Energy Expenditure & VO₂

Current & Common Methods of Measuring Heat Production

- Direct & Indirect Calorimetry
 - *a)* Applied Indirect Principle: all energy releasing reactions in the body ultimately depend upon <u>oxygen</u>.
- Open-circuit spirometry
 - 1. Bag technique
 - ✓ Air is collected in a large bag (Douglas Bag)
 - $\checkmark\,$ Small sample is measured for gas concentrations
 - 2. Portable spirometry
 - \checkmark Spirometer is small and is carried in a pack
 - \checkmark Air volume is metered
 - \checkmark Sample is collected to measure concentrations of gases

Current & Common Methods of Measuring Heat Production (cont.)

- 3. Computerized instrumentation
 - ✓ Air flow is measured for volume
 - ✓ Gas analyzers measure concentrations of oxygen and carbon dioxide

The Respiratory Quotient (RQ)

- $\mathbf{RQ} = \mathbf{CO}_2$ produced / \mathbf{O}_2 consumed
 - a) RQ for carbohydrate = 1.0
 - **b**) **RQ** for fat = 0.70
 - c) RQ for protein = 0.82
- RQ assumes that oxygen consumption and carbon dioxide production measured at mouth reflect activity in tissues
 - a) Accurate for rest and steady-state conditions

Respiratory Exchange Ratio (RER)

- RER under nonsteady state conditions
- Calculation of RER is the same as RQ

Metabolic Calculations (Appendix D)

- a) Calculating energy expenditure during exercise
- b) Volume of air
- c) Concentrations of O_2 and CO_2

Energy Expenditure

Resting States

Energy Expenditure at Rest

Total Daily Energy Expenditure:

- a) Resting Metabolic Rate or Basal Metabolic Rate
- b) Thermogenic effect of food consumed
- c) Physical activity & recovery

Estimating Resting Daily Energy Expenditure RDEE = BMR x M²

- BMR (*Table 9.1, p.191*); Surface Area (*nomogram, figure 9.4*)
- Contribution of diverse tissues (Table 9.3)
 - a) Muscle is more active than fat mass
 - b) The brain has a high metabolic rate
 - c) During exercise muscle metabolism may increase nearly 100 times

Metabolism at Rest

• Effects of **regular exercise**:

- a) Resistance training increases BMR by increasing FFM
- b) Endurance training increases BMR without increasing FFM
- c) Exercise can offset the age-related decline in BMR

Factors that affect energy expenditure: 1. Physical activity a) Largest variable in daily energy expenditure ✓ 15 – 30% average 2. Diet-induced thermogenesis (DIT) a) Calorigenic effect of food on exercise metabolism ✓ Beneficial to eat prior to exercise – boosts RMR b) Energy required to digest, absorb, and assimilate nutrients 3. Climate a) Hot or Cold environments increase energy expenditure 4. Pregnancy a) Increases BMR due to added weight gained during pregnancy

Classification of physical activities by energy expenditure

- The Met
 - a) MET = metabolic equivalent \checkmark 5kcals ~ 1 L O₂ consumed
 - b) 1 MET = $3.5 \text{ ml O}_2 \text{ x kg}^{-1} \text{ x min}^{-1}$
 - c) Exercise intensity described relative to resting rate
 - d) Used to guide or prescribe exercise intensity

			B.B.o.o.		
		Men			
	kcal - min-1	L-min-	mL kg-1 min-1	METa	
Light	20-49	0.40-0.99	6.1-15.2	1.6-3.9	
Moderate	5.0-7.4	1.00-1.49	15,3-22.9	4.0-5.9	
Heavy	7.5-99	1 50-1 99	23.0-30.6	6.0-7.9	
Very heavy	10.0-12.4	2.00-2.49	30.7-38.3	8.9-9.9	
Unduly heavy	≥12.5	≥ 2.50	≥38.4	≥10.0	
	Women				
Light	1.5-3.4	0.30-0.69	5.4-12.5	12-27	
Moderate	35-54	10 70-1 09	12.6-19.8	28-43	
Heavy	5.5-7.4	1 10-1 49	19.9-27.1	4.4-5.9	
Very heavy	7.5-9.4	1 50-1.89	27.2-34.4	6.0-7.5	
Unduly heavy	295	≥1.90	>34.5	≥7.6	

Energy Expenditure in Physical Activity

• Energy cost of household, industrial, and recreational activities

Effect of body mass

- a) Weight-bearing exercise
- b) Weight-supported exercise

Heart Rate to Estimate Energy Expenditure

- Heart rate and oxygen consumption
 - a) Linear relationship exists ✓ *Linearity is not identical for everyone!*
- Other factors altering heart rate:
 - Temperature Food intake Muscle groups worked Emotions

Humidity Static vs. Dynamic work Body position

Measurement of Energy Expenditure & <u>Exercise</u>

Gross Versus Net Energy Expenditure

Gross energy expenditure

a) Total energy required for an activity

• Net energy expenditure

a) Gross energy expenditure - Resting energy expenditure

• Mechanical efficiency & economy of movement

- a) Ratio energy output: energy input
- b) Reflects the amount of energy transferred into doing work

Economy of Human Movement

- Economy of movement refers to the energy required to maintain a constant velocity of movement
 - a) More skilled athletes perform the same activity with a reduced energy requirement.

Energy Cost: Walking

• Influence of body mass

- a) Equations may be used to calculate energy expenditure
- b) Speed or pace is an important factor
- c) Mass is factored in as resistance
- d) Individuals with a larger mass expend more energy at the same pace

· Terrain and walking surface

- a) Energy expenditure is greater on soft surfaces
 - ✓ Sand✓ Snow
- b) Slope or grade influences energy expenditure
 - ✓ Downhill walking requires less energy
 - Very steep downhills require energy to "brake"
 - ✓ Uphill grades require more energy
- Footwear
- · Handheld and ankle weights
- Race Walking
- a) Poor economy but high expenditure

Energy Cost: Swimming

- Methods of measurement
 - a) Portable metabolic systems may be worn
 - b) Subjects may be tethered
 - c) Subjects may swim in a flume

Individual Variation & Measurement of EE

Biochemically & Metabolically

Physiologic & Biochemical Measures

- a) Size of intramuscular ATP-PCr pool
- b) Depletion rate of ATP and PCr in all-out short duration exercise
- c) O₂ deficit calculated from initial phase of exercise O₂ consumption curve
 - · Accumulated oxygen deficit
- d) Lactate or pH recovery

Evaluation of Power (physiologically & biochemically)

- After a few seconds work, glycolysis generates increasingly more energy for ATP resynthesis
- As the rate of glycolysis increases, lactate accumulates
- Blood lactate levels provide the most common indicator of glycolytic activity
 a) pH

Evaluation of Aerobic Energy Systems

- Maximal oxygen capacity plays a large role in determining endurance performance
- Attaining a high $VO_{2 max}$ requires integration of pulmonary, CV, and neuromuscular function
- VO_{2 max} is a fundamental measure of physiologic functional capacity for exercise

Criteria for Max O₂ Consumption

- A leveling off in O₂ consumption despite an increase in exercise intensity generally assures VO_{2 max} has been reached
- Secondary Criteria for VO₂max a) RER or > 1.15
 - b) Blood lactate 70-80 mg/dl or 8-10 mmol
 - c) Attain age predicted max HR
- VO₂ max Vs. VO₂ peak

Factors that Affect Max O₂ Consumption

- 1. Mode of exercise
- 2. Heredity
- 3. State of training
- 4. Gender
- 5. Body size and composition
- 6. Age

Submaximal Tests

- 1. Decrease cost
- 2. Decrease time
- 3. Decrease risk
- Tests: walking, step tests, endurance tests
- Prediction equations

 a) All prediction tests contain error known as the standard error of estimate (SEE)
- Predictions Based on HR