The Digestive System

Overview

- 1. Food breakdown
 - CHO, Protein, Fat
- 2. Anatomy
- 3. Digestive process

The Digestive Tract (inner layer to outer)

1. Mucosa

- Mucous membrane
 - Exocrine cells (digestive juices)
 - Endocrine cells (hormones)
 - Epithelial cells (absorption)
- Degree of folding depends on location
 - ✓ Highest in small intestine

The Digestive Tract (inner layer to outer) 2. Submucosa Submucosa Thick connective tissue Muscularis externa ✓ Blood & nerve innervation 3. Muscularis externa Inner circular layer • Outer longitudinal layer 4. Serosa -

- Outer connective tissue
 - ✓ Prevents friction

Digestive regulation

- Smooth-muscle function 1.
 - Slow-wave action potentials (basal electrical rhythm)
 - ✓ Interstitial cells of Cajal
 - Regulate peristalsis and segmentation
- 2. Intrinsic nerve plexuses (enteric nervous system) – digestive nervous system
 - Respond to local stimuli for secretion (digestive • juices & GI hormones)
 - Both excitatory & inhibitory

Digestive regulation

Extrinsic nerves 3.

- Modify intrinsic activity and other various digestive organs (generally sympathetic &/or parasympathetic)
- Gastrointestinal hormones 4.
 - Carried throughout blood influencing other areas of digestive tract

Sensory Receptors

- 1. Chemoreceptors
 - Sense changes in chemical components within lumen
- 2. Mechanoreceptors
 - Respond to stretch and tension
- 3. Osmoreceptors
 - Changes in osmolarity

The Digestive Process

- 2. Mucus (lubrication)
- 3. Lysozyme (antibacterial)

Stomach Functions

1. Storage

- 2. Gastric mixing & mucous secretion
- 3. Production of chyme
- 4. Secretes hydrochloric acid (HCl)
 - Reduces large food particles
 - Kills microorganisms ingested in food
- 5. Initial stages of protein breakdown
 - Pepsinogen forming pepsin

Regulation of Gastric Emptying

- > Amount of chyme
- Neural response
 - Intrinsic nerve plexus (short reflex) *Enterogastric*
 - Autonomic nerves (long reflex)
- Hormonal
 - Enterogastrones (secretin & cholecystoinin CCK) released from duodenal mucosa
 - ✓ Inhibit antral contractions

Regulation of Gastric Emptying

- Duodenum
 - 1. Fat \sim can only be processed in small intestine
 - Acid (unneutralized)
 ✓ Excess HCl not buffered by sodium bicarbonate
 - Hypertonicity ~ increased osmolarity due to abundance of amino acids and glucose
 - 4. Distension
- Emotions

Gastric Digestive Juices

- ~ 2 liters/day
- > Responsibility of cells lining gastric mucosa
- 1. Oxyntic mucosa
 - Body
 - Fundus
- 2. Pyloric gland area (PGA)
 - Antrum

Chief & Parietal Cell Regulation

- Acetylcholine (Ach)
 - Stimulates both
 - Also stimulates G and ECL cells

Histamine (paracrine)

Released from ECL cells & increases HCl secretion

➤ Somatostatin

- · Released from D cells
- Provides negative feedback

Food leaving the Stomach...

Mixed with secretions from **pancreas** and **liver**

Pancreas

- ► Exocrine & endocrine tissue
 - 1. Exocrine: secretes enzymes capable of breaking down CHO, fat, & protein
 - ✓ Proteolytic enzymes: protein
 - Regulated by secretin & cholecystokinin
 - ✓ Pancreatic amylase: CHO✓ Pancreatic lipase: fat
- (CCK)
- 2. Endocrine (hormones): Insulin & glucagon

Small intestine – digestion & absorption

- Potential for increased surface area
 - 1. Extensive folding
 - 2. Villi & microvilli
 - ✓ Increased digestive enzyme release

Pancreatic enzymes

- Fat reduced to FFA (with help of bile salts)
 ✓ Lipase
 - Proteins to AA

•

- ✓ Aminopeptidases
- CHO to di- and monosaccharides
 - ✓ Maltase, sucrase, lactase

Small intestine – digestion & absorption

- 1. Vitamin absorption (passive)
 - Water-soluble
 - Fat-soluble
- 2. Iron absorption *regulated*
 - Absorbed into epithelial cells
 - ✓ Either used immediately for production of RBC \underline{or}
 - ✓ Stored as ferritin
- 3. Calcium absorption *regulated*
 - Active transport stimulated by Vitamin D

