Respiratory System

Objectives

- Pulmonary Structure & function
- Gas exchange and transport
- Exercise & pulmonary ventilation

Pulmonary Anatomy

Respiration Generals

- Respiration:
 - Process of gas exchange, which for the human body involves oxygen and carbon dioxide
 - Internal respiration (cellular)
 - External respiration (lung)

- Lungs
 - Provide a large surface area (50 – 100 m²)
 - Highly vascularized

Respiration Generals (cont.)

- Alveoli (~300 million)
 - Elastic & thin walled (~ 0.3mm in diameter
 - During submaximal exercise, the integrity of wall does not change
 - Maximal exercise may induce stress on the wall
 - Large ventilation & pulmonary blood flow

Lung Specifics

- Surfactant (within the alveoli):
 - Phospholipoprotein molecule secreted by specialized cells of the lung that lines the surface of alveoli & respiratory bronchioles
 - Lowers surface tension of the alveolar membranes
 - Prevents the collapse of alveoli during exhalation
 - Increases compliance during inspiration
 - Distribution aided by Pores of Kohn
Mechanics of Ventilation

Inspiration & Expiration
- **Inspiration (muscles involved):**
 a) Diaphragm: primary ventilatory muscle during exercise
 - Scalene and external intercostals assist diaphragm
- **Expiration (during rest and light exercise):**
 a) Predominantly passive
 b) During strenuous exercise:
 - Internal intercostals
 - Abdominal muscles assist

Mechanics of Ventilation (cont.)

Airflow in the Lungs
- Forward airflow increases as cross-sectional area increases

Fick’s Law of Diffusion
- Explains gas exchange through the alveolar membranes
- Gas diffuses through a tissue at a rate:
 a) Proportional to surface area (or tissue area)
 b) Inversely proportional to its thickness

Lung Volumes & Capacities
- Measured using a spirometer
Lung Volumes & Capacities (cont.)

- Lung volumes vary with:
 a) Age
 b) Size (mainly stature)
 c) Gender

1. TV: Tidal Volume (0.4–1.0L)
2. IRV: Inspiratory Reserve Volume (2.5–3.5L)
3. ERV: Expiratory Reserve Volume (1.0–1.5L)
4. FVC or VC: Vital Capacity (3.5L)
5. RLV: Residual Lung Volume (0.8–1.4L)

Estimating Residual Volume

- Normal-weight men & women:
 \[
 RLV = 0.0275(\text{AGE}) + 0.0189(\text{HT}) - 2.6139
 \]

- Overweight men and women:
 \[
 RLV = 0.0277(\text{AGE}) + 0.0048(\text{WT}) + 0.0138(\text{HT}) - 2.3967
 \]

Dynamic Lung Volume

- Dynamic ventilation dependent upon:
 a) FVC (Forced Vital Capacity)
 b) Rate (or speed) of breathing
 - Dictated by lung compliance

- Measurement techniques:
 a) FEV to FVC Ratio
 - Forced Expiratory Volume over 1 second (FEV\textsubscript{1.0}) / Forced Vital Capacity
 - Pulmonary airflow capacity
 - Average person – 85% of FVC in 1 second
 - Pulmonary disease – as low as 40%

Examples of FEV\textsubscript{1.0}/FVC

- Maximum Voluntary Ventilation (MVV)
 - Evaluates rapid and deep breathing for 15 seconds & extrapolates to 1 minute
 - ~ 25% higher than ventilation during max exercise
 - College aged men – 140 to 180L·min-1
 - College aged females – 80 to 120L·min-1

- Gender differences
 a) Compromised in trained females
 - Mechanical constraints & pulmonary ventilation may affect arterial saturation

- Variations in MVV measurements will not predict exercise tolerance
Pulmonary Ventilation

- Minute ventilation:
 a) Volume of air breathed each minute, V_E

 $$V_E = \text{Breathing rate} \times \text{Tidal Volume}$$

- Minute ventilation increases dramatically during exercise
 a) Average person ~ $100\, \text{L}\cdot\text{min}^{-1}$
 b) Values up to $200\, \text{L}\cdot\text{min}^{-1}$ have been reported

- Despite huge increases in V_E during maximal exercise, tidal volumes rarely exceed 60% VC

Alveolar Ventilation

- Anatomic Dead Space:
 a) Averages 150 – 200 mL

- Only ~ 350 mL of the 500 mL TV enters alveoli

Ventilation Comparisons

- Dead Space vs. Tidal Volume
 a) Anatomic Dead Space increases as TV increases

 ✓ Despite the increase, increases in TV result in more effective alveolar ventilation

- Ventilation-Perfusion Ratio
 a) Ratio of alveolar ventilation to pulmonary blood flow

 ✓ V/Q during light exercise ~ 0.8
 ✓ V/Q during strenuous exercise may increase up to 5.0

- Physiologic dead space
 a) Negligible in healthy lung

Variations in Breathing

- Hyperventilation
 a) An increase in pulmonary ventilation that exceeds O_2 needs of metabolism

 ✓ Decreases PCO_2

- Dyspnea

- Valsalva Maneuver
 a) Closing the glottis following a full inspiration while maximally activating the expiratory muscles

 ✓ Increase intra-thoracic pressure
 ✓ Stabilizes chest during lifting
Physiologic Consequences of Valsalva
• An acute drop in BP may result from a prolonged Valsalva maneuver
 a) Decreased venous return & blood flow to brain

Concentration & Partial Pressure of Respired Gases
• Partial Pressure: percentage of concentration x total pressure of a gas
 a) \(\text{PO}_2, \text{PCO}_2 \)

• Dalton’s Law: total pressure = sum of partial pressure of all gases in a mixture
 a) Ambient Air
 \[\text{O}_2 = 20.93\% \text{ or } 159 \text{mmHg PO}_2 \]
 \[\text{CO}_2 = 0.03\% \text{ or } 0.23 \text{mmHg PCO}_2 \]
 \[\text{N}_2 = 79.04\% \text{ or } 600 \text{mmHg PN}_2 \]

Movement of Gas in Air & Fluids
• Henry’s Law: gases diffuse from high pressure to low pressure

 a) Pressure differential (of specific gas)
 ✓ Capillary to alveolar sacs
 b) Solubility of the gas in the fluid
 ✓ \(\text{CO}_2 \) is about 25 times more soluble than \(\text{O}_2 \)
 ✓ \(\text{CO}_2 \) and \(\text{O}_2 \) are both more soluble than \(\text{N}_2 \)

Gas Exchange & Transport

Gas Exchange in Lungs:
• \(\text{PO}_2 \) in alveoli ~ 100mmHg
 a) Drop due to venous myocardial shunt & venous draining in lungs

• \(\text{PO}_2 \) in pulmonary capillaries ~ 40mmHg

• Tracheal air:
 a) Water vapor reduces the \(\text{PO}_2 \) in the trachea about 10mmHg to 149mmHg
 \[0.2093 \times (760 - 47 \text{mmHg}) \]

• Alveolar air:
 a) Alveolar air contains ~ 14.5% \(\text{O}_2 \),
 5.5% \(\text{CO}_2 \), and 80.0% \(\text{N}_2 \)
 ✓ Average alveolar \(\text{PO}_2 \) = 103mmHg,
 \(\text{PCO}_2 \) = 39mmHg
 \[\text{PO}_2 = 0.145 \times (760 - 47 \text{mmHg}) \]
 \[\text{PCO}_2 = 0.145 \times (760 - 47 \text{mmHg}) \]
O₂ Transport in Blood

1. **Dissolved in plasma (~ 1%)**
2. **Combined with hemoglobin (~ 99%)**

 - **Hemoglobin (Hb)**
 a) Iron-bearing protein contained in RBC
 b) Hb has potential to carry 4 O₂ molecules
 c) Each gram of Hb combines with 1.34 mL O₂

 \[
 \text{Blood's O₂ carrying capacity (mL/dL blood)} = \text{Hb (g/dL)} \times \text{O₂ capacity of Hb}
 \]

 \[
 20 \text{ mL O}_2 = 15 \times 1.34
 \]

 - PO₂ is primary determinant of %Hb saturation
Arteriovenous O₂ Difference

- The a-vO₂ difference shows the amount of O₂ extracted by tissues.
- During exercise a-vO₂ difference increases up to 3 times the resting value.

Bohr Effect

1. An increased PCO₂ content
 - Decreases affinity of Hb for O₂
 - Hb unloads more O₂ than normal at the tissue level.

2. Increased acidity
 - Increased acidity results in greater concentration of CO₂ (from carbonic acid).

3. Increased temperature
 - Results in more unloading (exercise).

4. 2,3 DPG
 - Produced by RBC when Hb is low.

RBC 2,3 DPG

- RBC contain no mitochondria
 a) Rely on glycolysis

- 2,3 DPG increases with intense exercise and may increase due to training.
- Helps deliver O₂ to tissues by reducing affinity of O₂.

Myoglobin, Muscle’s O₂ Store

- Myoglobin is an iron-containing globular protein in skeletal and cardiac muscle.

- Stores O₂ intramuscularly.
- Myoglobin only contains one iron atom.
- O₂ is released at low PO₂.

CO₂ Transport

- Three mechanisms:
 a) Bound to Hb
 b) Dissolved in plasma
 c) Plasma bicarbonate

- Haldane effect: Hb interaction with O₂ reduces its ability to combine with CO₂.
- This aids in releasing CO₂ in the lungs.

![Figure 13.6](image_url)