’ll assume that WZ 6= 0, as if WZ̄ 6= 0 the argument will be identical. As
WZZ̄ = (WZZ̄) we have WZZ̄WZ +WZWZZ̄ = 0 implies

WZ

WZ

= −WZZ̄

WZZ̄

is of unit modulus. The Jacobian of f , |WZ |2−|WZ̄ |2, must therefore vanish,
contradicting the fact that f is a local diffeomorphism. Thus indeed WZZ̄ =
0. 2

This argument is due to Newton Hawley [11].

4 Flow to infinity and envelopes of horospheres

In §2 we introduced for each t ∈ (−∞,+∞) a nonnegative definite quadratic
form (gt)ij (with inverse (gt)ij when extant) such that

(gt)ij = (g0)ik[IIkl (0)II lj(0) sinh2 t− 2IIkj (0) sinh t cosh t+ δkj cosh2 t].

This is the pullback by Nt of the metric on the possibly singular variety
Σt. As such we will use gt both for the metric on Σt and its pullback to
Σ0. We may for all t ∈ (−∞,+∞) determine whether or not the map Nt is
harmonic. As was mentioned in note 3, the harmonicity of Nt is determined
by the definition of gt up to a multiplicative constant. Thus if we give Σt the
metric ĝt = 4e−2tgt, the map N̂t : Σ0 → (Σt, ĝt), agreeing pointwise with Nt,
is harmonic precisely when Nt is.

We define the maps N±∞ as

N+∞(p) = lim
t→+∞

expp (t~n(p)) ∈ S2
∞,

with ~n(p) as in §2. Similarly for N−∞. The metrics gt diverge as t →
±∞. Thus to consider whether the map N+∞ is harmonic or not it is more
convenient to note that the ĝt to converge to a limiting quadratic form ĝ+∞
as t→ +∞.

Epstein showed [7] that the limiting metric ĝ+∞ is nondegenerate if and
only if the map N+∞ is a local diffeomorphism to S2

∞, or equivalently if and
only if the Σt converge at +∞ to a surface immersed in S2

∞. Whether or not
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ĝ+∞ is degenerate, the (possibly degenerate) surface on which it lives will be
called Σ+∞, and we note that

(ĝ+∞)ij = lim
t→+∞

4e−2t(gt)ij = (g0)ik[(II0)kl (II0)lj − 2(II0)kj + δkj ].

We make a similar definition when t→ −∞.
This suggests a definition.

Definition: We say that N+∞ is harmonic if and only if the map N̂+∞ :
Σ0 → (Σ+∞, ĝ+∞), agreeing pointwise with N+∞, is harmonic. Similarly for
N−∞.

Note 4. Epstein [7] has shown that where Σ+∞ is nondegenerate, its
conformal structure is precisely that inherited from S2

∞. This is intuitively
clear as if X1, X2 form an orthonormal basis for TpΣ0 then parallel translation
along γp toNt(p) gives an orthonormal basis for TNt(p)Σt. However if we orient
such an orthonormal basis and project out to S2

∞, one of the orientations is
the same as that of S2

∞, while the other is different. Our convention will be
to give the Σt orientations opposite those induced by H3 with normal ~n(p, t)
on Σt (see §2). Thus Σ+∞ is given an inward pointing normal so that its
orientation is that induced by S2

∞ = Ĉ. In the same fashion Σ−∞ inherits an
outward pointing normal so that its orientation is opposite that induced by
S2
∞ = Ĉ.

Note 5. In a family of parallel surfaces, there is no natural choice of Σ0.
These families are naturally parametrized by R as a metric space with its
Euclidean metric, not as a vector space. Thus for a different parametrization
of the family τ = t− t0 we have

(ĝτ=+∞)ij = e2t0(ĝt=+∞)ij.

We see then that the quadratic form on Σ+∞ is determined up to mul-
tiplication by a positive constant by the family of parallel surfaces. Hence
whether or not the maps N t1

t2 = Nt2 ◦ (Nt1)−1 : Σt1 → Σt2 (for any choice of
Σ0) are harmonic is intrinsic to the family of surfaces, even when the ti are
±∞.

Furthermore, the completeness of a Riemannian manifold (M, g) is equiv-
alent to the completeness of (M, cg) for any c ∈ R+. Thus we are led to the
following definition.
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Definition: We say that Σ+∞ is complete if ĝ+∞ is positive definite and
the Riemannian manifold (Σ+∞, ĝ+∞) is complete. Since ĝ+∞ is determined
up to a constant, it follows that the completeness of Σ+∞ is determined by
our family of parallel surfaces.

We can represent geometric information on Σ+∞ in terms of that on Σ0.
It is not far fetched to suppose we can reverse this. We can construct each
Σt from Σ0 by considering the envelope of spheres of radius t about points
on Σ0, we construct Σ0 from Σt in the same fashion. Now let us assume
that Σ+∞ is immersed in S2

∞. Heuristically, letting t → +∞, we construct
Σ0 from Σ+∞ as an envelope of horospheres with centers on Σ+∞. Thus, we
ask, given a domain Ω ⊂ S2

∞ and a choice of horosphere at each point θ ∈ Ω,
how do we reconstruct Σ0; that is, what sort of conditions on the family of
horospheres allow us to integrate to get Σ0, and, given that we can indeed
integrate, how do we extract geometric information on Σ0 from the family of
horospheres?

These questions have also been answered by Epstein [7]. Picking a base-
point x ∈ H3 and if θ ∈ S2

∞ is the center of the horosphere νθ, we say that
νθ has radius ρ ∈ R with respect to x if ±dH(x, νθ) = ρ, where we take − if
x is interior to νθ and + if not. Thus if we have a distribution of horospheres
νθ on Ω ⊂ S2

∞, on choosing a base point x ∈ H3 we can give criteria for
the integrability of νθ in terms of the radius function ρ(θ). In fact Epstein
shows that this distribution is integrable if ρ is C1. Clearly this does not
depend on the choice of x. Of course to extract geometric information (met-
ric form, curvature, etc.) on integral surfaces from knowledge of ρ we need
more derivatives. Let us assume as many derivatives as necessary to make
the computations work. In general ρ being C4 suffices.

Fixing x ∈ H3, we have a well defined metric on S2
∞ with constant cur-

vature ≡ +1 by visual identification with the sphere of unit tangent vectors
at x. Identifying S2

∞ with Ĉ via stereographic projection, so that θ ∈ S2
∞ is

0 ∈ C, and taking z to be a standard planar coordinate in a neighborhood
of 0 ∈ Ω, we can express the metric and second fundamental form on Σt in
a rather straightforward fashion.

The hermitian form of the metric on Σt is given by Epstein [7] as

ht|z=0 =
1
2
e2(ρ+t)

(
(∂∂̄ρ− 1)e−2(ρ+t) + 1 (∂2ρ− (∂ρ)2)e−2(ρ+t)

(∂̄2ρ− (∂̄ρ)2)e−2(ρ+t) (∂∂̄ρ− 1)e−2(ρ+t) + 1

)2

(4.1)
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while

(Πt)ij|z=0 = D−1

[(
0 2A

2Ā 0

)
+ ωId

]
(4.2)

where

A = ∂2ρ− (∂ρ)2

D = e2(ρ+t)
[
|1 + (∂∂̄ρ− 1)e−2(ρ+t)|2 − |Ae−2(ρ+t)|2

]
ω = e2(ρ+t)

[
((∂∂̄ρ− 1)e−2(ρ+t))2 − |Ae−2(ρ+t)|2 − 1

]
.

(4.3)

Evidently at z = 0 we get ĥ+∞ = limt→+∞ e
−2tht to be

ĥ+∞|z=0 =
1
2
e2ρ

(
1 0
0 1

)2

.

Thus at the center of our stereographic coordinate system, z = 0 on Σ+∞,
the length element is e2ρ|dz|2. Since the surface Σ0 determines the metric
ĥ+∞, we can read off from h0 and Π0 the support function ρ. This leads to
the following theorem.

Theorem. [7] The support function ρ for Σ0 on Σ+∞ determines the met-
rics ht (or ĥt = e−2tht) for all t ∈ [−∞,+∞]. Conversely, any of the ht
determine the support function ρ.

Also at z = 0 we get (Π±∞)ij = ∓id. Thus the mean curvatures of the
surfaces Σt approach ∓1 pointwise as t → ±∞. However, it appears that
the off diagonal parts of (Π±∞)ij vanish.We wish to note that infinitesimally
these terms persist in (Πt)ij as t→ ±∞. We do this by letting τ = e−2t and
taking the 1–jet at τ = 0. Since

lim
t→+∞

[
(zz–term of (Πt)ij)

]
2Aτ

= e−2ρ,

for example, we use the following definition.

Definition: The second fundamental form of Σ+∞ is defined by

(Π+∞)ij|z=0 =
(
−1 + 2(∂∂̄ρ− 1)e−2ρ dτ 2Ae−2ρ dτ

2Āe−2ρ dτ −1 + 2(∂∂̄ρ− 1)e−2ρ dτ

)
.

(4.4)
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The zz-term of (Π+∞)ij is now defined as the infinitesimal Beltrami parameter
2Adτ . In the same way we may obtain the expression for (Π−∞)ij|z=0.

The intrinsic curvature of Σt is readily computed from (Πt)ij. One checks
that det(Πt)ij = det(IIt)ij so that

Kt = det(Πt)ij − 1.

Thus to compute the intrinsic curvature of (Σ+∞, ĥ+∞) we use the fact that
K(cg) = c−1K(g) for any metric g, and obtain

K̂+∞|z=0 = K(ĥ+∞)|z=0

= limt→+∞
e2t

4 (det(Πt)ij − 1)
= (1− ∂∂̄ρ)e−2ρ

(4.5)

We record this as the following proposition.

Proposition 2. For a family of parallel surfaces Σt (t ∈ [−∞,+∞]) such
that Σ0 has support function ρ from Σ+∞ for the choice of origin x ∈ H3,
the curvature of (Σ+∞, ĥ+∞) is precisely K̂+∞ = (1−∆S2ρ)e−2ρ.

This entire discussion can be made independent of basepoint on Σ+∞. We
allow for fractional linear transformations by letting ρ′ = ρ− log (1 + |z|2) in
(4.1) – (4.4). For example, we find that

ht =
1
2
e2(ρ′+t)

(
(∂∂̄ρ′)e−2(ρ′+t) + 1 (∂2ρ′ − (∂ρ′)2)e−2(ρ′+t)

(∂̄2ρ′ − (∂̄ρ′)2)e−2(ρ′+t) (∂∂̄ρ′)e−2(ρ′+t) + 1

)2

.(4.6)

At t = +∞ we get

ĥ+∞ =
1
2
e2ρ′

(
1 0
0 1

)2

(4.7)

and

(Π+∞)ij =
(
−1 + 2(∂∂̄ρ′)e−2ρ′ dτ 2Ae−2ρ′ dτ

2Āe−2ρ′ dτ −1 + 2(∂∂̄ρ′)e−2ρ′ dτ

)
.(4.8)

with K̂+∞ = −e−2ρ′(∂∂̄ρ′). We repose proposition 1 in these terms as follows.
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Proposition 3. For a family of parallel surfaces Σt (t ∈ [−∞,+∞]) such
that Σ0 has support function ρ from Σ+∞ for the choice of origin x ∈ H3,
the hermitian metric ĥ+∞ is given by eρ

′|dz|2 with the curvature K̂+∞ =
−e−2ρ′(∂∂̄ρ′).

It is nice to note that the Codazzi–Mainardi equations hold in this bound-
ary setting.

Proposition 4. The Codazzi–Mainardi equations hold for (Π+∞)ij, i.e. if

(Π+∞)ij =
(
e2ρ′(−1 + 2(∂∂̄ρ′)e−2ρ′ dτ) 2Adτ

2Ā dτ e2ρ′(−1 + 2(∂∂̄ρ′)e−2ρ′ dτ)

)

=
(
B A
Ā B

)

then

∇Z̄(A dZ2) = ∇Z(B dZ dZ̄).

Proof: From (3.2) we must establish the equality

∂̄A = e2ρ′∂(Be−2ρ′).

But this follows from the equality

∂̄(∂2ρ′ − (∂ρ′)2) = e2ρ′∂((∂∂̄ρ′)e−2ρ′). 2

5 Constant mean curvature.

We now have the following theorem.

Theorem 1. Let Σ0 ⊂ H3 be an oriented smooth surface with metric
λ2dZdZ̄. The following are equivalent:

1. Σ0 has constant mean curvature;

2. (Π0)ij is harmonic;
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3. the ZZ–part of (Π0)ij is holomorphic on Σ0;

4. Nt : Σ0 → Σt is harmonic for all t ∈ [−∞,+∞];

5. there exists t ∈ [−∞, 0)∪ (0,+∞] such that Nt : Σ0 → Σt is harmonic;

6. µt(p) = f(t) · g(p) where f : [−∞,+∞] → R ∪ {∞} is injective and
g ∈ B(Σ0);

7. µt(p) = f(t) · g(p) where f(t) = tanh t
1− c tanh t , with c a constant (c

= H(Σ0)) and g ∈ Q(Σ0)× λ−2.

Proof: The equivalence of (1), (2) and (3) is immediate from lemma 3.
That (1) is equivalent to (4) and (5) is straightforward, though we give a

sketch for the sake of completeness. First we discuss harmonicity of surface
maps in our setting of normal flow.

As for fixed t

(gt)ij = (g0)il[(II0)lm(II0)mj sinh2 t− 2(II0)lj sinh t cosh t+ δlj cosh2 t],

we use the definition of harmonicity given by (3.1). It follows that

−∇k(g0)ij(gt)ij + 2(g0)ij∇i(gt)jk
= −∇k

(
(g0)ij(g0)ip[(II0)pm(II0)mj sinh2 t− 2(II0)pj sinh t cosh t]

)
+2(g0)ij∇i

(
(g0)jp[(II0)pm(II0)mk sinh2 t− 2(II0)pk sinh t cosh t]

)
−δjp

[
((II0)pm;k(II0)mj + (II0)pm(II0)mj;k) sinh2 t− 2(II0)pj;k sinh t cosh t

]
+2δip

[
((II0)pm;i(II0)mk + (II0)pm(II0)mk;i) sinh2 t− 2(II0)pk;i sinh t cosh t

]
= −((II0)jm;k(II0)mj + (II0)jm(II0)mj;k) sinh2 t+ 2(II0)jj;k sinh t cosh t

+2((II0)im;i(II0)mk + (II0)im(II0)mk;i) sinh2 t− 4(II0)ik;i sinh t cosh t
= 0,

and by using the Codazzi–Mainardi equations, i.e. (II0)ij;k = (II0)ik;j, we are
able to reduce this to

2 sinh t [(II0)pk sinh t− δpk cosh t] (II0)ii;p = 0.
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We consider this as a system of equations in (II0)ii;p for p = 1, 2, i.e.{
[(II0)1

1 sinh t− cosh t] (II0)ii;1 + (II0)2
1 sinh t (II0)ii;2 = 0

(II0)1
2 sinh t (II0)ii;1 + [(II0)2

2 sinh t− cosh t] (II0)ii;2 = 0.(5.1)

We wish to show that this system has only the trivial solution. To have
non-trivial solutions it is necessary that the discriminant is zero, i.e. that

((II0)1
1(II0)2

2 − (II0)1
2(II0)2

1) sinh2 t− ((II0)1
1 + (II0)2

2) sinh t cosh t
+ cosh2 t = 0.

This means that coth t is everywhere an eigenvalue of (II0)ij. Hence at least
one of the principal curvatures is fixed if (5.1) is to have non-trivial solutions.
We will now see that the other is also fixed, so that indeed no non-trivial
solutions can exist.

We may assume (II0)1
1 = coth t, (II0)2

2 6= coth t and (II0)ij is diagonal,
i.e. k1 6= k2. We wish to show that k2 is constant, whence (II0)ii is constant.
From (5.1) we have

[(II0)2
2 − coth t](II0)ii;2 = 0,(5.2)

whence (II0)ii;2 = 0. But we already have (II0)1
1;2 = 0, so that (II0)2

2;2 = 0.
We also have (II0)2

2;1 = (II0)2
1;2 = 0. Thus indeed (II0)2

2 is constant, whence
(II0)ii is also constant, and (5) implies (1).

That (1) implies (4) is evident from (5.1), and of course (4) implies (5).
To establish (6) and (7), we will prove (6) and note that f : [−∞,+∞]→

[−∞,+∞] and g ∈ L∞ ⊗ T 1,−1(Σ0) determine the constant mean curvature
(up to sign) and are determined thereby (up to multiplicative constants).
Furthermore we will show that g must be anti-holomorphic, establishing the
theorem.

As mentioned earlier, the metric on Σt is given in terms of the metric,
(g0)ij, and the Weingarten map, (II0)ij, on Σ0. If we have a conformal
coordinate Z = X1 + iX2 on Σ0, so that with respect to X1 and X2 we have

(g0)ij =
(
λ 0
0 λ

)2

and (II0)ij =
(
L M
M N

)
,

then the metric gtij on Σt is

(gt)ij =
{[(

L M
M N

)
sinh t−

(
λ2 0
0 λ2

)
cosh t

](
λ−1 0
0 λ−1

)}2

.
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In complex coordinates the corresponding hermitian forms are thus

h0 =
1
2

(
λ 0
0 λ

)2

and

ht =
1
2

 (L+N)
2λ sinh t− λ cosh t (L−N − 2iM)

2λ sinh t
(L−N + 2iM)

2λ sinh t (L+N)
2λ sinh t− λ cosh t


2

.

From this we compute the “change of complex structure” matrix to be

√
h0 (ht)−1

√
h0 =

(
βt αt
ᾱt βt

)2

= 4


(L+N)

2λ2 sinh t− cosh t (L−N − 2iM)
2λ2 sinh t

(L−N + 2iM)
2λ2 sinh t (L+N)

2λ2 sinh t− cosh t


2

.

It follows that

µt =
ᾱt
βt

=
(L−N + 2iM) tanh t
(L+N) tanh t− 2λ2

µ+∞ =
(L−N + 2iM)
(L+N)− 2λ2

and
µ+∞

µt
= 1− 2λ2(1− tanh t)

((L+N)− 2λ2) tanh t
.

Thus µ+∞
µt depends only on t if and only if 2λ2

(L+N)− 2λ2 does, i.e. if

and only if (L+N)
2λ2 is independent of z and z̄ (x and y, respectively). That

is, if and only if the trace of (II0)ij, the mean curvature, is constant. This
establishes the equivalence of (1) and (6).

We have (7) by noting in the above that if

c =
(L+N)

2λ2
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then

µt = −(L−N + 2iM)
2λ2 · tanh t

(1− c tanh t)
.

Since the Z,Z–part of Π, i.e. Ȧ, is precisely

Ȧ = −(L−N − 2iM)
2

and is holomorphic, the proof is concluded. 2

Corollary 1. If Σ0 has constant mean curvature, then Σt0 (t0 6= 0) does
also if and only if either

1. tanh t0 = 1
c (so that c 6= 0) and H(Σt0) = −H(Σ0), or

2. every surface Σt has constant mean and constant intrinsic curvatures.

In the second case, the surfaces Σt are all either pieces of metric spheres,
horospheres, cylinders equidistant from a geodesic, or surfaces equidistant
from a totally geodesic plane.

Proof: Given that Σ0 has constant mean curvature c, we have

ht =
1
2
λ2

(
c sinh t− cosh t Ȧλ−2 sinh t

¯̇Aλ−2 sinh t c sinh t− cosh t

)2

.

We note that √
ht0 (ht)−1

√
ht0 =

1
det(ht0)

(
D C
C̄ D

)2

.

where

C = Ȧλ−2(sinh t0 cosh t− cosh t0 sinh t)
D = (c2 − |Ȧλ−2|2) sinh t0 sinh t

−c(sinh t0 cosh t+ cosh t0 sinh t) + cosh t0 cosh t.

The conformal deformation of N t0
t = Nt ◦ (Nt0)−1, as noted in §3, is thus

µt0t =
¯̇Aλ−2(tanh t0 − tanh t)

(c2 − |Ȧλ−2|2) tanh t0 tanh t− c(tanh t0 + tanh t) + 1
.
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and similarly for N t0
+∞ = N+∞ ◦ (Nt0)−1,

µt0+∞ =
¯̇Aλ−2(tanh t0 − 1)

(c2 − |Ȧλ−2|2) tanh t0 − c(tanh t0 + 1) + 1
.

This yields

µt0+∞
µt0t

= (c2 − |Ȧλ−2|2) tanh t0 tanh t− c(tanh t0 + tanh t) + 1
(c2 − |Ȧλ−2|2) tanh t0 − c(tanh t0 + 1) + 1
×
(

tanh t0 − 1
tanh t0 − tanh t

)
= tanh t+ (c tanh t0 − 1)(tanh t− 1)

(c2 − |Ȧλ−2|2) tanh t0 − c(tanh t0 + 1) + 1
×
(

tanh t0 − 1
tanh t0 − tanh t

)
,(5.3)

which depends only on t if and only if either

1. tanh t0 = 1
c , or

2. |Ȧλ−2| is constant.

Case 1: If tanh t0 = 1
c , then

µt0t =
¯̇Aλ−2(1− c tanh t)
−|Ȧλ−2|2 tanh t

= (1− c tanh t)
−Ȧλ−2 tanh t

,

µt0+∞ =
¯̇Aλ−2(1− c)
−|Ȧλ−2|2

= (1− c)
−Ȧλ−2 .

It follows that

µt0+∞
µt0t

=
(1− c) tanh t
(1− c tanh t)

.

Letting t = τ + t0 we have

µt0t =
¯̇Aλ−2(1− c2)
−|Ȧλ−2|2

tanh τ
(c tanh τ + 1)

=
(1− c2)
−Ȧλ−2

tanh τ
1 + c tanh τ
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and by equivalence 7 we have H(Σt0) = −c.
Case 2: |Ȧλ−2| being constant implies that every µt is constant, whence,

as

|µt| =
tanh t

1− c tanh t
· |k1 − k2|

2
,

we deduce that k1 and k2 are both constant.
The final conclusion follows from a result of Cartan [5]. He completely

classified surfaces in H3 for which H and K are constant. These are called
isoparametric surfaces.

Theorem. [5] If Σ0 is a surface in H3 for which H and K are constant then
one of the following cases must hold:

1. Σ0 is a piece of a metric sphere;

2. Σ0 is a piece of a horosphere;

3. Σ0 is a piece of a surface equidistant from a hyperbolic geodesic; or

4. Σ0 is a piece of a surface equidistant from a totally geodesic plane in
H3.

This completes the proof of the corollary. 2

Corollary 2. Σ0 is minimal if and only if µt(p) = f(t) · g(p) with f :
[−∞,+∞]→ R ∪ {∞} odd. In this case f(t) = tanh t.

Proof: This is immediate from equivalences 1, 6, and 7 of theorem 1. 2

Corollary 3. If H(Σ0) = c and the Nt are not all conformal, we can
recover c by knowing only the conformal deformations to ±∞, i.e. by knowing
µ±∞.

Proof: From equivalence (7),

µ−∞(p) =
−1

1 + c
g(p) and µ+∞(p) =

1
1− c

g(p).

If g 6≡ 0 then

M =
µ−∞
µ+∞

=
c− 1
c+ 1
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so that

c =
M + 1
1−M

. 2

Corollary 4. If Σ0 ↪→ H3 and H(Σ0) = 1, let Ȧ = ZZ–part of Π on Σ0.
Then N+∞ is anti-conformal and N−∞ has conformal distortion − 1

1 + c
¯̇Aλ−2.

Proof: If H(Σ0) = 1 then

µt =
tanh t

1− tanh t
¯̇Aλ−2

so that µ+∞ is infinite. Thus N+∞ is anticonformal and µ−∞ = 1
2

¯̇Aλ−2 as
desired. 2

Surfaces Σ0 ↪→ H3 with constant mean curvature H(Σ0) = 1 have been
considered by Bryant [4].

Corollary 5. If Σ0 has constant mean curvature, then the map µ : [−∞,
+∞]→ B(Σ0) actually maps into B∞(Σ0), and is continuous if and only if
|k1 − k2| is bounded, i.e. if and only if the directional curvatures of Σ0 are
bounded.

Proof:

|µt| =
tanh t

1− c tanh t
· |k1 − k2|

2
,

as in general

|µt| =
|k1−k2

2 || tanh t|
|1− k1+k2

2 tanh t|
. 2
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6 Constant mean curvature surfaces at infin-
ity, the local theory

We assume now that Σ+∞ is the embedded image of a surface patch in S2
∞.

Since a family of parallel surfaces in H3 is determined by a metric on Σ+∞
which induces the same conformal structure on Σ+∞ as S2

∞ (note 4, §4), we
make the following definition.

Definition: Σ+∞ will be called a surface patch at infinity of H3 if it is
the conformally embedded image in S2

∞ of a metric surface patch. A surface
at infinity will refer to the conformally immersed image in S2

∞ of a metric
surface.

We observed in §4 that if ρ is the support function for Σ0 from any x ∈ H3

then the hermitian form ht is given by

ht =
1
2
e2(ρ′+t)

(
(∂∂̄ρ′)e−2(ρ′+t) + 1 (∂2ρ′ − (∂ρ′)2)e−2(ρ′+t)

(∂̄2ρ′ − (∂̄ρ′)2)e−2(ρ′+t) (∂∂̄ρ′)e−2(ρ′+t) + 1

)2

=
(
βt αt
ᾱt βt

)2

where ρ′ = ρ − log (1 + |z|2). We will now need the expressions introduced
at the end of §4 for ρ′, ht, (Πt)ij, ĥ+∞, and (Π+∞)ij.

First we make several preliminary observations. We have the following
proposition.

Proposition 5. A surface Σ+∞ at infinity of H3 must have H(Σ+∞) = ±1.

Proof: This is immediate from the observation following the theorem of §4.
2

Following our definition of (Π+∞)ij we’ll take as our normalization that
Σ+∞ has mean curvature then this H(Σ+∞) ≡ −1.

Secondly, we measure the conformal distortion from Σ+∞ to Σt by con-
sidering N+∞

t = Nt◦(N+∞)−1 : Σ+∞ → Σt. The conformal deformation µ+∞
t

for N+∞
t is thus

µ+∞
t =

∂z̄N
+∞
t

∂zN
+∞
t

,
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where z is a conformal parameter on Σ+∞. We take z to be a standard
coordinate on S2

∞, and compute the conformal deformation from Σ+∞ to be

µ+∞
t =

ᾱt
βt

=
(∂̄2ρ′ − (∂̄ρ′)2)e−2(ρ′+t)

(∂∂̄ρ′)e−2(ρ′+t) + 1
.

Consequently

µ+∞
−∞ =

∂̄2ρ′ − (∂̄ρ′)2

∂∂̄ρ′
,

and

µ+∞
−∞
µ+∞
t

= 1 + e2t 1
e−2ρ′(∂∂̄ρ′)

.

This yields, from the definition of K̂+∞ in §4, the following theorem.

Theorem 2. The image of µ+∞
( ) : [−∞,+∞] → B(Σ+∞) lies in a radial

line in B(Σ+∞) if and only if K̂+∞ is constant.

Hence when the image µ+∞
[−∞,+∞] lies in a radial line in B(Σ+∞) we have

µ+∞
t =

(∂̄2ρ′ − (∂̄ρ′)2)e−2(ρ′+t)

1 + ce−2t(6.1)

for some c ∈ R.
Finally, we have the following proposition.

Proposition 6. If µ+∞
t0 ≡ 0 for some t0 ∈ [−∞,+∞) then this is so for all

t ∈ [−∞,+∞].

Proof: If N+∞
t0 is conformal then we see from (6.1) that ∂̄2ρ − (∂̄ρ)2 ≡ 0.

Thus µ+∞
t ≡ 0 in t. 2

Thus when the equivalence of theorem 2 holds we have four possible cases:

1. µ+∞
t ≡ 0;

2. µ+∞
t = f(t) ·µ+∞

0 with µ+∞
0 6≡ 0 and f(t) is bounded and never infinite.
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3. µ+∞
t = f(t) · µ+∞

0 with µ+∞
0 6≡ 0 and |f(t)| → ∞ as t→ −∞; or

4. µ+∞
t = f(t) · µ+∞

t0 with µ+∞
t0 6≡ 0, f(t) is infinite for some finite value

of t and bounded as t→ −∞.

The image µ+∞
[−∞,+∞] ⊂ B(Σ+∞) ∪ ∞ in these four cases are shown in the

adjoining figures 1—4.
We treat these separately.

Case 1: This should be compared to case 2 of corollary 1, §5. As there,
µ+∞
t ≡ 0 implies that N t0

t = N+∞
t ◦ (N+∞

t0 )−1 is conformal for all t0, t. Thus
all Σt are either pieces of spheres, horospheres, cylinders about a geodesic,
or surfaces equidistant from a totally geodesic plane.

Case 2: Here e−2ρ′(∂∂̄ρ′) is a nonzero constant. In fact it is a positive
constant c > 0, as otherwise µ+∞

t0 would be infinite for some value of t0 ∈
[−∞,+∞), contrary to the assumption in this case. Thus we see that ρ′

satisfies

∂∂̄ρ′ = ce2ρ′ ,

which is precisely the equation for constant negative curvature. As was
shown in §4, we may rescale the metric on Σ+∞ by a constant and thus
assume K̂+∞ ≡ −1. Thus, we must have

ρ = log
(
|ψ′| · 1 + |z|2

1− |ψ|2

)

qµ+∞
t ≡ 0

Figure 1:
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where ψ : Σ+∞ → D. In words, we have shown that in this case the metric
on Σ+∞ is the pull–back of the complete constant −1 curvature hyperbolic
metric on D via some locally univalent map ψ : Σ+∞ → D.

Note that

µ+∞
t =

(∂̄2ρ′ − (∂̄ρ′)2)e−2(ρ′+t)

1 + e−2t .

We quickly check that for no t0 ∈ [−∞,+∞) is Σt0 a surface of constant
mean curvature.

Using the formula for the transformation of Beltrami parameters [1, §1C] we
obtain

µt0t = s ·

 µ+∞
t − µ+∞

t0

1− µ+∞
t µ+∞

t0

◦N t0
+∞


= s ·

[
(e−2t − e−2t0)(∂̄2ρ′ − (∂̄ρ′)2)e−2ρ′

(1 + e−2t)(1 + e−2t0)− e−2(t+t0)|(∂̄2ρ′ − (∂̄ρ′)2)e−2ρ′|2
◦N t0

+∞

]

where s is a t independent function of modulus 1 on Σt0 . The ratio
µt0+∞
µt0t

is dependent only on t (see (5.3)) if and only if ∂̄2ρ′ − (∂̄ρ′)2 ≡ 0, reducing
to case 1. One may see in the same fashion that µ−∞[−∞,+∞] does not lie in a
radial line of B(Σ−∞) ∪∞.

Case 3: Evidently µ+∞
−∞ ≡ ∞ if and only if ∂∂̄ρ′ ≡ 0. By equation (6.1) we

see that K̂+∞ ≡ 0, or (Σ+∞, ĝ+∞) is flat. As N+∞
−∞ is anticonformal and Σ+∞

has its normal pointing into the H3 while Σ−∞ has its normal pointing out of
H3, if we change the normal on Σ−∞ to point inward we give it the oriented
conformal structure induced by Ĉ. This makes N+∞

−∞ holomorphic. It was
already noticed by Bianchi [3] (see §497, equation (64) in particular) that if
f : Ω ⊂ C→ C is holomorphic then the family of geodesics joining θ ∈ Ω to
f(θ) is orthogonally integrable (for a discussion orthogonal integrability in
this setting see [9]) in the sense that there is a family of parallel surfaces Σt

orthogonal to these geodesics and the maps N t0
t are obtained by unit speed

flow along the geodesics. The author thanks Peter Doyle for pointing out
this reference.

As in case 2, we may see that for no t ∈ (−∞,+∞) is Σt a constant
mean curvature surface in H3. But now µ−∞[−∞,+∞] does lie in a radial line of
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B(Σ−∞) ∪ ∞ (compare this with case 1 in corollary 1, §5). To see this we
note that

µ+∞
t = (∂̄2ρ′ − (∂̄ρ′)2)e−2(ρ′+t)

and compute µ−∞t as in case 2. The Beltrami parameter for the map N−∞t =
N+∞
t ◦ (N+∞

−∞ )−1 is

µ−∞t = s ·
[
µ+∞
t − µ+∞

−∞

1− µ+∞
t µ+∞

−∞
◦N−∞+∞

]
= s ·

[
1

∂2ρ′ − (∂ρ′)2 e
2(ρ′+t) ◦N−∞+∞

]
,

with s a t independent function of modulus 1 on Σ−∞. Thus
µ−∞+∞
µ−∞t

is indepen-

dent of z and Σ−∞ is also a (possibly singular) surface of constant curvature
1 at infinity of H3. Away from N+∞

−∞ (θ) where θ is a zero of ∂2ρ′ − (∂ρ′)2,
Σ−∞ is regular, and the singularities of Σ−∞ are precisely at these zeroes.

Note that the above equation shows that if A+∞ (A−∞) denotes the zz–
part of the second fundamental form of Σ+∞ (Σ−∞, respectively), then A+∞

and A−∞ are inverse conjugates in the sense that Ā−∞ = 1
A+∞

.
We now collect the information in this case.

Proposition 7. If Ω ⊂ Ĉ is a connected domain and f : Ω → Ĉ is
a holomorphic function then there exists a family of parallel surfaces Σt,
t ∈ [−∞,+∞], such that the limiting surfaces are precisely Σ+∞ = Ω and
Σ−∞ = f(Ω).

Proposition 8. If Σ+∞ is a surface at infinity of H3 for which K̂+∞ = 0
(i.e. ∂∂̄ρ′ = 0) then Σ−∞ is also a (possibly singular) surface at infinity
satisfying this same condition. The metrics on Σ±∞ are all flat away from
possible singularities of Σ−∞, i.e. pulled back from C by locally univalent
functions ψ±∞ : Σ±∞ → C. The zz–parts of their respective second fun-
damental forms are inverse conjugates of each other. The singularities of
Σ−∞ occur at the images under N+∞

−∞ of the zeros of the zz–part of the second
fundamental form of Σ+∞.

Case 4: Here µ+∞
t0 ≡ ∞ for some finite t0, so that by equation (6.1) we

must have c < 0. Again rescaling, as in §4, we may assume that we have
(∂∂̄ρ′)e−2ρ′ = −1, or

∂∂̄ρ′ = −e−2ρ′ .
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This is the equation for constant curvature K̂+∞ ≡ 1. In this case the metric
on Σ+∞ is pulled back by some locally univalent map ψ : Σ+∞ → Ĉ with a
spherical metric.

Among the surfaces Σt there is another surface Σt0 (t0 is finite) of constant
mean curvature. If c = 1 then t0 = 0. This may be seen as in cases 2 and 3.
Since N t0

+∞ is anticonformal we see that H(Σt0) ≡ 1 as in corollary 4, §4.

We summarize in

Theorem 3. If Σ+∞ is a surface patch in S2
∞ for which K̂+∞ is constant

then one of the following must hold:

1. The Σt are all pieces of spheres, horospheres, cylinders about a geodesic,
or surfaces equidistant from a totally geodesic plane.

2. The metric on Σ+∞ is obtained by pulling back a hyperbolic metric on
D via some locally univalent map ψ : Σ+∞ → D. No other surface in
the family Σt has constant mean curvature.

3. The metric on Σ+∞ is obtained by pulling back a flat metric on C via
some locally univalent map ψ : Σ+∞ → C and the map N+∞

−∞ is anti-
conformal. The possibly singular surface Σ−∞ is also a flat constant
mean curvature surface patch in S2

∞.

4. The metric on Σ+∞ is obtained by pulling back a spherical metric on Ĉ
via some locally univalent map ψ : Σ+∞ → Ĉ. In the family Σt there
is a finite t0 for which the possibly singular Σt0 has constant mean
curvature.

Compare this with corollary 1, §5.
Now compare the following with theorem 1.

Theorem 4. Let Σ+∞ ⊂ S2
∞ be a surface patch at infinity of H3. The

following are equivalent:

1. K̂+∞ is constant;

2. (Π+∞)ij is harmonic;
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3. the zz–part of (Π+∞)ij (i.e. the quadratic differential (∂2ρ′ − (∂ρ′)2))
is holomorphic on Σ+∞;

4. N+∞
t : Σ+∞ → Σt is harmonic for any t ∈ [−∞,+∞];

5. there exists t ∈ [−∞,+∞) such that N+∞
t : Σ+∞ → Σt is harmonic;

6. µ+∞
t (p) = f(t) · g(p) where f : [−∞,+∞]→ R ∪ {∞} is injective and
g ∈ B(Σ+∞);

7. µ+∞
t (p) = f(t) · g(p) where f(t) = 0, 1

1 + e−2t , e−2t, or 1
1− e−2t , and

g ∈ Q(Σ+∞)× e−2ρ′.

This suggests a definition.

Definition. If a surface Σ+∞ at infinity of H3 satisfies the above equiva-
lences it will be called a surface of constant mean curvature at infinity of H3.

Proof: That (1) and (6) are equivalent was already seen in theorem 2.
The equivalence of (1) and (2) is a repetition of the proof of lemma 3, §3,

noting from proposition 4, §4, that we have the Codazzi–Mainardi equations
satisfied in this setting.

We show now that (1) is equivalent to (3). Differentiating e−2ρ′(∂∂̄ρ′) = c
with respect to z gives

0 = ∂
[
e−2ρ′(∂∂̄ρ′)

]
= e−2ρ′ ∂̄(∂2ρ′ − (∂ρ′)2),

so that indeed ∂2ρ′ − (∂ρ′)2 is holomorphic. Reversing the same equality, as
well as its conjugate, gives that

0 = ∂
[
e−2ρ′(∂∂̄ρ′)

]
= ∂̄

[
e−2ρ′(∂∂̄ρ′)

]
if ∂2ρ′ − (∂ρ′)2 is holomorphic, yielding the desired equivalence.

To see now the other equivalences, we note that if e−2ρ′(∂∂̄ρ′) = c then
letting A = ∂2ρ′ − (∂ρ′)2 we have

ht =
1
2
e2(ρ′+t)

(
1 + ce−2t Ae−2(ρ′+t)

Āe−2(ρ′+t) 1 + ce−2t

)2

,
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(Π+∞)ij =
(

e2ρ 2Adτ
2Ā dτ e2ρ

)

and

µ+∞
t =

e−2t

1 + ce−2t Āe
−2ρ′ .

The zz–part of ht is e−2t(1 + ce−2t)A which is holomorphic, implying (4) and
(5), while (7) is evident from the third expression above.

Clearly (7) implies (1), and (4) implies (5), so the proof will be complete
when we show that (5) implies (1). The proof is essentially a repeat of the
proof that (5) implies (1) in theorem 1. Assume N+∞

t0 is harmonic. Since

ht =
1
2
e2(ρ′+t0)

(
(∂∂̄ρ′)e−2(ρ′+t0) + 1 Ae−2(ρ′+t0)

Āe−2(ρ′+t0) (∂∂̄ρ′)e−2(ρ′+t0) + 1

)2

,

the zz–part is ((∂∂̄ρ′)e−2(ρ′+t0) + 1)A. We assume that this is holomorphic,
to wit

0 = ∂̄
[
((∂∂̄ρ′)e−2(ρ′+t0) + 1)A

]
= (∂Ā)Ae−2te−2ρ′ + ∂∂̄ρ′(∂̄A)e−2te−2ρ′ + ∂̄A.

Writing out the real and imaginary parts of this, with A = u + iv, the
following system of equations in ux − vy and uy + vx results:

(∂∂̄ρ′e−2ρ′ + u+ e2t)(ux − vy) +v(uy + vx) = 0
v(ux − vy) +(∂∂̄ρ′e−2ρ′ − u+ e2t)(uy + vx) = 0

.

Here, either there is only the trivial solution or there are nontrivial solutions.
In the first case, ∂̄A = ∂K+∞ = 0 and its conjugate, whence K+∞ is constant.

In the second case, −e
2t

2 is everywhere an eigenvalue of Π+∞. As in the proof
of theorem 1, one checks that the other eigenvalue is also constant, whence
K+∞ is again constant. In either case we have the desired conclusion. 2

7 The Ahlfors–Weill examples

Naturally occurring examples of constant mean curvature surfaces at infinity
have already been observed [18], although not in these terms. What follows
is a brief description of these examples.
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Let A ∈ Q(D) and consider the linear ODE

f ′′ + Af = 0 on D.(7.1)

Let f1, f2 be independent solutions such that(
f1 f ′1
f2 f ′2

)
z=0

=
(

1 0
0 1

)
.(7.2)

It is easily seen that the function F∞,A : D → Ĉ given by F∞,A = f1
f2

is
locally univalent and satisfies the Schwarzian differential equation

{F∞,A, z} = 2A ({f, z} =
f ′′′

f ′
− 3

2

(
f ′′

f ′

)2

).

Nehari showed [12] that if ‖A‖∞ = supz∈D |A(z)·(1−|z|2)2| ≤ 1 then actually
F∞,A is globally univalent. Ahlfors and Weill expanded on this result to show
that if ‖A‖∞ < 1 then F∞,A extends to S1 = ∂D and F∞,A(S1) is a quasicircle.
Furthermore, they produced a quasireflection of F∞,A, call it F0,A, which is
a quasiconformal map F0,A : D ∪ S1 → Ĉ agreeing with F∞,A on S1 and has
image F0,A(D) = Ĉ \ F∞,A(D ∪ S1). Letting 1/D = {z ∈ C : 1/z ∈ D}, the
map

GA(z) =


F∞,A(1

z̄
) z ∈ 1/D

F0,A(z) z ∈ D ∪ S1

is a quasiconformal homeomorphism of Ĉ holomorphic on 1/D. This exten-
sion F0,A is given explicitly in terms of the f1, f2 of (7.2) by

F0,A(z) =
zf1(z) + (1− zz̄)f ′1(z)
zf2(z) + (1− zz̄)f ′2(z)

(7.3)

and satisfies

µA(z) =
∂z̄GA

∂zGA

=
{

0 z ∈ 1/D
A(z)(1− zz̄)2 z ∈ D

.(7.4)
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In [18], the author showed that the phenomena described and analyzed
by Ahlfors and Weill are special boundary cases of more general phenomena.
To be specific, let PSU(1, 1) act as orientation preserving Möbius transfor-
mations on D, and PSL(2,C) as isometries on H3 in our upper half-space
model as usual:(

a b
c d

)
· (Z, T ) =

(
(aZ + b)(cZ + d) + ac̄T 2

|cZ + d|2 + |c|2T 2 ,
T

|cZ + d|2 + |c|2T 2

)
.

It was shown in [18] that the ODE (7.1) generates a monodromy map
MonA : PSU(1, 1)→ PSL(2,C) given by

MonA

[
1

(1− zz̄)1/2

(
1 z
z̄ 1

)(
e−iθ

eiθ

)]

= 1
(1− zz̄)1/2

(
f1(z) z̄f1(z) + (1− zz̄)f ′1(z)
f2(z) z̄f2(z) + (1− zz̄)f ′2(z)

)(
eiθ

e−iθ

)
.

(7.5)

So by means of MonA we can consider the action of PSU(1, 1) on H3 as

γ : (Z, T ) 7→ MonA(γ) · (Z, T ).

If stab(x) denotes the stabilizing group of x as a subgroup of the appropriate
ambient group, we observe that the definition of MonA yields MonA(stab(0))
⊂ stab(0, T ) for all T ∈ R+. Hence for all T ∈ R+ we have an induced map
FT,A : D→ H3 via the factored diagram

PSU(1, 1) MonA−→ PSL(2,C)
↓stab(0)−→ ↓stab(0, T )
D

FT,A−→ H3.

The FT,A have been given explicitly in terms of the f1, f2 of (7.2) as

FT,A(z) = MonA

(
1 z
z̄ 1

)
· (0, T )

=
(

num
denom ,

(1− zz̄)T
denom

)
,

(7.6)

where

num = (z̄f1(z) + (1− zz̄)f ′1(z))(z̄f2(z) + (1− zz̄)f ′2(z))
+f1(z)f2(z)T 2,

denom = |z̄f2(z) + (1− zz̄)f ′2(z)|2 + |f2(z)|2T 2.
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We may also extend this action continuously to T = 0 and T =∞ to get
the F0,A and F∞,A of Ahlfors and Weill, from the beginning of this section.

It was shown in [18] that the maps FT,A quasiconformally interpolate
between the F∞,A and the F0,A in that the Beltrami differential of FT,A is

µT,A = −A(z) · (1− zz̄)2

(T 2 + 1)
.

Thus if t = log T , the images Σt = FT,A(D) form a family of surfaces such
that the maps Mt,A = FT,A ◦ F−1

∞,A : Σ+∞ → Σt have Beltrami differentials

νt,A =
∂z̄Mt,A

∂zMt,A

=
1

(e2t + 1)

(
−A(z)(1− zz̄)2

)
(7.7)

which are a radial family. To deduce that Σ+∞ is a surface of constant mean
curvature +1 we still need to show that the Σt are parallel. But this follows
from the fact that

‖∂TFT,A(z)‖H3 =
1
T

which is independent of z ∈ D. Hence these Σ+∞ are examples of the precise
phenomena desired.

For the record, we note the directional, mean and intrinsic curvatures for
FT,A(D). Letting m = |A(z) · (1− |z|2)2| we have

k1 = m2 + (T 4 − 1) + 2T 2m
m2 − (T 2 + 1)2 ,

k2 = m2 + (T 4 − 1)− 2T 2m
m2 − (T 2 + 1)2 ,

H = k1 + k2
2 = m2 + (T 4 − 1)

m2 − (T 2 + 1)2

K = k1k2 − 1 = 4T 2

m2 − (T 2 + 1)2 .

(7.8)

As we observed in theorem 3, Σ+∞ is endowed with a metric of constant
negative curvature. We observe this here by letting T = et and computing
K̂+∞ as in §4. We obtain

K̂+∞ = lim
t→+∞

e2t

4
4e2t

m2 − (e2t + 1)2 = −1.
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Two notes are in order here —

Note 6. The Σ+∞ are locally univalent images of D. If we think of
Σ+∞ not as the image of D but rather as an immersion of D, we can push
the hyperbolic metric on D (thought of as H2) forward onto Σ+∞ locally.
Thus one point in S2

∞ may have many sheets of Σ+∞ containing it, and
correspondingly many different metrics, one for each sheet. Here the map
F0,A is thus an isometry from H2 to Σ+∞, so that Σ+∞ is complete. We will
discuss this further in the next two sections.

Note 7. There is a nice geometric interpretation of the Σt as envelopes of
horospheres which can be deduced from [7] and [18]. We sketch this.

These examples are obtained locally by considering a surface patch Ω ⊂
S2
∞ as part of the image of D under a locally univalent conformal map f :

D→ S2
∞. In this case we take ρ to be

ρ = log
(

1
|f ′|
· 1 + |f(z)|2

1− |z|2

)
= log

(
dsH2(p)
dsS2(f(p))

)
.

This means that for any p ∈ D, precompose by a Möbius transformation so
that we may assume p = 0, and then normalize f so that f(z) = z + O(z3)
by Möbius transformations. Then ν0∈S2

∞ is the horosphere going through
(0, 1) ∈ C×R+ (as following note 5 of §4).

In these cases one checks that ĝ∞ij is, up to a constant, the Poincaré metric
on Ω obtained by pushing forward that on D = H2. This is possible as f is
locally univalent.

In closing this section it is important to note that in neither the geometric
envelopes of horospheres treatment [7] nor the more computational treatment
[18] was it necessary to have Σ+∞ embedded in S2

∞. At no time in the
computations of [18] was ‖A‖∞ < 1 used, and the discussion in [7] is strictly
local. Hence we observe that the entire discussion of this section holds for
any A ∈ Q(D).

8 Ahlfors–Weill: the flat case

For any A ∈ Q(C), we can construct complete constant mean curvature sur-
faces at infinity of H3 in a fashion completely analogous to the construction
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of the preceding section. Again let f1, f2 be independent solutions of

f ′′ + Af = 0 on C.

such that (
f1 f ′1
f2 f ′2

)
z=0

=
(

1 0
0 1

)
.

We denote by Isom(1,C) the group of isometries of C. Here the mon-
odromy map MonA : Isom(1,C)→ PSL(2,C) given by

MonA

[(
eiθ

e−iθ

)(
1 −z
0 1

)]

=
(
f1(z) f ′1(z)
f2(z) f ′2(z)

)(
eiθ

e−iθ

)
.

(8.1)

Again by means of MonA we consider the action of Isom(1,C) on H3 as

γ : (Z, T ) 7→ MonA(γ) · (Z, T ).

Since MonA(stab(0)) ⊂ stab(0, T ) for all T ∈ R+, we have an induced map
FT,A : C→ H3 via the factored diagram

Isom(1,C) MonA−→ PSL(2,C)
↓stab(0)−→ ↓stab(0, T )
C

FT,A−→ H3.

We have the following explicit form for the FT,A in terms of f1 and f2:

FT,A(z) = MonA

(
1 −z
0 1

)
· (0, T )

=
(
f ′1(z)f ′2(z) + f1(z)f2(z)T 2

|f ′2(z)|2 + |f2(z)|2T 2 , T
|f ′2(z)|2 + |f2(z)|2T 2

)
,

(8.2)

and again extend this action continuously to T = 0 and T =∞ to get

F∞,A(z) =
f1(z)
f2(z)

and F0,A(z) =
f ′1(z)
f ′2(z)

.(8.3)
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Since F0,A is conformal, F0,A is anticonformal with conformal deformation
µ0,A ≡ ∞. As F ′0,A = −A

(f ′2)2 , we see that the singularities of F0,A come from

precisely the zeroes of A.
If we compute the deformations of the FT,A we have

µT,A = −ĀT−2.

Again, for completeness, the curvatures of the Σt are included. We have

k1 = |A|+ T 2

|A| − T 2

k2 = |A| − T 2

|A|+ T 2

H = |A|2 + T 4

|A|2 − T 4

K = 0.

(8.4)

Clearly we also have K̂+∞ ≡ 0. This can be checked as was done in the
hyperbolic case at the end of §7.

The relationship between entire functions and Q(C), i.e. families of paral-
lel surfaces generated by a complete flat constant mean curvature 1 surface at
infinity of S2

∞, is easily understood. We have the following evident theorem.

Theorem 5. The vector space Q(C) is naturally isomorphic to (entire
functions)/ (affine transformations of C), where the affine transformations
act on the space of entire functions as (az + b) · f(z) = a2f(az + b).

One consequence is that, for a ∈ R, the entire function A1(z) = a2A(az)
reparametrizes the family of parallel surfaces generated by the complete con-
stant mean curvature surface at infinity arising from A. This is seen through
formula (8.2) as follows:

If f1, f2 are our normalized solutions to f ′′ + Af = 0, and g1, g2 are those
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for g′′ + A1g = 0, then gi(z) = a−1/2fi(az). Thus

FT,A1(z) = MonA1

(
1 −z
0 1

)
· (0, T )

=
(
g′1(z)g′2(z) + g1(z)g2(z)T 2

|g′2(z)|2 + |g2(z)|2T 2 , T
|g′2(z)|2 + |g2(z)|2T 2

)

=
(
a−1f ′1(az)f ′2(az) + af1(az)f2(az)T 2

a−1|f ′2(az)|2 + a|f2(az)|2T 2 ,

T
a−1|f ′2(az)|2 + a|f2(az)|2T 2

)

=
(
f ′1(az)f ′2(az) + f1(az)f2(az)T 2

|f ′2(az)|2 + |f2(az)|2(aT )2 ,

aT
|f ′2(az)|2 + |f2(az)|2(aT )2

)
= FaT,A(az).

(8.5)

We note the following for general interest. The proof was suggested by
A. Hinkkanen.

Proposition 9. There are locally univalent conformal maps F : C → S2
∞

for which the image is the whole sphere and each θ ∈ S2
∞ has infinitely many

preimages.

Proof: Let A be a polynomial of odd degree n on C, and consider the ODE

f ′′ + Af = 0.

If f is a nonzero solution to this ODE it has fractional order n+ 2
2 , and so

has infinitely many zeroes [16]. It follows that if f1 and f2 are independent
solutions then F = f1

f2
is locally univalent and has infinitely many zeroes and

poles. To see that F assumes the value c ∈ C \ {0} infinitely often, consider
that F − c = f1 − cf2

f2
and f1 − cf2 vanishes infinitely often. 2
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9 Existence and uniqueness of complete con-
stant mean curvature surfaces at infinity

Suppose that Σ0 has its metric given conformally by ds2 = λ2|dZ|2, that

(II0)ij =
(
L M
M N

)

and that H(Σ0) = L+N
2λ2 ≡ c ∈ (−1, 1). Then A = L−N − 2iM

2 is
holomorphic. The intrinsic curvature of Σ0 is given by

K = k1
0k

2
0 − 1

=
LN −M2

λ4 − 1

= c2 − AĀλ−4 − 1
≤ −(1− c2) < 0,

whence the universal cover of Σ0 is conformally D, with coordinate z. In
this case, (Π0)ij pulls back to give the quadratic differential (Π̃0)ij = Adz2 +
2cλ2|dZdz |

2dzdz̄+ Ādz̄2 on D. The author considers this of particular interest
in the case where Σ0 is a complete surface, in which case the following issues
arise naturally:

Question: To what extent does the holomorphic quadratic differential A,
the mean curvature c, and the completeness of the metric λ2|dZ|2 determine
the surface Σ0? Or more precisely, given a holomorphic quadratic differential
A on D, and a constant c ∈ (−1, 1), does there exist a complete surface
Σ0 ↪→ H3 with H(Σ0) = c and Π̃zz = A? Given (A, c) for which this problem
is solvable, to what extent is a solution unique?

Example. If A ≡ 0 and c ∈ (−1, 1) then one readily sees that any surface Σ0

inducing the trivial quadratic differential on D satisfies k1 = k2 = c globally,
i.e. Σ0 is a piece of a surface parallel to a totally geodesic plane. The
completeness of Σ0 implies that it is precisely a surface parallel to a totally
geodesic plane. Hence for A ≡ 0 we have both existence and uniqueness up
to ambient isometry.

Karen Uhlenbeck [17] addressed this issue. She showed that if A is a
sufficiently small quadratic differential on D then there exists a complete Σ0
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when c = 0 inducing A. In [2], Anderson proved that, for example, if C is a
quasicircle in S2

∞ then there is a stable complete minimal embedding of D as
Σ0 ↪→ H3 with ∂∞Σ0 = C. By work of Epstein [8], one may see that when C
is sufficiently ‘close’ to a circle (we won’t discuss what this means) then the
quadratic differentials arising in Uhlenbeck’s work parametrize the minimal
surfaces produced by Anderson.

Bennett Palmer [13] asked the same question for space-like surfaces im-
mersed in symmetric constant curvature k three dimensional Lorentzian man-
ifolds Lk. He established existence and uniqueness given that the holomor-
phic quadratic differential A on D is automorphic with respect to a co-
compact Fuchsian group. In fact, Palmer also considered when the other
conformal simply connected Riemann surfaces (C, Ĉ) immerse as space-like
constant mean curvature surfaces in Lk.

To date, little progress has been made toward the resolution of the above
question. We do note, however, that the case of constant mean curvature
c ∈ (−1, 1) is equivalent to the case c = 0. This follows immediately from
Uhlenbeck’s work.

Corollary 6. If ‖Aρ−2‖∞ < (1−c2)−
1
2 then there is an immersed complete

surface Σ0 ↪→ H3 of constant mean curvature c so that Π̃zz(Σ0) = A.

Proof: To see this, note that the Gauss equation for λ in the case of
c ∈ (−1, 1) is

∆ log λ = 2AĀλ−2 + 2(1− c2)λ2,

and letting λ = 1
2e

1
2φ yields

∆φ = 16AĀe−φ + (1− c2)eφ.

If we now let ψ = φ+ log (1− c2) we get

∆ψ = 16AĀ(1− c2)e−ψ + eψ,

i.e. the Gauss equation for the metric of a minimal surface with Π̃zz =√
1− c2A. 2

It is worth noting that as c → 1 this is solvable for more quadratic
differentials, and when c = ±1 we get exactly the Liouville equation for
constant Gauss curvature −1.
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We now examine a variant of the question above, and give a parametriza-
tion of complete constant mean curvature surfaces at infinity of H3. As was
observed in §6, these must necessarily have mean curvature ±1. We begin
with two lemmas.

Lemma 5. If Σ+∞ is a surface patch at infinity of H3, and if N+∞
t0 : Σ+∞ →

Σt0 is conformal for some t0, then H and K are constant on Σt0, or equiva-
lently the directional curvatures k1 and k2 on Σt0 are constant.

Proof: If N+∞
t0 : Σ+∞ → Σt0 is conformal, then at least locally so is N t0

+∞.
Thus by theorem 2, µt0+∞ ≡ 0 which implies that µt0t ≡ 0 for all t and we are
in the second case of corollary 1. This also follows from proposition 6 and
the expression for (Πt)ij in §4. 2

Lemma 6. Under the assumptions of lemma 5, the N+∞
t are conformal for

all t ∈ [−∞,+∞] with at most one exception.

Proof: This is immediate. The exceptional possibility is that the N+∞
t may

focus on a point (when the Σt are all pieces of spheres or horospheres – in
this latter case the focal point is at infinity) or on a line (when the Σt are all
pieces of geodesic cylinders). 2

The following theorem is an immediate consequence of the above two
lemmas and the theorem of Cartan mentioned in §5.

Theorem 6. If Σ+∞ is complete and the N+∞
t are conformal the for all t

we have one of the following cases:

1. Σ+∞ = S2
∞ and the Σt are concentric spheres;

2. Σ+∞ = S2
∞ \ {θ} for some θ ∈ S2

∞, endowed with the affine structure
of C, and the Σt are horospheres centered at θ;

3. Σ+∞ = S2
∞ \ {θ1, θ2} endowed with the complete flat structure of C∗ ∼=

C/(z 7→ z+1), and the Σt are the equidistant surfaces from the geodesic
connecting θ1 and θ2; or

4. Σ+∞ is a disk with the hyperbolic metric bounded by a geometric circle
in S2

∞, and the Σt are the surfaces in H3 equidistant from the totally
geodesic plane spanning C.
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And finally we have

Theorem 7. Given a holomorphic quadratic differential A on either C or
D, there exists a unique complete surface Σ+∞ of constant mean curvature
±1 at infinity of H3 with A as the holomorphic part of its second fundamental
form. In the first case, Σ+∞ is flat and in the second it is hyperbolic. Thus
the surfaces of constant mean curvature at ∂∞H3 are parametrized up to
isometry by holomorphic quadratic differentials on either C or D, with the
exception of the sphere S2

∞ itself.

Proof: The existence of such structures has been established in §7 and
8. This amounted, in effect, to solving the Schwarzian differential equation
{f, z} = A on C or D. We are left with the problem of showing that the
family of equidistant surfaces in H3 arising therefrom is unique.

This, though, is the content of the theorem of §4 and theorem 3.
Thus our support function arises from one of the two Ahlfors–Weill con-

structions.
It follows that except in the cases covered by theorem 6 the complete

surfaces at infinity are precisely those arising from solving the Schwarzian
differential equation, and the corresponding deformation of surfaces in H3

is given by extension of the Ahlfors–Weill construction. In the exceptional
cases we see that we have the sphere itself, the quadratic differential A = 0
on C (case 2 of theorem 6), the quadratic differential A = const 6= 0 on C
(case 3 of theorem 6, see also the comments after theorem 5 as to why all
constants give the same foliation here), and finally the quadratic differential
A = 0 on D (case 4 of theorem 6). This finishes the proof. 2

This can be reformulated as

Theorem 8. The complete constant mean curvature surfaces at infinity of
H3 are in a natural 1–1 correspondence with quadratic differentials on either
S2 = Ĉ, C, or D. The map from quadratic differentials to surfaces (up to
ambient isometry) is given by solving the Schwarzian differential equation,
and the inverse is via the map from surfaces to the zz–part of their second
fundamental forms.
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