

Objectives

- Pulmonary Structure & function
- Gas exchange and transport
- Exercise & pulmonary ventilation

Lung Volumes & Capacities (cont.)

- Lung volumes vary with:
 - a) Age
 - b) Size (mainly stature)
 - c) Gender
- 1. TV: Tidal Volume (0.4–1.0L)
- 2. IRV: Inspiratory Reserve Volume (2.5-3.5L)
- 3. ERV: Expiratory Reserve Volume (1.0-1.5L)
- 4. FVC or VC: Vital Capacity (3.5L)
- 5. RLV: Residual Lung Volume (0.8-1.4L)

Concentration & Partial Pressure of Respired Gases

- *Partial Pressure:* percentage of concentration x total pressure of a gas
 a) PO₂, PCO₂
- *Dalton's Law:* total pressure = sum of partial pressure of all gases in a mixture

a) Ambient Air

- $\checkmark O_2 = 20.93\%$ or 159mmHg PO₂
- ✓ CO₂ = 0.03% or 0.23mmHg PCO₂ ✓ N₂ = 79.04% or 600mmHg PN₂
- $N_2 = 79.04\%$ or 600mmHg PN_2

Movement of Gas in Air & Fluids

- *Henry's Law*: gases diffuse from high pressure to low pressure
- Diffusion rate depends upon:
 - a) Pressure differential (of specific gas)
 ✓ Capillary to alveolar sacs
 - b) Solubility of the gas in the fluid
 - ✓ CO₂ is about 25 times more soluble than O_2
 - $\checkmark~{\rm CO}_2$ and ${\rm O}_2$ are both more soluble than ${\rm N}_2$

Arteriovenous O₂ Difference

- The a-vO₂ difference shows the amount of O₂ extracted by tissues
- During exercise a-vO₂ difference increases up to 3 times the resting value

RBC 2,3 DPG

- RBC contain no mitochondria

 a) Rely on glycolysis
- 2,3 DPG increases with intense exercise and may increase due to training
- Helps deliver O_2 to tissues by reducing affinity of O_2

Myoglobin, Muscle's O₂ Store

- Myoglobin is an iron-containing globular protein in skeletal and cardiac muscle
- Stores O2 intramuscularly
- Myoglobin only contains one iron atom
- O₂ is released at low PO₂

CO₂ Transport

- Three mechanisms:
 - a) Bound to Hb
 - b) Dissolved in plasma
 - c) Plasma bicarbonate
- *Haldane effect*: Hb interaction with O₂ reduces its ability to combine with CO₂
- This aids in releasing CO₂ in the lungs

