Dynamics of Pulmonary Ventilation

Neural Factors
- Medulla (respiratory center), pons, subcortical region & motor cortex
- Inspiratory neurons activate diaphragm and intercostals
 a) Limited by influence of expiratory neurons
 Stretch receptors
- Neural center in the hypothalamus integrates input from ascending & descending neurons:
 a) Influences duration and intensity of respiratory cycle

Humoral Factors
- Peripheral chemoreceptors located in:
 a) Aorta and carotid arteries
 Stimulated by ↓PO2
 Stimulated also by exercise
- During exercise:
 a) ↑PCO2
 b) ↑Temperature
 c) ↑acidity
 d) ↑potassium concentrations

Plasma PCO₂ & H⁺ Concentrations
- PCO₂ in arterial blood provides the most important respiratory stimulus at rest
 a) Ventilation increases to decrease PCO₂
- ↓blood pH reflects CO₂ retention or lactate accumulation (exercise)
- Hyperventilation & breath-holding
 a) Sport-specific application: swimming & divers

Ventilation During Exercise
- Chemical Control:
 a) Combination of factors
 Fluctuations in PO₂, PCO₂

Figure 14.1

Ventilatory Control

Figure 14.3

Metabolic production of CO₂ & H⁺
Ventilation During Exercise

- **Nonchemical Control:**

 a) **Neurogenic Factors** – responsible for rapid response to increase ventilation
 1. Cortical influence – activated in anticipation
 2. Peripheral influence – sensory input from limbs

 b) Temperature has little influence on respiratory rate during exercise
 ✓ Ventilation fluctuation too rapid to reflect changes in core temperature

- **Integrated Regulation During Exercise**

 • Phase I (beginning of exercise): neurogenic stimuli from cortex increases respiration

 • Phase II: after about 20 seconds V_E rises exponentially to reach steady state
 a) Central command
 b) Peripheral chemoreceptors

 • Phase III: fine tuning of steady-state ventilation through peripheral sensory feedback mechanisms

In Recovery

- An abrupt decline in ventilation reflects removal of central command and input from receptors in active muscle

- Slower recovery phase from gradual metabolic, chemical and thermal adjustments

Pulmonary Ventilation During Exercise

1. Ventilation (V_E) in Steady-State Exercise:

 a) During light to moderate exercise:
 ✓ Ventilation increases linearly with O_2 consumption and CO_2 production
 ✓ At lower intensities, ventilation ↑ primarily due to ↑ TV
 ✓ At higher intensities, primarily ↑ breathing rate

2. Ventilation in Non-Steady-State Exercise:

 a) V_E rises sharply and the ventilatory equivalent rises as high as 35–40

Ventilatory Threshold (V_T)

- The point at which pulmonary ventilation ↑ disproportionately with O_2 consumption during exercise

 a) pulmonary ventilation no longer tightly associated with O_2 demand at the cellular level

- Excess ventilation results from:

 a) CO$_2$ increased output from buffering of lactate

 Lactate + NaHCO$_3$ \rightarrow Na lactate + H$_2$CO$_3$ \rightarrow H$_2$O + CO$_2$

 b) ↑ nonmetabolic CO_2 stimulates ventilation
Other factors affecting ventilation

- Energy Cost of Breathing:
 - a) 3 to 5% of total O₂ consumption during light to moderate exercise
 - b) 8 to 15% during maximal exercise
 - c) Respiratory muscles at max ~ 15% of total blood flow

Does V_E Limit Aerobic Power & Endurance?

- Ventilation in healthy individuals is not the limiting factor in exercise
 - a) Breathing reserve even at maximal exercise

Acid-Base Regulation

- General terms:
 - a) Acids: dissociate H^+ in solution
 - b) Bases: accept H^+ to form OH^- ions
 - c) Buffering: minimize changes in pH or $[H^+]$

- The term pH designates a quantitative measure of acidity or alkalinity
 - a) Concentration of H^+

Acid-Base Regulation

- General terms:
 - a) Acids: dissociate H^+ in solution
 - b) Bases: accept H^+ to form OH^- ions
 - c) Buffering: minimize changes in pH or $[H^+]$

- The term pH designates a quantitative measure of acidity or alkalinity
 - a) Concentration of H^+
Regulation of internal pH

- Chemical buffers:
 a) Sodium bicarbonate, phosphate, certain proteins

- Ventilatory buffer:
 a) Direct stimulation of respiratory centers & expiration of excess CO₂

- Renal buffer:
 a) Long-term maintenance

Blood pH & Blood lactate relationship