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Abstract. Let D be the open unit disk in the complex plane C and centered at
the origin, and letMLb(D) be the collection of Thurston bounded measured ge-
odesic laminations on D. We introduce an equivalent relation on MLb(D) such
that the earthquake measure map induces a bijection between the asymptotic
Teichmüller space AT (D) and the quotient space AMLb(D) of MLb(D) under
the equivalent relation. Furthermore, we introduce a topology on AMLb(D)
under which the bijection is a homeomorphism between AT (D) and AMLb(D)
with respect to the Teichmüller metric on AT (D). Corresponding results are
also developed for a bijection and then a homeomorphism between the tangent
space AZ(S1) of AT (D) at a base point and AMLb(D) with respect to the

asymptotic cross-ratio norm topology on AZ(S1) and the defined topology on
AMLb(D).

1. Introduction

Let D be the open unit disk in the complex plane and centered at the origin, and
let T (D) be the universal Teichmüller space and MLb(D) the collection of Thurston
bounded measured geodesic laminations on D. By Thurston’s earthquake theory
[21], for each quasisymmetric homeomorphism h of the unit circle S1, there is a
unique Thurston bounded measured geodesic lamination λ induced by any earth-
quake representation Eλ of h. This correspondence introduces a bijection between
T (D) and MLb(D), which is called the earthquake measure map and denoted by

EM : T (D) → MLb(D) : [h] 7→ λ. (1.1)

For background on earthquake representations of quasisymmetric maps, Thurston
bounded measured geodesic laminations, and their relationships, and for further
developments in Thurston’s earthquake theory, we refer to [6], [9], [12], [15], [17],
[19] and [20].

Furthermore, for any closed hyperbolic Riemann surface S, Kerckhoff [15] showed
that the earthquake measure map EM (1.1) induces a homeomorphism between
the Teichmüller space T (S) of S and the space MLb(S) of measured geodesic
laminations on S with respect to the Teichmüller metric on T (S) and a weak*
topology on MLb(S).
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Lately, by introducing a uniform weak* topology on MLb(D) (see Definition 3 in
Section 2.5), Miyachi and Šarić [16] proved that the earthquake measure map EM
is a homeomorphism between T (D) and MLb(D) with respect to the Teichmüller
metric on T (D) and the uniform weak* topology on MLb(D). They also pointed
out that since the invariance of a quasisymmetric map under a Fuchsian group
implies the invariance of the corresponding measured lamination under the group,
the same result holds for the restriction of EM between the Teichmüller space T (S)
of any geometrically infinite Riemann surface S and its representation MLb(S) by
Thurston bounded measured geodesic laminations on S.

Let Z(S1) be the quotient space of Zygmund bounded continuous tangent vector
fields on S1 modulo quadratic polynomials, which is the tangent space of the uni-
versal Teichmüller T (D) space at a base point. Gardiner proved in [5] that given
any element V ∈ Z(S1), there is a unique element λ ∈ MLb(D) such that any

infinitesimal earthquake map Ėλ (see Section 7.1) satisfying V = Ėλ|S1 modulo
a quadratic polynomial. Therefore, it introduces a bijection between Z(S1) and
MLb(D), which is called the infinitesimal earthquake measure map and denoted by

˙EM : Z(S1) → MLb(D) : V 7→ λ. (1.2)

It is also proved in [16] that ˙EM is a homeomorphism with respect to the cross-
ratio norm topology on Z(S1) (see Section 7.1) and the uniform weak* topology on
MLb(D).

Let T0(D) be the subspace of T (D) whose elements are represented by asymptot-
ically conformal homeomorphisms of D. The quotient space T0(D)\T (D) is called
the asymptotic Teichmüller space of quasiconformal homeomorphisms of D, denot-
ed by AT (D). This space was studied by Gardiner and Sullivan in [8] and the
asymptotic Teichmüller spaces of Riemann surfaces are studied in [2], [3], [4], [7]
and etc.

The main work of this paper consists of the followings.
(1) Introduce an equivalent relation ∼ on MLb(D) such that the earthquake

measure map EM (1.1) induces a bijection ÊM between the asymptotic Teichmül-
ler space AT (D) and the quotient space MLb(D)/ ∼.

(2) Prove that the bijection ÊM in (1) is a homeomorphism between AT (D) and
MLb(D)/ ∼ with respect to the asymptotic Teichmüller metric on AT (D) and a
newly defined asymptotically uniform weak* topology on MLb(D)/ ∼.

(3) Show that the infinitesimal earthquake measure map ˙EM (1.2) induces a

bijection and then a homeomorphism ̂̇EM between the tangent space AZ(S1) (see
Section 7.3) of AT (D) at a base point and MLb(D)/ ∼ with respect to the as-
ymptotic cross-ratio norm topology on AZ(S1) and the asymptotic uniform weak*
topology on MLb(D)/ ∼.

Given a Thurston bounded measured geodesic lamination λ, we denote by Eλ

an earthquake map inducing λ (see Section 2.3 for background) and by [λ] the
equivalent class of λ (see Definition 4 in Section 3).

Theorem 1. Given two points [[h]] and [[h′]] in AT (D), assume that h = Eλ|S1
and h′ = Eλ′ |S1 . Then [[h]] = [[h′]] if and only if [λ] = [λ′].

Now we let AMLb(D) be the quotient space of MLb(D) under the equivalent
relation. Theorem 1 implies that the earthquake measure map EM between T (D)
and MLb(D) induces a bijection between AT (D) and AMLb(D), which is called



ASYMPTOTIC TEICHMÜLLER SPACE AND MEASURED GEODESIC LAMINATIONS 3

the induced earthquake measure map and denoted by

ÊM : AT (D) → AMLb(D) : [[h]] 7→ [λ], (1.3)

where h = Eλ|S1 .
Two metrics are commonly introduced on the asymptotic Teichmüller space

AT (D). As a quotient space, AT (D) inherits a quotient metric from the Teich-
müller metric on T (D). Another metric is defined by using boundary dilatations.
From [3] and [7], it is known that these two metrics are equal to each other. For this
reason, they are simply called the asymptotic Teichmüller metric on AT (D) and
the topology induced by this metric is called the asymptotic Teichmüller topology
on AT (D).

Following the previous pattern in thinking, AMLb(D) first inherits a quotient
topology from the uniform weak* topology on MLb(D) (see Definition 5 in Section
4). With respect to the quotient topologies on AT (D) and AMLb(D), one can
easily see that Theorem 1 and the homeomorphic property of EM between T (D)
and MLb(D) [16] imply the following corollary.

Corollary 1. The induced earthquake measure map ÊM (1.3) is a homeomorphism
with respect to the quotient topology on AT (D) from the Teichmüller topology on
T (D) and the quotient topology on AMLb(D) from the uniform weak* topology on
MLb(D).

Corresponding to the other boundary-dilatation definition of the asymptotical
Teichmüller topology on AT (D), we introduce another topology, namely the as-
ymptotic uniform weak* topology, on AMLb(D) (see Definition 8 in Section 6) and
show the following theorem.

Theorem 2. The induced earthquake measure map ÊM (1.3) is a homeomorphism
with respect to the asymptotically Teichmüller topology on AT (D) and the asymp-
totic uniform weak* topology on AMLb(D).

As a consequence of Theorem 2 and Corollary 1, we obtain the following.

Corollary 2. The quotient topology on AMLb(D)) from the uniform weak* topol-
ogy on MLb(D)) is equivalent to the asymptotically uniform weak* topology.

Let AZ(S1) be the tangent space of the asymptotic Teichmüller space AT (D) at
a base point (see Section 7.3).

Theorem 3. Given two points [V ] and [V ′] in AZ(S1), assume that V = Ėλ|S1
and V ′ = Ėλ′ |S1 . Then [V ] = [V ′] if and only if [λ] = [λ′].

It follows that the infinitesimal earthquake measure map ˙EM (1.2) induces a
bijection between AZ(S1) and AMLb(D), which is called the induced infinitesimal
earthquake measure map and denoted bŷ̇EM : AZ(S1) → AMLb(D) : [V ] 7→ [λ], (1.4)

where V = Ėλ|S1 .
Under the asymptotic cross-ratio norm topology on AZ(S1) (see Section 7.6),

we prove the following theorem.

Theorem 4. The induced infinitesimal earthquake measure map ̂̇EM (1.4) is a
homeomorphism with respect to the asymptotic cross-ratio norm topology on AZ(S1)
and the asymptotic uniform weak* topology on AMLb(D).
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In the course of developing a proof of Theorem 2, we introduce, and then s-
tudy their relationship, the asymptotic Thurston norm ||λ||

T̂ h
(see Definition 7 in

Section 5) of a Thurston bounded measured geodesic lamination λ and the strong
asymptotic cross-ratio distortion norm ||h|| ̂̂cr (see Definition 6 in Section 5) of a
quasisymmetric circle homeomorphism h. We obtain the following theorem.

Theorem 5. Let h be a quasisymmetric homeomorphism of S1 and λh the measured
geodesic lamination induced by an earthquake representation of h. There exists a
universal constant C > 0 such that

∥h∥ ̂̂cr ≤ C∥λh∥T̂ h
. (1.5)

In Section 6, the previous theorem is used to prove the continuity of the inverse

of the induced earthquake measure map ÊM in Theorem 2.
To prove Theorem 4, we apply the following relationship between the asymptotic

cross-ratio norm ||V ||ĉr (see Definition 11 in Section 7.5) of a Zygmund bounded
continuous tangent vector field V on S1 and the asymptotic Thurston norm ||λV ||T̂ h
of the measured geodesic lamination λV induced by any infinitesimal earthquake
representation of V (see Section 7.1).

Theorem 6. There exists a universal constant C > 0 such that

∥λV ∥T̂ h
≤ C∥V ∥ĉr (1.6)

for each V ∈ Z(S1).

Remark 1. The Teichmüller space T (S) of any hyperbolic Riemann surface S is
embedded into the universal Teichmüller T (D) and MLb(S) is embedded into
MLb(D). Therefore, one can see that the homeomorphic property of the earthquake

measure map ÊM between T (D) and MLb(D) continues to hold on the restriction

of ÊM between T (S) and MLb(S). Unfortunately, the asymptotic Teichmüller
space AT (S) of a Riemann surface S of infinite type can no longer be embedded
as a subspace of the asymptotic Teichmüller space AT (D). Therefore, one can not
claim immediately that after the work of this paper, there is a similar topologi-
cal characterization of AT (S) in terms of a quotient space of MLb(S). To obtain
such a result for a Riemann surface S of infinite type, different strategies and more
techniques need to be developed.

The paper is arranged as follows. Some background and definitions are given
in Section 2. Then we prove Theorem 1 in Section 3, Corollary 1 in Section 4,
Theorem 5 in Section 5, and finally Theorem 2 in Section 6. In the seventh and
last section, we show Theorems 3, 4 and 6.

Acknowledgement: The authors wish to thank Professors Frederick Gardiner
and Dragomir Šarić for helpful discussions.

2. Preliminaries

2.1. Teichmüller space and asymptotic Teichmüller space. Let D be the
open unit disk in the complex plane and centered at the origin, S1 = ∂D, and
let QS be the set of all quasisymmetric homeomorphisms of S1. The universal
Teichmüller space T (D) is the quotient space T (D) = Möb(D)\QS, where Möb(D)
is the group of all Möbius transformation preserving D and it acts on QS through
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post-compositions. Given any h ∈ QS, we denote by [h] the corresponding point in
T (D). The Teichmüller metric on T (D) is defined as

dT ([h1], [h2]) =
1

2
log inf

f |S1=h2◦h−1
1

K(f),

where f is a quasiconformal homeomorphism of D and K(f) is the maximal dilata-
tion of f .

Let S0 be the collection of all symmetric homeomorphisms of S1. Clearly,
Möb(D) ⊂ S0. The quotient space S0\QS is called the asymptotic Teichmüller
space on D, denoted by AT (D). By letting T0(D) be the subspace of T (D) whose
elements are represented by asymptotic conformal mappings on D, the asymptotic
Teichmüller space can also be expressed as

AT (D) = T0(D)\T (D).

Given any h ∈ QS, we denote by [[h]] the corresponding point in AT (D). As a
quotient space of T (D), the quotient metric on AT (D) is defined as

d̂AT ([[h1]], [[h2]]) = inf dT ([h̃1], [h̃2]), (2.1)

where the infimum is taken over all h̃1 ∈ [[h1]] and h̃2 ∈ [[h2]]. Using boundary
dilatation, one can define another metric on AT (D) by

dAT ([[h1]], [[h2]]) =
1

2
log inf

f |S1=h2◦h−1
1

inf
E

K(f |D\E), (2.2)

where f is a quasiconformal homeomorphism of D and the first infimum from the
left is taken over all compact subsets E of D. It is known in [3] and [7] that

dAT = d̂AT ,

which are called the asymptotic Teichmüller metric on AT (D).

2.2. Measured laminations on D. A complete oriented geodesic g on D is u-
niquely determined by an ordered pair of two distinct endpoints, the initial and
the terminal points of g. Thus the space of all oriented geodesics on D is naturally
identified with S1 × S1\diag, where diag is the diagonal set of the product space
S1 × S1. Let G be the set of all un-oriented complete hyperbolic geodesic on D,
then G = (S1×S1\diag)/ ∼, where the equivalence is defined by (a, b) ∼ (b, a). We
denote by ⌈a, b⌉ be the equivalence class of (a, b) ∈ S1 × S1\diag. Note that the
topology on G is the induced topology from S1 × S1\diag.

A geodesic lamination L is a collection of disjoint un-oriented complete geodesics
which foliates a closed subset of D. Equivalently, a geodesic lamination L can be
identified as a closed subset of G such that any two geodesics presented by two
different elements in L don’t intersect in D (they may share one common endpoint).
Each complete geodesic in L is called a leaf of L. A stratum of L is either a geodesic
of L or a component of the complement of L in D.

By a measured geodesic lamination (L, λ) we mean a nonnegative, locally finite,
Borel measure on the space G with support equal to L. We often briefly say that
λ is a measured lamination with support |λ|. Each measured lamination induces a
transverse measure along the support |λ|. Given any hyperbolic geodesic segment
I of length ≤ 1, the measure λ(I) is equal to λ(I ∩ |λ|).
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2.3. Earthquakes and earthquake measures. Earthquake maps in the hy-
perbolic plane D (and on any hyperbolic Riemann surface) were introduced by
Thurston [21]. Let L be a geodesic lamination on D. An earthquake E along a
geodesic lamination L is an injective and surjective map E : D → D satisfying

(1) the restriction of E on each stratum A of L is the restriction of a Möbius
transformation, which maps D onto D, on A, and,

(2) for any two strata A and B, the comparison isometry

cmp(A,B) = (E|A)−1 ◦ E|B : D → D

is a hyperbolic translation whose axis weakly separates A and B, and which trans-
lates B to the left as viewed from A.

An earthquake E on D continuously extends to a homeomorphism of the bound-
ary S1 ([21]), we denote by E|S1 the restriction of the extension to S1. The converse
statement is so-called Thurston’s theorem [21], which says that for any orientation-
preserving homeomorphism h of S1, there is an earthquake map Eλ such that
h = Eλ|S1 . We call Eλ an earthquake representation of h.

Each earthquake E along a lamination L induced a transverse measure to L,
which is called the earthquake measure λ induced by E. An earthquake measure
corresponds to a measured geodesic lamination. Therefore, each earthquake map
(E,L) induced a measure geodesic lamination λ with |λ| = L. It is also a fact that
given a orientation-preserving homeomorphism h of S1, although the earthquake
representation of h is not necessarily unique, the induced earthquake measure or
measured lamination λh is unique. More precisely, two homeomorphisms h1 and
h2 determine the same measured lamination λ if and only if h2 = γ ◦ h1 for some
γ ∈ M öb(D). Therefore, Thurston’s earthquake representation induces an injective
map from the space of the right cosets of M öb(D) in the group of orientation-
preserving homeomorphisms of S1 into the space of measured laminations on D by
associating each coset with the corresponding measured lamination.

For any measured lamination λ and γ ∈ Möb(D), we denote by γ∗λ a measured
lamination, called the pull-back of λ by γ, which is supported on γ−1(|λ|) and
with the transverse measure evaluated by λ ◦ γ. For an orientation preserving
homeomorphism h : S1 → S1 and the earthquake map Eλ|S1 = h, we have that
h ◦ γ = Eγ∗λ|S1 .

2.4. Earthquake measure map. A measured lamination λ is Thurston bounded
if the Thurston’s norm

∥λ∥Th = sup
I

λ(I)

is finite, where I runs over all geodesic arcs in D with unit length. Let MLb(D) be
the set of bounded measured laminations on D. The following theorem of Thurston
is well known, for which we refer to [6], [9], and [17] for different proofs.

Theorem A. Let h be an orientation preserving homeomorphism of S1 and let Eλ

be an earthquake on D such that h = Eλ|S1 . Then the earthquake measure λ is
Thurston bounded if and only if h is quasisymmetric.

Because of Thurston’s earthquake presentation of orientation-preserving home-
omorphisms of S1 and Theorem A, a bijection between T (D) and MLb(D), called
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the earthquake measure map in [16], is defined by

EM : T (D) ∋ [h] → λ ∈ MLb(D),
where h = Eλ|S1 .

2.5. Weak∗ topology and Uniform Weak∗ topology on MLb(D). A box of
geodesics B in G is the quotient under the equivalence ∼ of the product [a, b]× [c, d]
of two disjoint closed arcs in S1, where [a, b] (resp. [c, d]) is the arc in S1 from a
(resp. c) to b (resp. d) in counterclockwise order on S1. We will write somewhat
incorrectly B = [a, b]× [c, d] instead of B = ([a, b]× [c, d])/ ∼ . In the following of
this paper, we call B∗ = [−i, 1]× [i,−1] the standard box.

Definition 1. Let B = ([a, b]× [c, d])/ ∼, the Liouville measure L is a non-trivial,
Möbius group invariant Borel measure on G defined by

L(B) = | log crL(B)| = | log |crL({a, b, c, d})|| = | log | (a− c)(b− d)

(a− d)(b− c)
||,

where crL(B) = crL({a, b, c, d}) = (a−c)(b−d)
(a−d)(b−c) .

Remark 2. The cross ratio crL(B) = crL({a, b, c, d}) of a box B or a quadruple
{a, b, c, d} is used in [16] and [18]. In [6] and [9], a different cross ratio of a box B
or a quadruple {a, b, c, d} is used, that is

cr(B) = cr({a, b, c, d}) = (b− a)(d− c)

(c− b)(d− a)
.

Since we need to quote results from the papers by Saric and Miyachi and the ones
by Gardiner, Hu and Lakic, we will use both of them in the paper. Fortunately,

crL(B) = crL({a, b, c, d}) = 1 + cr({a, b, c, d}) = 1 + cr(B).

Definition 2. A sequence {λn}∞n=1 of Borel measures on G converges in the weak∗

topology to a Borel measure λ if

lim
n→∞

∫
G
fdλn =

∫
G
fdλ

for any continuous function f on G with compact support.

For any box B ∈ G with L(B) = log 2, in the rest of this paper, we will always
use γB to stand for the element of Möb(D) such that γB(B

∗) = B. Meanwhile, for
any measured geodesic lamination λ on D, (γB)∗λ stands for the pullback of λ by
γB .

Definition 3. A sequence {λn}∞n=1 ⊂ MLb(D) converges to λ ∈ MLb(D) in the
uniform weak∗ topology if for any continuous function f on G with compact support
supp(f) ⊂ B∗,

lim
n→∞

{sup
B

∫
B∗

fd[(γB)
∗λn − (γB)

∗λ]} = 0,

where the supremum is taken over all boxes B with L(B) = log 2.

Theorem B. [20] Let λ and λn, n = 1, 2, 3, · · · , be uniformly bounded earthquake
measures (i.e., ∥λ∥Th, ∥λn∥Th ≤ M < ∞ for all n) in MLb(D). If λn converges to
λ in the weak∗ topology, then Eλn |S1 converges to Eλ|S1 pointwisely on S1 (i.e., for
each x ∈ S1, Eλn |S1(x) → Eλn |S1(x) as n → ∞) when the earthquakes Eλ|S1 and
Eλn |S1 , n = 1, 2, 3, · · · , are properly normalized.
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3. Characterization of the asymptotic Teichmüller space AT (D)
through measured geodesic laminations

In this section, we prove Theorem 1.
For any box B = [a, b]× [c, d], we define the minimal scale s(B) of B as

s(B) = min{|a− b|, |b− c|, |c− d|, |d− a|}.
A sequence {Bn}∞n=1 ⊂ G of boxes is said to be degenerating if L(Bn) = log 2 for
all n and

lim
n→∞

s(Bn) = 0.

Definition 4. Given two bounded measured laminations λ and λ′ in MLb(D), we
say that λ is equivalent to λ′ if

sup
{Bi}

lim sup
i→∞

∫
B∗

fd((γBi)
∗λ− (γBi)

∗λ′) = 0 (3.1)

for any continuous function f on G with compact support supp(f) ⊂ B∗, where the
supremum is taken over all degenerating sequences {Bi}∞i=1 of boxes. Denote by [λ]
the equivalence class of λ.

Proof of the necessity part of Theorem 1. Assume that [[h]] = [[h′]] and λ and λ′

are the measured laminations determined by h and h′ respectively. We need to
show [λ] = [λ′]. Suppose that this is not true. Then the condition (3.1) does not
hold. Thus there exist a degenerating sequence {Bi}∞i=1 of boxes and a continuous
function f on G with compact support supp(f) ⊂ B∗ such that∫

B∗
fd((γBi)

∗λ− (γBi)
∗λ′) > δ (3.2)

for some positive constant δ and all positive integers i. Let

λi = (γBi)
∗λ and λ′

i = (γBi)
∗λ′. (3.3)

Then {∥λi∥Th}∞i=1 and {∥λ′
i∥Th}∞i=1 are bounded because ∥λi∥Th = ∥λ∥Th and

∥λ′
i∥Th = ∥λ′∥Th. It follows that there exist two subsequences {λij}∞j=1 ⊂ {λi}∞i=1

and {λ′
ij
}∞j=1 ⊂ {λ′

i}∞i=1 such that λij weakly converges to λ̂ and λ′
ij

weakly con-

verges to λ̂′. Following (3.2), λ̂ ̸= λ̂′. For simplicity of notation, we rename the
subsequences to be {λi}∞i=1 and {λ′

i}∞i=1.

Let Ai, A
′
i ∈ Möb(D) such that hi = Ai ◦ Eλi |S1 and h′

i = A′
i ◦ Eλ′

i |S1 are

normalized to fix 1, i and −1. Assume also that Eλ̂ and Eλ̂′
are normalized to fix

1, i and −1. Then by Theorem B,

hi = Ai ◦ Eλi |S1 → Eλ̂|S1 = ĥ and h′
i = A′

i ◦ Eλ′
i |S1 → Eλ̂′

|S1 = ĥ′ (3.4)

pointwisely on S1. Since λ̂ ̸= λ̂′, it follows that

ĥ ◦ (ĥ′)−1 /∈ Möb(D). (3.5)

Let ex(·) be the Douady-Earle extension operator. Then it follows from (3.5) that

ex(ĥ) ◦ (ex(ĥ′))−1 /∈ Möb(D). (3.6)

Since [[h]] = [[h′]], using Theorem 4 in [4], ex(h) ◦ (ex(h′))−1 is asymptotically
conformal. Thus given any ϵ > 0, there exists a compact subset K of D such that

∥Belt(ex(h))|D−K)−Belt(ex(h′))|D−K)∥∞ ≤ ϵ. (3.7)
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Since hi (resp. h′
i) differs from h (resp. h′) only by precomposition and post-

composition by Möbius transformations, the conformal naturality of Douady-Earle
extensions implies that ex(hi) and ex(h′

i) are quasiconformal mappings with max-
imal dilatations as the same as the extensions of h and h′ respectively. Because
ex(hi) and ex(h′

i) are normalized to fix three points 1, i and −1 on S1, passing to
subsequences we may further assume that ex(hi) and ex(h′

i) converges to quasicon-
formal homeomorphisms of D uniformly on the closure D. Since we have already

known that hi and h′
i converges to ĥ and ĥ′ pointwisely on S1, it follows that they

converge to the limit functions uniformly on S1. Using the properties of Douady-
Earle extensions in [1], we obtain

Belt(ex(hi)) → Belt(ex(ĥ)) and Belt(ex(h′
i)) → Belt(ex(ĥ′)) (3.8)

uniformly on any compact subset of D. Again by the conformal naturality of
Douady-Earle extensions,

ex(hi) = Ai ◦ ex(h) ◦ γBi , ex(h′
i) = A′

i ◦ ex(h′) ◦ γBi . (3.9)

By taking Beltrami coefficients of the left and of the right side of (3.9), we get that

Belt(ex(hi)) = Belt(ex(h)) ◦ γBi

∂γBi/∂z

∂γBi/∂z
,

Belt(ex(h′
i)) = Belt(ex(h′)) ◦ γBi

∂γBi/∂z

∂γBi/∂z
. (3.10)

Then
Belt(ex(hi))−Belt(ex(h′

i))

= [Belt(ex(h)) ◦ γBi −Belt(ex(h′)) ◦ γBi ]
∂γBi/∂z

∂γBi/∂z
. (3.11)

Recall that γBi is the Möbius transformation mapping the standard box B∗ to Bi

and s(Bi) converges to 0 as i → ∞. Then γBi maps the origin to the intersection
point Oi of the diagonals of Bi and Oi approaches to S1 as i → ∞. It follows that
for any compact K of D, γBi(K) converges to S1 as i → ∞. Thus Belt(ex(hi)) −
Belt(ex(h′

i)) converges to 0 as i → ∞ uniformly on any compact subset of D.
Combining this property with (3.8), we obtain

Belt(ex(ĥ))−Belt(ex(ĥ′)) = 0.

Hence
ex(ĥ) ◦ (ex(ĥ′))−1 ∈ Möb(D). (3.12)

This is a contradiction to (3.6). Therefore, [λ] = [λ′]. �
The following two lemmas are developed to prove the sufficiency of Theorem 1.

Lemma 1. Suppose that {γBi}∞i=1 ⊂ Möb(D) and s(γBi(B
∗)) → 0 as i → ∞.

Then given any box B = [a, b]× [c, d], s(γBi(B)) → 0 as i → ∞.

Proof. Suppose on the contrary that there exists a box B = [a, b]× [c, d] such that

s(γBi(B)) 9 0

as i → ∞. Then there is a subsequence {γBij
}∞j=1 of {γBi}∞i=1 such that γBij

(B) →
[a′, b′]× [c′, d′] as j → ∞, where a′, b′, c′ and d′ are four distinct points on S1. For
simplicity of notation, we rename the subsequence {γBij

}∞j=1 to be {γBi}∞i=1. Let

γBi(B
∗) = [ai, bi] × [ci, di] and γBi(B) = [a′i, b

′
i] × [c′i, d

′
i]. Since s(γBi(B

∗)) → 0
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as i → ∞, passing to a subsequence we may assume that two of the four point
{ai, bi, ci, di} converges to a point x on S1. Since L(Bi) = log 2 for each i, it
follows that there are at least three of {ai, bi, ci, di} converging to x. Passing to
a subsequence one more time we may assume that ai, bi and ci converge to x as
i → ∞. The fourth point di may converge to another point y on S1. There are two
pints of {a′, b′, c′, d′} different from x and y, namely, a′ and b′. Then the hyperbolic
distance δi between the geodesic connecting a′i and b′i and the geodesic connecting
ai and bi converges to ∞ as i → ∞ since a′i and b′i converge to two different points
a′ and b′ and ai and bi converge to the same point x. On the other hand, since
the hyperbolic distance is preserved under Möbius transformation, it follows that
δi is equal to the hyperbolic distance between the geodesic connecting a and b and
the geodesic connecting −i and 1, which is a constant. This is a contradiction.
Therefore, the conclusion of the lemma follows. �

Lemma 2. Let h1 and h2 be two quasisymmetric homeomorphisms of S1. Then
h1 ◦ (h2)

−1 is symmetric provided that

sup
{Bn}

lim sup
n→∞

|L(h1(Bn))− L(h2(Bn))| = 0, (3.13)

where the supremum is taken over all degenerating sequences {Bn}∞n=1 of boxes.

Proof. Suppose on the contrary that h1 ◦ (h2)
−1 is not symmetric. Let ex(h1) and

ex(h2) be the Douady-Earle extensions of h1 and h2 respectively. Then ex(h1) ◦
(ex(h2))

−1 is not asymptotic conformal on D, which means that there exist a con-
stant ϵ > 0 and a sequence {Dn}∞n=1 of hyperbolic disks in D of diameter 1 with
the Euclidean distance from Dn to S1 approaching 0 as n → ∞ such that

∥Belt(ex(h1)|Dn)−Belt(ex(h2)|Dn)∥L∞ ≥ ϵ (3.14)

for all n. Let D0 be the hyperbolic disk on D of diameter 1 and centered in 0, and
assume that γn ∈ Möb(D) and γn(D0) = Dn. Let A1n and A2n ∈ Möb(D) such
that A1n ◦ h1 ◦ γn and A2n ◦ h2 ◦ γn fix 1,−1, i for all n. Using the assumption
(3.13) and applying Lemma 1 to γn, given any box given box B with L(B) = log 2,
we obtain

lim
n→∞

|L(A1n ◦ h1 ◦ γn(B))− L(A2n ◦ h2 ◦ γn(B))| = 0. (3.15)

Let ex(A1n ◦ h1 ◦ γn) and ex(A2n ◦ h2 ◦ γn) be the Douady-Earle extensions of
A1n ◦ h1 ◦ γn and A2n ◦ h2 ◦ γn respectively. Since these quasiconformal mappings
fix three common points and have constant maximal dilatations, passing to subse-
quences we may assume that A1n ◦ h1 ◦ γn and A2n ◦ h2 ◦ γn converge uniformly

to quasisymmetrics ĥ1 and ĥ2 respectively. Using (3.15) and the convergence, we
obtain

L(ĥ1(B)) = L(ĥ2(B))

for any box B with L(B) = log 2. By the normalized condition at three points, we

conclude that ĥ1 = ĥ2. By the convergence properties of Douady-Earle extensions,

Belt(ex(A1n ◦ h1 ◦ γn)) and Belt(ex(A2n ◦ h2 ◦ γn)) converge to Belt(ex(ĥ1)) and

Belt(ex(ĥ2)) uniformly on D0; that is,

||Belt(ex(A1n ◦ h1 ◦ γn)|D0)−Belt(ex(A2n ◦ h2 ◦ γn)|D0)||L∞ → 0 (3.16)
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as n → ∞. On the other hand, by the conformal naturality of Douady-Earle
extensions and (3.14),

||Belt(ex(A1n ◦ h1 ◦ γn)|D0)−Belt(ex(A2n ◦ h2 ◦ γn)|D0)||L∞

= ||Belt(ex(h1)|Dn)−Belt(ex(h2)|Dn)||L∞ ≥ ϵ > 0.

This is a contradiction to (3.16), so h1 ◦ (h2)
−1 is symmetric. �

Proof of the sufficiency part of Theorem 1. We prove [[h]] = [[h′]] if [λ] = [λ′]. Sup-
pose on the contrary that [[h]] ̸= [[h′]], which means h′◦h−1 is not symmetric. Then
the condition (3.13) in Lemma 2 does not hold. Thus there exists a degenerating
sequence {Bi}∞i=1 of boxes such that

|L(h(Bi))− L(h′(Bi))| ≥ δ (3.17)

for some positive constant δ and all positive integers i.
Let λi = (γBi)

∗λ and λ′
i = (γBi)

∗λ′. We show that λi − λ′
i converges to 0 in the

weak∗ topology as i → ∞. It suffices to show that for any box B with L(B) = log 2
and any continuous function f on G with a compact support supp(f) ⊂ B,

lim
i→∞

∫
B

fd(λi − λ′
i) = 0. (3.18)

Let γ ∈ Möb(D) such that B = γ(B∗). Then∫
B

fd(λi − λ′
i) =

∫
B∗

f ◦ γd(γ∗(λi)− γ∗(λ′
i))

=

∫
B∗

f ◦ γd((γBi ◦ γ)∗λ− (γBi ◦ γ)∗λ′).
(3.19)

By Lemma 1, we know s(γBi ◦ γ(B∗)) → 0 as i → ∞. Then the definition of
[λ] = [λ′] implies that the last integral in the previous expression (3.19) converges
to 0 as i → ∞, which means (3.18) holds.

Since {∥λi∥Th}∞i=1 and {∥λ′
i∥Th}∞i=1 are uniformly bounded, passing to subse-

quences we may assume that they converge in the weak∗ topology. Then the
two weak∗ limits are equal to each other. Now by applying Theorem B, there
exist {Ai}∞i=1 and {A′

i}∞i=1 in Möb(D) such that the two sequences {Eλi |S1 =

Ai◦h◦γBi}∞i=1 and {Eλ′
i |S1 = A′

i◦h′◦γBi}∞i=1 converge to the same quasisymmetric
map pointwisely on S1. Thus

lim
i→∞

|L(Ai ◦ h ◦ γBi(B
∗))− L(A′

i ◦ h′ ◦ γBi(B
∗)| = 0. (3.20)

On the other hand,

|L(Ai ◦ h ◦ γBi(B
∗))− L(A′

i ◦ h′ ◦ γBi(B
∗))| = |L(h(Bi))− L(h′(Bi))|.

It follows that (3.20) is a contradiction to (3.17). Thus our assumption [[h]] ̸= [[h′]]
is false. Therefore, [[h]] = [[h′]] if [λ] = [λ′]. �

4. Quotient uniform weak∗ topology

In this section, we first give the definition of the quotient uniform weak∗ topology
on AMLb(D); then we prove Corollary 1.
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Definition 5. A sequence {[λn]}∞n=1 ⊂ AMLb(D) converges to [λ] ∈ AMLb(D)
in the quotient uniform weak∗ topology if for any continuous function f on G with
compact support supp(f) ⊂ B∗,

inf
λ̂n∈[λn],λ̂∈[λ]

sup
B

|
∫
B∗

fd((γB)
∗λ̂n − (γB)

∗λ̂)| → 0 as n → ∞,

where the supremum is taken over all boxes B ∈ G with L(B) = log 2.

Proof of Corollary 1. We first show that the induced earthquake measure map ÊM
is continuous. Let [λn] = ÊM([[hn]]) and [λ] = ÊM([[h]]). If dAT ([[hn]], [[h]]) → 0
as n → ∞, then there exist h′

n ∈ [[hn]] and h′ ∈ [[h]] such that dT ([h
′
n], [h

′]) → 0 as
n → ∞. Let λ′

n = EM([h′
n]) and λ′ = EM([h′]). Theorem 1 implies that λ′ ∈ [λ]

and λ′
n ∈ [λn]. Since EM is continuous (Theorem 1 in [16]), it follows that λ′

n → λ′

in the uniform weak∗ topology on MLb(D). Using Definition 5, we conclude that
[λn] → [λ] in the quotient uniform weak∗ topology on AMLb(D).

Now we show that ÊM
−1

is continuous. Suppose [λn] = ÊM([[hn]]) → [λ] =

ÊM([[h]]) in the quotient uniform weak∗ topology as n → ∞. By definition, there
exist λ′

n ∈ [λn] and λ′ ∈ [λ] such that λ′
n → λ′ in the uniform weak∗ topology

as n → ∞. Let[h′
n] = EM−1(λ′

n) and [h′] = EM−1(λ′). Theorem 1 implies that
h′
n ∈ [[hn]] and h′ ∈ [[h]]. Since EM−1 is continuous (Theorem 1 in [16]), it follows

that dT ([h
′
n], [h

′]) → 0 as n → ∞. Thus dAT ([[hn]], [[h]]) → 0 as n → ∞. �

5. Asymptotic Thurston’s norm and strong asymptotic cross-ratio
distortion norm

Let Q be a quadruple consisting of four points a, b, c, d on the unit circle arranged
in the counter-clockwise direction, denoted by Q = {a, b, c, d}. We use cr(Q) to
denote the following cross ratio:

cr(Q) =
(b− a)(d− c)

(c− b)(d− a)
.

For a quasisymmetric homeomorphism h of S1, cr(h(Q)) denotes

cr(h(Q)) =
(h(b)− h(a))(h(d)− h(c))

(h(c)− h(b))(h(d)− h(a))
.

In [6] and [9], the cross-ratio distortion norm ||h||cr is defined to be

||h||cr = sup
cr(Q)=1

| log cr(h(Q))|,

where the supremum is taken over all quadruples Q with cr(Q) = 1.
Let λh be the measured lamination induced by an earthquake representation of

h. It is shown in [6] that there is a universal positive constant C such that

||λh||Th ≤ C||h||cr
for any quasisymmetric homeomorphism h of S1. Then the inverse is proved in [9];
that is

||h||cr ≤ C||λh||Th (5.1)

for a universal positive constant C. Therefore, the cross-ratio distortion norm and
the Thurston norm are bi-Lipschitz. In this section, we also briefly denote λh by λ.
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Definition 6. The strong asymptotic cross-ratio distortion norm of a quasisym-
metric homeomorphism h of S1 is defined as

∥h∥ ̂̂cr = sup
{Qi}

lim sup
i→∞

| log cr(h(Qi))|,

where the supremum is taken over all sequences {Qi}∞i=1 of quadruples such that
cr(Qi) = 1 for all i and Smax(Qi) → 0 as i → ∞, and where Smax(Q) is the
maximum scale of Q; that is,

Smax(Q) = max{|a− b|, |b− c|, |c− d|, |d− a|}.

Remark 3. Note first that in the previous definition of ||h|| ̂̂cr, we require the maxi-
mal scale Smax(Q) of Q to approach 0. Note secondly that ∥h∥ ̂̂cr ≤ M if and only
if for any arbitrary small positive ϵ, there exists δ > 0 such that for any quadruple
Q with Smax(Q) < δ,

| log cr(h(Q))| < M + ϵ.

The proof for the “if” part is trivial; the “only if” part can be easily shown by proof
by contradiction.

Definition 7. The asymptotic Thurston norm ∥λ∥
T̂ h

of a bounded measured geo-
desic lamination λ is defined as

∥λ∥
T̂ h

= sup
{In}

lim sup
n→∞

λ(In),

where the supremum is taken over all sequences {In}∞n=1 of closed geodesic segments
in D of hyperbolic length 1 such that the Euclidean distance from In to S1 goes to
0 as n → ∞.

Similarly, one can see that ∥λ∥
T̂ h

≤ M if and only if for any arbitrary small
positive ϵ, there exists δ > 0 such that for any geodesic segment I of hyperbolic
length 1, if the Euclidean distance from I to S1 is less than δ, then λ(I) < M + ϵ.

In this section, we prove Theorem 5. The strategy of the proof is as the same as
the one used in [9] to prove the inequality ||h||cr ≤ C||λh||Th, but all considerations
have to be arranged near the boundary of the open unit disk. For the completeness
of the paper, we sketch the proof. In order to do so, we recall a few results showed
in [6] and [9]. The following two lemmas, which are enumerated as Corollaries 1
and 2 in [6] with proofs, present monotone changes of the cross ratio of the image of
a quadruple under such changed earthquake maps that leaves are moved in certain
patterns without changing their measures.

Lemma 3 ([6]). Let Q = {a, b, c, d} be a quadruple on the real line with −∞ ≤
a < b < c < d, c ≤ s ≤ d and d < t. Suppose that A(s,t) is the hyperbolic
Möbius transformation with repelling fixed point at s and attracting fixed point at
t and derivative at the repelling fixed point equal to λ > 1. Suppose f(s,t) : R → R
is defined to be equal to A(s,t) on the interval [s, t] and equal to the identity on
the complement of [s, t]. Then the cross-ratio of the image quadruple f(s,t)(Q)
considered as a function of two variables s ∈ [c, d] and t ∈ (d,+∞) decreases in s
for each fixed t and increases in t for each fixed s.

Lemma 4 ([6]). With the same notation as in the previous lemma, suppose b ≤
s ≤ c and d ≤ t. Then the cross-ratio of the image quadruple f(s,t)(Q) is increasing
in s for each fixed t and also increasing in t for each fixed s.
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By using Lemma 3 and 4, the proof of the inequality (5.1) given in [9] is reduced
to derive similar inequalities in three cases, which are summarized into Propositions
3, 4 and 5 there. In order to sketch a proof of our Theorem 5, we recall these three
propositions.

Let h denote an orientation-preserving circle homeomorphism, (E,L) an earth-
quake representation of h, and λ the induced earthquake measure by (E,L). There
are three universal positive constants C0, C1 and C2, independent of f , λ and Q,
such that the following three propositions hold.

Proposition 1 ([9]). If cr(Q) = 1 and a, b, c belong to the same stratum of the
earthquake representation (E,L) of h, then

0 ≤ ln cr(h(Q)) ≤ C1C2||λ||Th.

Proposition 2 ([9]). If cr(Q) = 1 and a, c belong to the same stratum of the
earthquake representation (E,L) of h, then

0 ≤ ln cr(h(Q)) ≤ 2C1C2||λ||Th.

Proposition 3 ([9]). If cr(Q) = 1 and assume that there exists at least one geodesic
line in the lamination L which separates a, b from c, d, then

| ln(cr(Q))| ≤ (C0 + 2C1C2)||λ||Th.

For a quadruple Q = {a, b, c, d} of four points a, b, c, d on S1 arranged in the
counter-clockwise direction, we notice that cr(Q) = 1 if and only if the geodesic ac
between a and c is perpendicular to the one bd between b and d. Denote by e the
intersection point between ac and bd, and by ea (resp. eb, ec, ed) the geodesic ray
from e to a (resp. b, c, d).

Given two points x and y on the unit circle, we use [x, y] (resp. (x, y), [x, y),
(x, y]) to denote the closed (resp. open, half open and half closed) arc on S1 from
x to y in the counter-clockwise direction. Careful examinations of the proofs of
the previous propositions in [9] enable us to state them in more elaborated ways as
follows.

Corollary 3. If cr(Q) = 1 and a, b, c belong to the same stratum of the earthquake
representation (E,L) of h, then

0 ≤ ln cr(h(Q)) ≤ C1C2 sup
l(I)=1,I⊂ed

λ|ed(I),

where λ|ed is the restriction of λ on the collection of leaves of L connecting points
in [c, d) to points in (d, a].

Corollary 4. If cr(Q) = 1 and a, c belong to the same stratum of the earthquake
representation (E,L) of h, then

0 ≤ ln cr(h(Q)) ≤ 2C1C2 sup
l(I)=1,I⊂bd

λ|bd(I),

where λ|bd is the restriction of λ on the collection of the leaves of L connecting
points in [a, c) to points in [c, a).

Corollary 5. If cr(Q) = 1 and assume that there exists at least one geodesic line
in the lamination L which separates a, b from c, d, then

−(C0 + 2C1C2)max{ sup
l(I)=1,I⊂β

λ|LI (I), sup
l(I)=1,I⊂ea

λ|LII (I), sup
l(I)=1,I⊂ec

λ|LIV (I)} ≤
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Figure 1. Five subcollections of the leaves of L described in
Corollary 5.

ln(cr(Q)) ≤

(C0 + 2C1C2)max{ sup
l(I)=1,I⊂β

λ|LI
(I), sup

l(I)=1,I⊂eb

λ|LIII
(I), sup

l(I)=1,I⊂ed

λ|LV
(I)},

where β is the common perpendicular segment between the geodesics ab and cd, LI

is the collection of the geodesic lines in L that connect points of the arc [d, a] to
points of the arc [b, c], LII is the collection of the lines in L that connect points of
the arc (d, a) to points of the arc (a, b), LIII is the collection of the lines in L that
connect points of the arc (a, b) to points of the arc (b, c), LIV is the collection of
the lines in L that connect points of the arc (b, c) to points of the arc (c, d), and
finally LV is the collection of the lines in L that connect points of the arc (c, d) to
points of the arc (d, a).

Now we prove our Theorem 5.

Proof. Let M = ||λ||
T̂ h

. Given any ϵ > 0, there exists 0 < r < 1 such that for
any geodesic segment I contained in the annulus Wr = {z : r < |z| < 1} with
hyperbolic length 1, λ(I) ≤ M + ϵ. Then there exists δ > 0 such that for any
quadruple Q = {a, b, c, d} with Smax(Q) < δ, the geodesic connecting any two
points in Q is contained in the annulus Wr and both the common perpendicular
geodesic segment between the geodesics ab and cd and the one between bc and da
are also contained in Wr.

Let C = C0 + 2C1C2. We show that for any quadruple Q with cr(Q) = 1 and
Smax(Q) < δ,

| ln cr(h(Q))| ≤ C(M + ϵ). (5.1)

We divide the proof into three cases.
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Case 1: The quadruple Q has three points belonging to the same stratum. There
are four subcases: either a, b, c or b, c, d or c, d, a or d, a, b belong to the same
stratum.

Corollary 3 implies in these four subcases respectively that either

0 ≤ ln cr(h(Q)) ≤ C1C2 sup
l(I)=1,I⊂ed

λ|ed(I)

or

0 ≤ ln cr(h({b, c, d, a})) ≤ C1C2 sup
l(I)=1,I⊂ea

λ|ea(I),

0 ≤ ln cr(h({c, d, a, b})) ≤ C1C2 sup
l(I)=1,I⊂eb

λ|eb(I),

0 ≤ ln cr(h({d, a, b, c})) ≤ C1C2 sup
l(I)=1,I⊂ec

λ|ec(I).

Since the values of the previous four supremos are less than or equal to M + ϵ and
since

cr(h({b, c, d, a})) = 1

cr(h(Q))
, cr(h({c, d, a, b})) = cr(h(Q)) and

cr(h({d, a, b, c})) = 1

cr(h(Q))
,

it follows that

| ln cr(h(Q))| ≤ C1C2(M + ϵ) < C(M + ϵ).

Case 2: The quadruple Q has two opposite points belonging to the same stratum.
Then either a and c or b and d belong to the same stratum. By Corollary 4 and a
similar fashion in reasoning as in Case 1, we obtain

| ln cr(h(Q))| ≤ 2C1C2(M + ϵ) < C(M + ϵ).

Case 3: The quadruple Q has no opposite points belonging to the same stratum.
Then either there exists a geodesic line in L that separates a and b from c and d or
there exists a geodesic line in L that separates b and c from d and a. By Corollary
5 and a similar fashion in reasoning as in Case 1, we obtain

| ln cr(h(Q))| ≤ (C0 + 2C1C2)(M + ϵ) = (M + ϵ).

Therefore no matter which case happens, we obtain that, for any sequence
{Qi}∞i=1 of quadruples with cr(Qi) = 1 for all i and Smax(Qi) → 0 as i → ∞,

lim sup
i→∞

| ln cr(h(Qi))| ≤ C(M + ϵ).

Thus

||h|| ̂̂cr ≤ C(M + ϵ).

Since ϵ is an arbitrarily small positive, it follows that

||h|| ̂̂cr ≤ CM = C||λ||
T̂ h

.

�
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6. Homeomorphic property of the induced earthquake measure map

In this section, after giving the definition of asymptotically uniform weak∗ topol-
ogy on AMLb(D) and some lemmas, we prove Theorem 2.

Definition 8. A sequence {[λn]}∞n=1 ⊂ AMLb(D) converges to [λ] ∈ AMLb(D)
in the asymptotically uniform weak∗ topology if for any continuous function f on
G with compact support supp(f) ⊂ B∗,

sup
{Bi}

lim sup
i→∞

|
∫
B∗

fd((γBi)
∗(λn)− (γBi)

∗(λ))| → 0 as n → ∞, (6.1)

where the supremum is taken over all degenerating sequences {Bi}∞i=1 of boxes.

Remark 4. Theorem 1 implies that for each n, the value defined by the supremum
of the lim sup’s in (6.1) is independent of the choices of representatives for [λn] and
[λ].

Theorem C. [14] Let h be an orientation-preserving homeomorphism of S1 and
ex(h) be the Douady-Earle extension of h to the closed unit disk D. Let p ∈ S1
and Ip be an open arc on S1 containing p and symmetric with respect to p. If
∥h|Ip∥cr < ∞, then there exists an open hyperbolic half plane Up with p at the

middle of its boundary on S1 such that logK(ex(h)|Up) ≤ C1∥h|Ip∥cr + C2 for
two universal positive constants C1 and C2, where K(ex(h)|Up) is the maximal
dilatation of ex(h) on Up.

Remark 5. It is shown in [13] that there exists a universal constant C > 0 such
that

logK(ex(h)) ≤ C∥h∥cr
for any orientation-preserving homeomorphism h of S1. As a corollary to this result
or the previous Theorem C, ex(h) is quasiconformal if ∥h∥cr is finite.

Lemma 5. There is a universal constant C0 > 0 such that for any measured
lamination λ ∈ MLb(D),

1

C0
∥λ∥

T̂ h
≤ sup

{Bi}
lim sup
i→∞

λ(Bi) ≤ ∥λ∥
T̂ h

, (6.2)

where the supremum is taken over all degenerating sequences {Bi}∞i=1 of boxes.

Proof. This lemma is the asymptotic version of Lemma 2.1 in [16] and the proof
is similar. Let B = [a, b] × [c, d] be a box in G. The measure λ(B) is obtained
as follows. Without loss of generality, we assume that a, b, c and d lie on S1 in
the counterclockwise order. Let I be the common perpendicular geodesic segment
between the hyperbolic geodesics ad and bc. Then any geodesic contained in B
intersects I. By definition, λ(B) is equal to λ(I ∩ |λ|B), where |λ|B denote the
collection of all the geodesics of |λ| contained in B. If L(B) = 2, then I is contained
in a geodesic segment I0 of hyperbolic length 1. Furthermore, s(B) goes to 0 if and
only if Euclidean distance between I0 and S1 goes to 0. Thus, by definition,

sup
{Bi}

lim sup
i→∞

λ(Bi) ≤ ∥λ∥
T̂ h

.

Now we show the other half of the double inequality. We recall a fact used in
the proof of Lemma 2.1 in [16]; that is, there is a universal constant L0 > 0 such
that for any geodesic segment I of hyperbolic length 1 transversely intersecting a
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leaf l of λ, if J is the geodesic segment of length L0 orthogonally intersecting l at
I∩ l with the intersecting point at the midpoint of J , then any leaf of λ intersecting
I must intersect J . A more general version of this fact can be stated as follows.
For any positive number c, there exists a positive number L0(c) such that for any
geodesic segment I of hyperbolic length c transversely intersecting a leaf l of λ, if
J is the geodesic segment of length L0(c) and orthogonally intersecting l at I ∩ l
with the intersecting at the midpoint of J , then any leaf of λ intersecting I must
intersect J ; furthermore, L0(c) approaches 0 as c goes to 0.

Let γ be a Möbius transformation from H onto D such that γ−1(J) = [1, eL0(c)]i
and γ−1(l) = {z : |z| = eL0(c)/2} ∩H. Consider the box

B0 = [−e3L0(c)/2,−e−L0(c)/2]× [e−L0(c)/2, e3L0(c)/2].

Through an elementary calculation, we can see that if a leave of the pullback γ∗(λ)
of λ under γ intersects γ−1(J), then it is contained in the boxB0. LetB(I) = γ(B0).
Then any leave of λ intersecting J is contained in B(I). It follows that for any
geodesic segment I of hyperbolic length c,

λ(I) ≤ λ(J) ≤ λ(B(I)). (6.3)

One can also see that the Euclidean distance from I to ∂D goes to 0 if and only if
the Euclidean distance from J to ∂D goes to 0. Furthermore, from the constructions
of J and B(I), it is also true that the Euclidean distance from J to ∂D goes to 0 if
and only if s(B(I)) goes to 0. Now by setting c at a value c0 such that

L(B0) = 2 log cosh(L0(c0)/2) = log 2.

Following (6.3), we conclude that for generating sequences {Bi}∞i=1 of boxes,

∥λ∥
T̂ h

≤ ([
1

c0
] + 1) sup

{Bi}
lim sup
i→∞

λ(Bi),

where [ 1
c0
] stands for the integral part of 1

c0
. We complete the proof. �

Lemma 6. If a sequence {[λn]}∞n=1 ⊂ AMLb(D) converges to [λ] ∈ AMLb(D) in
the asymptotically uniform weak∗ topology, then there is a sequence {[λ′

n]}∞n=1 ⊂
AMLb(D) such that [λ′

n] = [λn] for all n and {∥λ′
n∥Th}∞n=1 is bounded.

Proof. We show first that if {[λn]}∞n=1 ⊂ AMLb(D) converges to [λ] ∈ AMLb(D)
in the asymptotically uniform weak∗ topology, then {∥λn∥T̂ h

}∞n=1 is bounded.
Let us follow the same notation and reasoning given in the last two paragraphes

of the proof of the previous lemma. Now we set c at a value c′0 such that

L(B0) = 2 log cosh(L0(c
′
0)/2) =

1

3
log 2.

Then for any measured lamination λ and any geodesic segment I of hyperbolic
length c′0, there is a box B(I) of Liouville measure 1

3 log 2 such that every leave of
λ intersecting I is contained in B(I).

Now suppose that {∥λn∥T̂ h
}∞n=1 is not bounded. Then there exists a sequence

{In}∞n=1 of geodesic segments of hyperbolic length c′0 approaching to ∂D such that
{λn(In)}∞n=1 is not bounded. Passing to a subsequence, we may assume that

λn(In) → ∞ as n → ∞.

For each n, L(B(In)) =
1
3 log 2. Then B(In) sits in the middle of a larger box of

Liouville measure log 2, denote it by Bn.



ASYMPTOTIC TEICHMÜLLER SPACE AND MEASURED GEODESIC LAMINATIONS 19

Let γBn be the Möbius transformation mapping the standard box B∗ to Bn. Let
B∗

m be the box sitting in the middle of B∗ with Liouville measure 1
3 log 2. Now let

f be a continuous real function between 0 and 1 with supp(f) ⊂ B∗ and taking
value 1 on B∗

m. Then∫
B∗

fd((γBn)
∗λn) =

∫
Bn

f ◦ (γBn)
−1dλn ≥ λn(B(In)) ≥ λn(In) → ∞

as n → ∞. On the other hand,∫
B∗

fd((γBn)
∗λ) ≤ λ(Bn).

Using Lemma 2.1 of [16], we know λ(Bn) ≤ ||λ||Th; or using the previous lemma,
we know

lim sup
n→∞

λ(Bn) ≤ ||λ||
T̂ h

.

Therefore, λ(Bn) has to be bounded. The above two estimates make a contradiction
to the assumption that [λn] converges to [λ] in the asymptotically uniform weak∗

topology. Therefore, {∥λn∥T̂ h
}∞n=1 is bounded.

Let hn = Eλn |S1 and ex(hn) be the Douady-Earle extension. Since {∥λn∥T̂ h
}∞n=1

is bounded, Theorem 5 and Theorem C together imply that the boundary dilatation
H(ex(hn)) = infE K(ex(hn)|D\E) is bounded by a positive constant independent of
n, where the infimum is taken over all compact subsets E of D. Then there exists
M ′ > 0 such that dAT ([[hn]], [[0]]) < M ′ for all n. Thus for each n, there exists
h′
n ∈ [[hn]] such that dT ([h

′
n], [0]) < M ′. Let λ′

n = EM([h′
n]), then λ′

n ∈ [λn]. It
follows that [λ′

n] = [λn] for each n and{||λ′
n||Th}∞n=1 is a bounded sequence. We

complete the proof. �
Similar to the proof of Lemma 2, one can show the following lemma.

Lemma 7. Let [[h]] ∈ AT (D) and {[[hn]]}∞n=1 be a sequence of points in AT (D).
Then [[hn]] converges to [[h]] in the asymptotic Teichmüller topology on AT (D)
provided that

sup
{Bi}

lim sup
i→∞

|L(hn(Bi))− L(h(Bi))| → 0 as n → ∞, (6.4)

where the supremum is taken over all degenerating sequences {Bi}∞i=1 of boxes.

Proof. Suppose that [[hn]] does not converge to [[h]] in the asymptotic Teichmül-
ler topology on AT (D). Let ex(hn) and ex(h) be the Douady-Earle extensions
of hn and h respectively, where n ∈ N. From the definition given by (2.2), it
follows that the boundary dilatation of ex(hn)◦(ex(h))−1 does not converge to 0 as
n → ∞. Passing to a subsequence, we may assume that the boundary dilatation of
ex(hn) ◦ (ex(h))−1 is greater than a positive number ϵ for all n. Thus there exists
a sequence of hyperbolic disks {Dn}∞n=1 in D of diameter 1 with the Euclidean
distance from Dn to S1 approaching 0 as n → ∞ such that

∥Belt(ex(hn)|Dn
)−Belt(ex(h)|Dn

)∥L∞ ≥ ϵ, (6.5)

for all n. Let D0 be the hyperbolic disk on D of diameter 1 and centered in 0, and
assume that γn ∈ Möb(D) and γn(D0) = Dn. Let A1n and A2n ∈ Möb(D) such
that A1n ◦ hn ◦ γn and A2n ◦ h ◦ γn fix 1,−1, i for all n. Using the assumption (6.4)
and applying Lemma 1 to γn, for any box B with L(B) = log 2, we obtain

lim
n→∞

|L(A1n ◦ hn ◦ γn(B))− L(A2n ◦ h ◦ γn(B))| = 0. (6.6)
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Using Remark 2, one can show that the condition (6.4) implies that there exists
a constant M > 1 such that for each n,

1

M
≤ sup

{Bi}
lim sup
i→∞

cr(hn(Bi)) ≤ M,

where the supremum is taken over all degenerating sequences {Bi}∞i=1 of boxes.
Using the definition of ∥h∥ ̂̂cr, we obtain for each n,

∥hn∥ ̂̂cr ≤ sup
{Bi}

lim sup
i→∞

| log cr(hn(Bi))| ≤ logM,

where the supremum is taken over all degenerating sequences {Bi}∞i=1 of boxes.
Theorem C implies that the sequence {H(ex(hn)}∞n=1 of the boundary dilatation
of ex(hn) is bounded, which means that H(ex(hn) < M ′ for each n and some
constant M ′ > 1. For each n, there exists 0 < rn < 1 such that the maximal
dilatation K(ex(hn))(z) < M ′ for any z with rn < |z| < 1. Let µn be defined as

µn(z) =

{
Belt(ex(hn))(z) if rn ≤ |z| < 1,
0 if |z| < rn.

For each n, let fn be the normalized (i.e., 1, −1 and i are fixed) quasiconformal

homeomorphism of D with the Beltrami coefficient µn, and let h̃n = fn|S1 . Clearly,
h̃n ∈ [[hn]] and K(fn) < M ′ for each n. Using one of the main theorems in

[1], {K(ex(h̃n))}∞n=1 is bounded. Therefore, we conclude that one can replace the
representatives of [[hn]]’s such that {K(ex(hn))}∞n=1 is bounded. For simplicity of
notation, we continue to denote these representatives by hn’s.

Let ex(A1n ◦ hn ◦ γn) and ex(A2n ◦ h ◦ γn) be the Douady-Earle extensions of
A1n ◦ hn ◦ γn and A2n ◦ h ◦ γn respectively. These quasiconformal mappings fix
three common points. Using the conformal naturality of Douady-Earle extensions,
their maximal dilatations are uniformly bounded. Passing to subsequences, we may
assume that A1n ◦ hn ◦ γn and A2n ◦ h ◦ γn converge uniformly to quasisymmetric

homeomorphisms
̂̂
h and ĥ on S1 respectively. Using (6.4) and the convergence, we

obtain

L(
̂̂
h(B)) = L(ĥ(B))

for any box B with L(B) = log 2. Thus,
̂̂
h = ĥ. Again using the convergence

properties of Douady-Earle extensions, Belt(ex(A1n ◦ hn ◦ γn)) and Belt(ex(A2n ◦
h ◦ γn)) converge to Belt(ex(

̂̂
h)) and Belt(ex(ĥ)) uniformly on D0; that is,

||Belt(ex(A1n ◦ hn ◦ γn)|D0)−Belt(ex(A2n ◦ h ◦ γn)|D0)||L∞ → 0 (6.7)

as n → ∞. On the other hand, by the conformal naturality of Douady-Earle
extensions,

||Belt(ex(A1n ◦ hn ◦ γn)|D0)−Belt(ex(A2n ◦ h ◦ γn)|D0)||L∞

= ||Belt(ex(hn)|Dn)−Belt(ex(h)|Dn)||L∞ ≥ ϵ.

This is a contradiction to (6.7). Therefore, the conclusion of the lemma has to
hold. �

Now we prove Theorem 2.
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Proof of Theorem 2. We first show that the induced earthquake measure map ÊM
is continuous. Assume that dAT ([[hn]], [[h]]) → 0 as n → ∞. Let [λn] = ÊM([hn])

and [λ] = ÊM([h]). We need to prove [λn] converges to [λ] in the asymptotically
uniform weak∗ topology. Since dAT ([[hn]], [[h]]) → 0, there exist h′

n ∈ [[hn]] and
h′ ∈ [[h]] such that dT ([h

′
n], [h

′]) → 0 as n → ∞. Let λ′
n = EM([h′

n]) and λ′ =
EM([h′]). By Theorem 1, λ′

n ∈ [λn] and λ′ = [λ]. Using the continuity of EM,
we know that λ′

n converges to λ′ in the uniform weak∗ topology. Then for any
continuous function f on G with compact support supp(f) ⊂ B∗ and any box B
with the Liouville measure L(B) = log 2,

lim
n→∞

[sup
B

|
∫
B∗

fd((γB)
∗λ′

n − (γB)
∗λ′)|] = 0.

Clearly, for any degenerating sequences {Bi}∞i=1 of boxes,

sup
{Bi}

lim sup
i→∞

|
∫
B∗

fd((γi)
∗(λn)− (γBi)

∗(λ))| ≤ sup
B

|
∫
B∗

fd((γB)
∗λ′

n − (γB)
∗λ′)|.

Therefore

sup
{Bi}

lim sup
i→∞

|
∫
B∗

fd((γBi)
∗(λn)− (γBi)

∗(λ))| → 0 (n → ∞).

By Definition 8, [λn] converges to [λ] in the asymptotically uniform weak∗ topology.

Therefore ÊM is continuous.

Next we show that the inverse ÊM
−1

is continuous. Suppose not, then there
exists a sequence {[λn]}∞n=1 of points in AMLb(D) such that [λn] converges to
a point [λ] of AMLb(D) in the asymptotic uniform weak∗ topology but [[hn]] =

ÊM
−1

([λn]) does not converge to [[h]] = ÊM
−1

([λ]) in the asymptotic Teichmüller
topology on AT (D).

Using Lemma 6 to replace representatives if necessary, we may assume that
{∥λn∥Th}∞n=1 is bounded.

Since [[hn]] does not converge to [[h]] in the asymptotic Teichmüller topology,
applying Lemma 7 and passing to a subsequence, we may assume that there exist
ϵ > 0 and a degenerating sequences {Bn}∞n=1 of boxes such that

lim
n→∞

|L(h(Bn))− L(hn(Bn))| ≥ ϵ. (6.8)

Now we show that if [λn] converges to [λ] in the asymptotically uniform weak∗

topology, then {(γBn)
∗λn − (γBn)

∗λ}∞n=1 converges to 0 in the weak∗ topology. It
suffices to show that for any box B with L(B) = log 2 and any continuous function
f on G with a compact support supp(f) ⊂ B,

lim
n→∞

∫
B

fd((γBn)
∗λn − (γBn)

∗λ) = 0.

Let γ ∈ Möb(D) such that B = γ(B∗). Then∫
B

fd((γBn)
∗λn − (γBn)

∗λ) =

∫
B′

f ◦ γd(γ∗((γBn)
∗λn − (γBn)

∗λ))

=

∫
B∗

f ◦ γd(γ∗((γBn)
∗λn − (γBn)

∗λ))

=

∫
B∗

f ◦ γd((γBn ◦ γ)∗λn − (γBn ◦ γ)∗λ)).
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By Lemma 1, we know s(γBn ◦ γ(B∗)) → 0 as n → ∞. Then the definition of [λn]
converging to [λ] in the asymptotically uniform weak∗ implies that the last integral
in the previous expression converges to 0 as n → ∞. Thus, (γBn)

∗λn − (γBn)
∗λ

converges to 0 in the weak∗ topology as n → ∞.
Since {(γBn)

∗λn}∞n=1 and {(γBn)
∗λ}∞n=1 are uniformly Thurston bounded, it

follows that {(γBn)
∗λn}∞n=1 and {(γBn)

∗λ}∞n=1 contain a pair of converging sub-
sequences in the weak∗ topology. Then the weak∗ limits of the converging sub-
sequences are the same. For simplicity of notation, we continue to denote such
subsequences by {(γBn)

∗λn}∞n=1 and {(γBn)
∗λ}∞n=1. Furthermore, using Theorem

B, we know there exist {An}∞n=1 and {Cn}∞n=1 in Möb(D) such that the two se-
quences {E(γBn )∗λn |S1 = An ◦ hn ◦ γBn}∞n=1 and {E(γBn )∗λ|S1 = Cn ◦ h ◦ γBn}∞n=1

converge to the same quasisymmetric map pointwisely on S1. Thus

lim
n→∞

|L(h(Bn))− L(hn(Bn))|

= lim
n→∞

|L(An ◦ h ◦ γBn(B
∗))− L(Cn ◦ hn ◦ γBn(B

∗))| = 0,

which is a contradiction to (6.8). Therefore [[hn]] converges to [[h]] in the asymptotic

Teichmüller topology. Thus, ÊM
−1

is continuous. �

7. Induced infinitesimal earthquake measure map and asymptotic
cross-ratio norm topology

In this section, we consider the infinitesimal version of the induced earthquake
measure map. As pointed out in Section 2.1, the universal Teichmüller space T (D)
is the quotient space Möb(D)\QS, where QS is the collection of quasisymmetric
homeomorphisms of S1. The tangent space of T (D) at a base point is characterized
by the space Z(S1) (or Z(D)) of Zygmund bounded continuous tangent vector
fields on S1 (resp. D). By developing infinitesimal versions of Beurling-Ahlfors
extensions, Gardiner and Sullivan showed in [8] that the tangent space of T0(D) at a
base point is characterized by a subspace Z0(S1) (or Z0(D)) of Z(S1) (resp. Z(D)).
It follows that the tangent space of AT (D) is the quotient space Z(S1)/Z0(S1)
(resp. Z(D)/Z0(D)), denoted by AZ(S1) (resp. AZ(D)). The work of this section
is to introduce a topology on AZ(S1) under which the infinitesimal earthquake
measure map is a homeomorphism between AZ(S1) and AMLb(D) with respect to
the asymptotic uniform weak* topology on AMLb(D).

7.1. Zygmund space and infinitesimal earthquake measure map. A con-
tinuous tangent vector field V on S1 can be viewed as a continuous function from
S1 to the complex plane C. It is said to be Zygmund bounded if

|V (e2πi(x+t)) + V (e2πi(x−t))− 2V (e2πix)| ≤ M |t|, (7.1)

for all x ∈ [0, 1), 0 < t < 1
2 and some M > 0.

Let Q be a quadruple consisting of four points a, b, c, d on the unit circle arranged
in the counter-clockwise direction, denoted by Q = {a, b, c, d}. It is defined in [7]
that

V [Q] =
V (b)− V (a)

b− a
+

V (d)− V (c)

d− c
− V (c)− V (b)

c− b
− V (d)− V (a)

d− a

and

∥V ∥cr = sup
Q

|V [Q]|,
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where the supremum is taken over all quadruples Q with cr(Q) = 1.
One can show that ∥V ∥cr = 0 if and only if V is a quadratic polynomial. Fur-

thermore, it is true that V is Zygmund bounded if and only if ∥V ∥cr is finite. We
let Z(S1) be the space of Zygmund bounded tangent vector fields on S1 modulo
quadratic polynomials.

Let λ ∈ MLb(D). For each t ≥ 0, let ht be a quasisymmetric homeomorphism
of S1 defined by an earthquake map on D inducing tλ. Suppose that ht fixes three
common points for all t ≥ 0, which is called an earthquake curve determined by
tλ, t ≥ 0. It is shown in [6] that ht(z) is differentiable on t at each point z ∈ S1 and
furthermore

d

dt
ht(z)|t=0 =

∫
G
Eab(z)dλ(a, b) modulo a quadratic polynomial,

where

Eab(z) =

{
0 for z outside of [a, b],
(z−a)(z−b)

a−b for z ∈ [a, b].

Here we have an agreement that for each geodesic line connecting a, b in L, [a, b]
denotes the short arc on S1 between a and b and in the counter-clockwise direction.

We denote by

Vλ = Ėλ|S1 =

∫
G
Eab(z)dλ(a, b).

Then the integral introduces an injective map Ė from MLb(D) into Z(S1) [5], and
Ėλ is called an infinitesimal earthquake map determined by λ. Conversely, Gardiner
[5] showed that for any V ∈ Z(S1), there exists a λV ∈ MLb(D) such that

V (z) =

∫
G
Eab(z)dλV (a, b) modulo a quadratic polynomial.

Furthermore, if two V ’s differ by a quadratic polynomial, then the corresponding
λ,s are the same. Therefore, Ė is a bijection between MLb and Z(S1). The inverse
of Ė is often called the infinitesimal earthquake measure map, and it is denoted as

˙EM : Z(S1) → MLb(D) : V 7→ λV .

7.2. Pointwise Convergence of infinitesimal earthquake maps. The infini-
tesimal version of Theorem B is also showed in [16], which can be improved as the
following proposition.

Proposition 4. Let λ ∈ MLb(D) and let {λn}∞n=1 be a sequence in MLb(D) with
uniformly bounded Thurston norms. Then λn converges to λ in the weak∗ topology
if and only if Ėλn |S1 converges to Ėλ|S1 pointwisely on S1 when all Ėλn |S1 and

Ėλ|S1 are properly normalized.

Proof. It is proved in [16] that if {λn}∞n=1 converges to λ in the weak∗ topology,

then Ėλn |S1 converges to Ėλ|S1 pointwisely on S1 when all Ėλn |S1 and Ėλ|S1 are
properly normalized. We only need to prove the other direction.

We normalize Ėλn |S1 and Ėλ|S1 , by subtracting quadratic polynomials, such that

Ėλn |S1 and Ėλ|S1 vanish at three common points of S1. Assume on the contrary
that λn does not converge to λ in the weak∗ topology. By the same argument in [19],
there exists a subsequence {λnj}∞j=1 of {λn}∞n=1 weakly converging to κ ∈ MLb(D).
For simplicity, we rename {λnj}∞j=1 to be {λn}∞n=1. The assumption that λn does

not converge to λ in the weak∗ topology implies κ ̸= λ. Normalizing Ėκ|S1 as the
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same as Ėλn |S1 , it follows that Ėλn |S1 → Ėκ|S1 pointwise as n → ∞. By the

assmption that Ėλn |S1 pointwise converges to Ėλ|S1 , we know that Ėκ|S1 = Ėλ|S1 .
Thus κ = λ, which is a contradiction. �

7.3. Asymptotic cross-ratio vanishing equivalence on Z(S1). The tangent
space of AT (D) at a base point is the quotient space Z(S1)/Z0(S1), where an ele-
ment V of Z(S1) belongs to Z0(S1) provided that the constant M in (7.1) converges
to 0 independent of x as |t| → 0. In this subsection, we first introduce an alternative
definition of the elements in Z0(S1) by using V [Q].

In the previous sections, we have used two cross ratios. One is used to define
the Liouville measure of a box B = [a, b]× [c, d] and the other is used to define the
cross-ratio distortion norm. They are used in different situations based on different
purposes and the quantitative results are different. In the following, one can see
that their infinitesimal versions only differ up to multiplication by 2.

Definition 9. Let B = [a, b]× [c, d] be a box of geodesics, where a, b, c, d lie on S1
in the counter-clockwise direction. For any V ∈ Z(S1), we set

VL[B] =
V (a)− V (c)

a− c
+

V (b)− V (d)

b− d
− V (a)− V (d)

a− d
− V (b)− V (c)

b− c
,

and the cross-ratio norm ∥V ∥crL of V is defined by

∥V ∥crL = sup
B

|VL[B]|,

where the supremum is taken over all B with Liouville measure L(B) = log 2.

Proposition 5. For any Q = {a, b, c, d} with crL(Q) = 2,

V [Q] = 2VL[Q].

Proof. Let V ∈ Z(S1). Given any Q = {a, b, c, d} with crL(Q) = 2, we consider
that a, b, c and d are temporarily fixed. Let ft(z) = z + tV . Then ft(Q) is a
quadruple of four distinct points when |t| is sufficiently small.

Clearly, crL(Q) = 2 if and only if cr(Q) = 1. By the definitions of V [Q] and
VL[Q], we obtain

VL[Q] =
d

dt
ln crL(ft(Q))|t=0 =

d

dt
ln(1 + cr(ft(Q)))|t=0

=
d
dtcr(ft(Q))

1 + cr(ft(Q))
|t=0 =

1

2

d

dt
cr(ft(Q))|t=0

=
1

2

d

dt
eln cr(ft(Q))|t=0 =

1

2
eln cr(ft(Q)) d

dt
ln cr(ft(Q))|t=0

=
1

2
V [Q].

Therefore, V [Q] = 2VL[Q]. �

Now we introduce an alternative characterization of the elements in Z0(D).

Lemma 8 ([11]). If two tangent vector fields V and Ṽ satisfy Ṽ (x) = V (γ(x))
γ′(x) for

an element γ ∈ Möb(D), then for any quadruple Q of four points a, b, c, d on the
unit circle in the counter-clockwise order,

Ṽ [Q] = V [γ(Q)] (or V [Q] = Ṽ [γ−1(Q)]).
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Similar to the definition of a degenerating sequence of boxes in G, we define a
degenerating sequence of quadruples to be a sequence {Qn}∞n=1 of quadruples Qn

such that cr(Qn) = 1 for all n and s(Qn) → 0 as n → ∞, where s(Q) is the
minimum scale of Q = {a, b, c, d}; that is,

s(Q) = min{|a− b|, |b− c|, |c− d|, |d− a|}.

Proposition 6. A continuous tangent vector field V on S1 belongs to Z0(S1) if
and only if

sup
{Bn}

lim sup
n→∞

VL[Bn] = 0 or sup
{Qn}

lim sup
n→∞

V [Qn] = 0, (7.2)

where the supremum is taken over all degenerating sequences {Bi}∞i=1 of boxes or
all degenerating sequences {Qi}∞i=1 of quadruples.

Proof. Let V be a continuous tangent vector field on S1 and p ∈ S1, and let γp be
an orientation-preserving Möbius transformation from H onto D mapping i to the
origin, 0 to p and ∞ to −p. Assume that Vp(z) = V (γp(z))/γ

′
p(z). We note that

V ∈ Z0(S1) if and only if Vp ∈ Z0(R) for any p ∈ S1, where Z0(R) denotes the
space of all continuous functions Vp defined on R satisfying

Vp(x+ t) + Vp(x− t)− 2Vp(x)

t
= δ(x, t)

for any points x and t on R, and δ(x, t) converges to 0 uniformly on x as t → 0.
In the following, we first show that if V satisfies the condition (7.2) then V ∈

Z0(S1). By the above note, it suffices to show that Vp ∈ Z0(R) for any p ∈ S1.
Let p be a point on S1. Using a lemma in [11] (see Lemma 10 in Subsection 7.5),

we see that Vp[Q] = V [γp(Q)]. Given any quadruple Q = {x− t, x, x+ t,∞},

Vp(x+ t) + Vp(x− t)− 2Vp(x)

t
= Vp[Q] = V [γp(Q)].

Applying the condition (7.2) to V on the quadruples γp(Q), we can show that
Vp ∈ Z0(R).

Conversely, assuming that V ∈ Z0(S1), we want to show it satisfies condition
(7.2). Suppose not, it follows that there exist ϵ > 0 and a degenerating sequence
{Qn}∞n=1 of quadruples such that

|V [Qn]| > ϵ

for each n.
Passing to a subsequence, we may assume that an, bn, cn and dn converge to

a, b, c and d on S1 respectively. Using the conditions that cr(Qn) = 1 for each n
and s(Qn) → 0 as n → ∞, we conclude that the set {a, b, c, d} contains at most
two distinct points, namely a and d. Now let p be a point on S1 such that −p is
different from a and d. Then Vp(z) = V (γp(z))/γ

′
p(z) ∈ Z0(R). Now we apply the

infinitesimal Beurling-Ahlfors extension of Vp to the upper half plane H introduced
by Gardiner and Sullivan in [8]. It is shown there that if Vp ∈ Z0(R), then µ = ∂̄Vp

is a Beltrami coefficient vanishing when approaching the boundary R. Note that if
n is big enough, Qn is outside a neighborhood of −p on S1, and hence γ−1

p (Qn) is

contained in a compact subset K of R. Denote by Q′
n = γ−1

p (Qn) = {a′n, b′n, c′n, d′n}.
Now applying the measurable Riemann mapping theorem to tµ, the approximation

f tµ(z) = z + tVp(z) + o(|t|)
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is uniform on every compact subset of R, where |t| < 1 and f tµ is normalized to fix
0, 1 and ∞ for all t. Furthermore,

Vp(z) = −z(z − 1)

π

∫ ∫
µ(ξ)dζdη

ξ(ξ − 1)(ξ − z)

=
1

π

∫ ∫
µ(ξ)(

z

ξ − 1
− z − 1

ξ
− 1

ξ − z
)dζdη,

where ξ = ζ + iη. Then

V [Qn] = Vp[Q
′
n]

= − 1

π

∫ ∫
(c′n − a′n)(d

′
n − b′n)

(ξ − a′n)(ξ − b′n)(ξ − c′n)(ξ − d′n)
µ(ξ)dζdη.

By choosing −p at a proper position on S1 and using the corresponding γp, we
may assume that a′n < b′n < c′n < d′n for each sufficiently large n. Passing to a
subsequence and without loss of generality, we assume further that s(Q′

n) = c′n−b′n
for all sufficiently large n. For each sufficiently large n, substituting ξ by ξ =
(c′n − b′n)w + b′n we obtain

Vp[Q
′
n] = − 1

π

∫ ∫ c′n−a′
n

c′n−b′n

d′
n−b′n

c′n−b′n

(w − a′′n)w(w − 1)(w − d′′n)
µ((c′n − b′n)w + b′n)dudv,

where w = u+ iv and a′′n = − b′n−a′
n

c′n−b′n
and d′′n =

d′
n−b′n

c′n−b′n
.

Since c′n − b′n approaches 0 as n → ∞ and µ vanishes near the real line R, it
follows that µ((c′n − b′n)w + b′n) converges to 0 pointwisely at almost every w as
n → ∞. According to the relation between the maximal and minimal scales of Q′

n,
we consider the following two cases. In one case, the ratios of the maximal scales
over the minimal ones of Q′

n’s are bounded, and in the other, the ratios converge
to ∞ as n → ∞ (by passing to a subsequence if necessary). Using the condition

cr(Q′
n) = 1 for each n, we obtain in the first case, a′′n’s,

c′n−a′
n

c′n−b′n
’s and

d′
n−b′n

c′n−b′n
’s are all

bounded; in the other case, either a′′n converges to −1,
c′n−a′

n

c′n−b′n
converges to 2 and

d′
n−b′n

c′n−b′n
converges to ∞ as n → ∞ or a′′n converges to −∞,

c′n−a′
n

c′n−b′n
converges to ∞

and
d′
n−b′n

c′n−b′n
converges to 2 as n → ∞. Applying Lebesgue’s dominating convergence

theorem, we conclude that in either case, V [Qn] = Vp[Q
′
n] converges to 0 as n → ∞.

This is a contradiction to the assumption that V [Qn] > ϵ > 0 for each n. �

Definition 10. Given two elements V, V ′ ∈ Z(S1), we say that V is equivalent to
V ′, denoted by V ∼ V ′, if

sup
{Bn}

lim sup
n→∞

|VL[Bn]− V ′
L[Bn]| = 0 or sup

{Qn}
lim sup
n→∞

|V [Qn]− V ′[Qn]| = 0

where the supremum is taken over all degenerating sequences {Bn}∞n=1 of boxes or
all degenerating sequences {Qn}∞n=1 of quadruples.

For each V ∈ Z(S1), we denote by [V ] the equivalent class of V in Z(S1). Define

AZ(S1) = Z(S1)/ ∼ .

Using Proposition 6, the following corollary is obvious.

Corollary 6. AZ(S1) = Z(S1)/Z0(S1).
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7.4. Proof of Theorem 3.

Proof. We first show that if [λ] = [λ′], then [V ] = [V ′]. Suppose that [V ] ̸= [V ′].
Then there exist ϵ > 0 and a degenerating sequence of {Bn}∞n=1 boxes such that,
for all n

|Ėλ|S1 [Bn]− Ėλ′
|S1 [Bn]| ≥ ϵ > 0.

Then, for all n,

|Ė(γBn )∗λ|S1 [B∗]− Ė(γBn )∗λ|S1 [B∗]| = |V [Bn]− V ′[Bn]| ≥ ϵ > 0. (7.3)

Since ∥(γBn)
∗λ∥Th = ∥λ∥Th and ∥(γBn)

∗λ′∥Th = ∥λ′∥Th, {(γBn)
∗λ}∞n=1 and

{(γBn)
∗λ′}∞n=1 are uniformly Thurston bounded. Therefore there exist convergent

subsequences of {(γBn)
∗λ}∞n=1 and {(γBn)

∗λ′}∞n=1 in the weak∗ topology. For sim-
plicity, we denote them by the same notation. In the proof of the sufficiency of
Theorem 1, we have shown that the condition [λ] = [λ′] implies that the limit of

(γBn)
∗λ equals to the limit of (γBn)

∗λ′. We normalize Ė(γBn )∗λ|S1 and Ė(γBn )∗λ′ |S1 ,
by adding quadratic polynomials, such that Ė(γBn )∗λ|S1 and Ė(γBn )∗λ′ |S1 equal to
0 at three fixed points on S1. By Proposition 4, the (pointwise) limits of the two

sequences Ė(γBn )∗λ|S1 and Ė(γBn )∗λ′ |S1 are the same. This is a contradiction to
(7.3).

Now we show that if [V ] = [V ′], then [λ] = [λ′]. Assume on the contrary that
[λ] ̸= [λ′], then there exist a degenerating subsequence {Bn}∞n=1 of boxes, and a
continuous function f on G with compact support contained in B∗ such that

lim
n→∞

∫
B∗

fd((γBn)
∗λ− (γBn)

∗λ′) ≥ ϵ > 0. (7.4)

Since they are uniformly Thurston bounded, there exist convergent subsequences
of {(γBn)

∗λ}∞n=1 and {(γBn)
∗λ′}∞n=1 in the weak∗ topology, which we denote by the

same notation for simplicity. Using the assumption (7.4), we know that the weak∗

limit of (γBn)
∗λ does not equals to the limit of (γBn)

∗λ′. By Proposition 4, the

pointwisely limits of the two sequences Ė(γBn )∗λ|S1 and Ė(γBn )∗λ′ |S1 are not the
same even they vanish at three common points on S1. Thus there exists a box
B0 ∈ G with L(B0) = log 2 such that

lim
n→∞

|Ė(γBn )∗λ′
|S1 [B0]− Ė(γBn )∗λ|S1 [B0]| ≥ δ > 0. (7.5)

On the other hand, using the assumption that V ∼ V ′ and limn→∞ s(Bn) = 0, we
obtain

lim
n→∞

|Ė(γBn )∗λ′
|S1 [B0]− Ė(γBn )∗λ|S1 [B0]|

= lim
n→∞

|Ėλ′
|S1 [(γBn)(B0)]− Ėλ|S1 [(γBn)(B0)]| ≤ lim sup

s(B)→0

|V ′[B]− V [B]| = 0.

This is a contradiction to (7.5). It follows that [λ] = [λ′]. �
7.5. Asymptotic Thurston’s norm and asymptotic cross-ratio norm. It is
shown in [10] and [11] with two different methods that the cross-ratio norm ||V ||cr
of a vector field V ∈ Z(S1) and the Thurston’s norm ∥λV ∥Th of λV are bi-Lipschitz
equivalent. Now we define the following.

Definition 11. Given a vector field V ∈ Z(S1), the asymptotic cross-ratio norm
∥V ∥ĉr of V ∈ Z(S1) is defined to be

∥V ∥ĉr = sup
{Qn}

lim sup
n→∞

|V [Qn]|,
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where the supreme is taken over all degenerating sequences {Qn}∞n=1 of quadruples.

In this subsection, we show Theorem 6, which is viewed as an asymptotic version
of the result

∥λV ∥Th ≤ C∥V ∥cr
for a universal positive constant C in [11]. In the next subsection, we apply this the-
orem to prove the continuity of the inverse of the induced infinitesimal earthquake

measure map ̂̇EM.
The strategy of the proof of Theorem 6 is similar to the one used to prove the

inequality ||λV ||Th ≤ C||V ||Th in [11], but extra effort has to be made in order to
have the scales s(Q) of selected quadruples Q approach to 0 as disks D of hyperbolic
diameter ≤ 1

2 approach the boundary S1 of D. We first recall three technical lemmas
developed in [11].

Let λ denote a Thurston bounded measured lamination and V = Vλ. Let B be
an orientation-preserving Möbius transformation from the upper half plane H or
the unit open disk D onto D, and λ̃ = (B∗λ) be the pullback of λ by B (or the
pushforward of λ by B−1). And define

Ṽ (x) = Vλ̃(x) = Ėλ̃(x) =

∫ ∫
Eab(x)dλ̃(a, b).

Lemma 9 ([11]). The vector fields V and Ṽ satisfy

Ṽ (x) =
V (B(x))

B′(x)
;

that is, Ṽ is the pullback of V by B.

Lemma 10 ([11]). Let B be a Möbius transformation from D or H onto D or H.

Assume that two continuous tangent vector fields Ṽ and V on S1 or R satisfy the
condition in the previous lemma. Then for any quadruple Q of four points,

Ṽ [Q] = V [B(Q)].

Lemma 11 ([11]). Assume ρ > 0, −∞ ≤ a < b < c < d, and c ≤ s ≤ d ≤ t.
Let V (x) = ρEs,t(x) and Q = {a, b, c, d}. Consider V [Q] as a function of s and
t. Then V [Q] ≥ 0 and V [Q] is an increasing function on t for each fixed s and a
decreasing function on s for each fixed t.

Lemma 12 ([11]). Assume ρ > 0, −∞ ≤ a < b < c < d ≤ ∞, and b ≤ s ≤ c
and t ≥ d. Let V (x) = ρEs,t(x) and Q = {a, b, c, d}. Consider V [Q] as a function
of s and t. Then V [Q] ≥ 0 and V [Q] is increasing on s for each fixed t and also
increasing on t for each fixed s.

Now we prove Theorem 6.

Proof. Let r0 be a constant between 0 and 1, which will be selected later. Let D
denote a closed disk in D of hyperbolic diameter ≤ r0. It suffices to show that there
exists a universal positive constant C such that the measure of the leaves of the
lamination L intersecting D is less than or equal to C||V ||ĉr.

Suppose that D is near the boundary. Let l1 and l2 denote the lines in the
lamination L of λ which bound all the lines in L intersecting D. We label the
endpoints of l1 and l2 by a, s, c and t in the counter-clockwise order such that a
and t are the endpoints of one leave and s and c are the endpoints of the other, and
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Figure 2. Illustration of the quadruples Q and Q′ in the proof of
Theorem 6.

furthermore the length of the arc between a and s is less than or equal to the length
of the arc between c and t. In case that l1 and l2 share one or both endpoints, a = s
and/or c = t.

Let p be a point on the intersection of D with the geodesic connecting a and
c. Now we let B be an orientation-preserving Möbius transformation from H onto
D such that B−1(p) = i, B−1(a) = 0 and B−1(c) = ∞. It also follows that
t′ = B−1(t) < 0, s′ = B−1(s) ≥ 0, and B(D) is a disk containing of i and with
hyperbolic diameter ≤ r0. Now it is easy to see that if r0 is small enough, then
t′ < −2 and 0 ≤ s′ < 1. Furthermore, we can see that as soon as r0 is small enough,
the properties t′ < −2 and 0 ≤ s′ < 1 hold universally in the sense that for any disk
D of diameter r0 in the hyperbolic metric and any geodesic lamination L, the two
variables t′ and s′ resulting from the previous process satisfy those two inequalities.
We thereby choose r0 to be such a positive constant.

Let Q′ = {0, 1,∞,−1}, which is a quadruple on R∪{∞} with cr(Q′) = −1. Let
Q = B(Q′). By using a similar idea to prove Lemma 1, one can show that s(Q)
goes to 0 if D approaches the boundary S1.

Now assume that λ̃ and Ṽ are as the same as introduced in this subsection.
Clearly, cr(Q) = cr(Q′) = −1. By Lemma 8,

Ṽ [Q′] = V [Q].

Let L̃ = B(L), where L is the lamination for λ. In order to estimate Ṽ [Q′], we

divide the lines in the lamination L̃ that affect the value of V [Q′] into three groups.
Let Lm denote the collection of the lines in L intersecting B(D), Lb denote the

collection of the lines in L̃ \ Lm connecting points in (s′, 1) to points in (1,∞), and
Ld the collection of the lines in L \ Lm connecting points in (t′,−1) to points in

(−1, 0). Denote by λk = λ̃|Lk
and Vi = Ėλk for k = m, b, d. By the linearity of the

operator Ė, we obtain

Ṽ [Q′] = Vm[Q′] + Vb[Q
′] + Vd[Q

′].

For a habit of getting used to the symbols in the course of applying Lemmas 11
and 12, we denote Q′ by {a′, b′, c′, d′}. By Lemma 11,

Vd[Q
′] = Vd[{a′, b′, c′, d′}] ≥ 0 and Vb[{c′, d′, a′, b′}] ≥ 0.
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Then

Vb[Q
′] = Vb[{a′, b′, c′, d′}] = −Vb[{b′, c′, d′, a′}] = Vb[{c′, d′, a′, b′}] ≥ 0.

Therefore

Ṽ [Q′] ≥ Vm[Q′].

In the next, we use Lemma 12 to obtain an explicit lower bound for Vm[Q′], which
enables us to complete the proof. By Lemma 12, if we move the weights of the
geodesic lines in the lamination Lm to the geodesic line connecting t′ to s′, then
the value of Vm[{b′, c′, d′, a′}] is possibly increased, and hence the value of Vm[Q′] =
−Vm[{b′, c′, d′, a′}] is possibly decreased. Therefore

Vm[Q′] ≥ (ρEt′,s′)[Q
′],

where ρ = λ̃(Lm). It is easy to check

Et′,s′ [Q
′] =

2Et′,s′(d
′)− Et′,s′(a

′)

a′ − d′

=
2 + 2t′ + 2s′ + t′s′

t′ − s′
=

2[−(1 + t′)] + s′[−(2 + t′)]

s′ − t′
.

Since 0 ≤ s′ < 1 and t′ < −2, 2[−(1+ t′)] ≥ 2, s′[−(2+ t′)] > 0, and s′− t′ ≤ 1− t′.
It follows that

2[−(1 + t′)] + s′[−(2 + t′)]

s′ − t′
≥ 2[−(1 + t′)]

1− t′
= 2

t′ + 1

t′ − 1
.

Clearly, 2 t′+1
t′−1 attains its minimal value 2

3 on the interval (−∞,−2]. Thus

Vm[Q′] ≥ 2

3
ρ.

In summary,

V [Q] = Ṽ [Q′] ≥ Vm[Q′] ≥ 2

3
ρ,

where ρ = λ̃(Lm), which is equal to the λ measure of the lines of L intersecting
D, D is a closed disk in D of hyperbolic diameter ≤ r0 and 0 < r0 < 1, and
cr(Q) = cr(Q′) = −1.

Now let Q′
1 = {−1, 0, 1,∞} and Q1 = B(Q′

1). Then cr(Q′
1) = cr(Q1) = 1,

s(Q1) = s(Q), and furthermore

V [Q1] = −V [Q] ≤ −2

3
ρ.

Thus

|V [Q1]| ≥
2

3
ρ.

It follows that there exists a universal positive constant C such that

||λ||
T̂ h

≤ C||V ||ĉr.

�
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7.6. Proof of Theorem 4. For any V ∈ Z(S1), define

∥V ∥ĉrL = sup
{Bn}

lim sup
n→∞

|V [Bn]|,

where the supremum is taken over all degenerating sequences {Bn}∞n=1 of boxes.
By Proposition 5, the following corollary is obvious.

Corollary 7. For any V ∈ Z(S1), ∥V ∥ĉr = 2∥V ∥ĉrL .

Now we prove Theorem 4.

Proof. We first show that ̂̇EM−1

is continuous. Assume that [λn] → [λ] in the

asymptotically uniform weak∗ topology, we prove [Vn] = ̂̇EM−1

([λn]) goes to

[V ] = ̂̇EM−1

([λ]) in the ∥ · ∥ĉrL norm. By Corollary 2, since [λn] → [λ] in the
asymptotically uniform weak∗ topology, there exist λ′

n ∈ [λn] goes to λ′ ∈ [λ] in

the uniform weak∗ topology. Let V ′
n = ˙EM−1

(λ′
n) and V ′ = ˙EM−1

(λ′), by the

homeomorphic property of ˙EM ([16]), V ′
n goes to V ′ in the ∥ · ∥crL norm. Since

∥V ∥crL ≥ ∥V ∥ĉrL for any V ∈ Z(S1), it follows that [V ′
n] = [Vn] goes to [V ′] = [V ]

in the ∥ · ∥ĉrL norm.

It remains to show that ̂̇EM is continuous. Assume that [Vn] → [V ] in the

asymptotically uniform weak∗ topology. Let [λn] =
̂̇EM([Vn]) and [λ] = ̂̇EM([V ]).

We prove [λn] converges to [λ] in the asymptotically uniform weak∗ topology.
Since [Vn] → [V ] in the asymptotic cross-ratio norm ∥ · ∥ĉrL , {∥Vn∥ĉrL}∞n=1 is

bounded. By Corollary 7, ∥Vn∥ĉr = 2∥Vn∥ĉrL . Hence {∥Vn∥ĉr}∞n=1 is bounded. By
Theorem 6, {∥λn∥T̂ h

}∞n=1 is bounded. Using Lemma 6 to replace the representa-
tives, we may assume that {λn}∞n=1 is uniformly Thurston bounded.

Suppose on the contrary that [λn] does not converges to [λ] in the asymptotically
uniform weak∗ topology. Then there exist a degenerating sequence {Bn}∞n=1 of
boxes and a continuous function f on G with compact support contained in B∗

such that

lim
n→∞

∫
B∗

fd((γBn)
∗λn − (γBn)

∗λ) > m > 0. (7.6)

Since ∥(γBn)
∗λn∥Th = ∥λn∥Th, ∥(γBn)

∗λ∥Th = ∥λ∥Th and {∥λn∥Th}∞n=1 is
bounded, it follows that (γBn)

∗λn and (γBn)
∗λ are uniformly Thurston bounded.

Therefore there exist convergent subsequences of {(γBn)
∗λn}∞n=1 and {(γBn)

∗λ}∞n=1

in the weak∗ topology, which we denote by the same notation for simplicity. By
the assumption (7.6), we see that the weak∗ limit of (γBn)

∗λn does not equal to
the limit of (γBn)

∗λ. By Proposition 4, the pointwise limits of the two sequences

Ė(γBn )∗λn |S1 and Ė(γBn )∗λ|S1 are not the same even they vanish at the three com-
mon points on S1. Thus there exists a box B0 ∈ G with L(B0) = log 2 such that

lim
n→∞

|Ė(γBn )∗λn |S1 [B0]− Ė(γBn )∗λ|S1 [B0]| ≥ m̃ > 0.

By Lemma 1, s(γBn(B0) → 0 as n → ∞. Using the assumption that [Vn] → [V ] in
the asymptotically uniform weak∗ topology, we obtain

lim
n→∞

|Ė(γBn )∗λn |S1 [B0]− Ė(γBn )∗λ|S1 [B0]|

= lim
n→∞

|Ėλn |S1 [(γBn)(B0)]− Ėλ|S1 [(γBn)(B0)]| ≤ lim sup
s(B)→0

|Vn[B]− V [B]| = 0.
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This is a contradiction to (7.6). It follows that [λn] converges to [λ] in the asymp-
totically uniform weak∗ topology. �
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