
Flexible Security and Search Capability for a Relational Database with Externally
Linked Multimedia Data Files

Ira Rudowsky1, Olga Kulyba1, Mikhail Kunin1, Dmitri Ogarodnikov2 and Theodore Raphan1,2

1Institute of Neural & Intelligent Systems

Department of Computer and Information Science
Brooklyn College of CUNY
Brooklyn, New York, 11210

e-mail: rudowsky@brooklyn.cuny.edu
and

2Department of Neurology, Mt Sinai School of Medicine
New York, New York, 10029

e-mail: raphan@nsi.brooklyn.cuny.edu

Abstract
Recently, a prototype relational database system has
been developed that has the capability of storing and
querying analog and video information for
interaction with data analysis applications [8]. The
system provides for numerous querying categories
via indexed meta-data using pre-filled, drop-own
combo boxes. A shortcoming of the design is the
growing number of categories that could in time
become unmanageable. One purpose of this study
was to explore a more flexible design that would
reduce the number of categories for storing and
querying the database. In this design, the user enters
a compound, logical query statement with the
desired keywords in addition to using the existing
combo boxes. This proved to be a more efficient and
flexible strategy for accommodating expanding
search categories. Another purpose of this study was
to add security features in accessing database
information to restrict sharing of information about
subject populations. This has become an important
requirement in accessing subject information in
research studies. To this end we have developed an
easily reusable security hierarchy in which
individual users and groups of users can be granted
rights to objects of the system e.g., database tables
or user interface tabs. The permissions granted to a
user are dynamically updated by group permissions
as the user joins or leaves these groups. The initial
implementation of security features has proven to be
efficiently handled by the interface. Thus, a
prototype for a flexible and secure database
querying capability has been implemented that can
be scaled to meet the expanding needs of
researchers.

Keywords: Relational Databases, Multimedia Data,
Meta-data, User Interface, Security and Data Query.

1. INTRODUCTION
The development of relational databases has
significantly improved the performance of storage,
search, and retrieval functions [1], [2]. With the
expansion of scientific data to include non-textual
information such as digital streams representing
analog and video information, relational databases
have been extended to incorporate these new
modalities [3], [4], [5], [6], [7]. Recently, we have
designed and implemented a relational database
system, using Oracle 9i, and interfaced it with a data
analysis application. This demonstrated that a
flexible interface between applications and
databases are potentially important ways to enhance
data mining capabilities [8]. The system stores
metadata describing external files of various
modalities, including digitized analog channels,
event channels and video images linked to the data.
A graphical, user interface provides for robust
querying of the metadata and links have been
established between the query results and the
visualization/analysis program. As a result, selected
query results can immediately be displayed. The
rapid query and link capability enables the user to
find potential relationships between trials of
experiments that would otherwise be difficult for
researchers to determine. The purpose of this study
was to extend the design to address the problems
associated with a growing number of categories and
the need to have easily manageable and flexible
security feature as the system is scaled for a wider
range of experimental procedures and multiple user
interactions. In this paper, we describe how these

problems can be addressed using free-format
searching and querying and dynamically varying
group and user permissions.

2. FLEXIBLE QUERYING

The user interface for the system (The Data
Interface Application (DIA)) provides functionality
via four screens that are accessible via the tabbed
interface - Logon, Query, Result and DBManage
[8]. When logging on to the system, the user
provides an id and password to validate access and
set the appropriate rights granted to that individual.
The Query tab provides the capability to formulate
SQL queries and submit them to the Oracle database
in order to retrieve those experiments that fit the
selected criteria. Drop-down combo boxes for such
fields as Experiment ID, Trial ID, Subject ID,
Apparatus, and Location as well as date fields to
specify the Start and End Date of a trial are provided
to enable the user to specify the search criteria.
Some fields are related to and control the contents of
other fields. For example, by selecting Experiment
ID, the fields Trial ID, Subject ID, Apparatus, Start
Date, End Date, and Location are limited to those
occurring within that experiment. By selecting just
Apparatus, a much broader result-set will be
returned. In addition, Subject Type will be limited to
human only or the various animal types. Selecting
Subject ID will automatically determine Subject
Type. When the Submit button is activated, the DIA
displays the results on the Result tab screen. The
user can view the returned rows from the query,
along with some descriptive fields, and then click on
a row to invoke the VMF Analyze program to
graphically display the selected VMF file and
employ the various analysis tools the program
contains. The DBManage tab provides a series of
user-friendly screens that enable the user to update,
add or delete records from the various tables in the
Oracle database to reflect the changing test
environment (e.g., additional subjects, new
apparatus, etc.). Thus, basic table maintenance can
be performed without the need of a trained Oracle
database administrator.

During the course of a research project, new types
of apparatus are being developed, additional types
of subjects are being tested and different types of
tests are being devised. This had led to a wide
variety of trial-specific information that can no
longer be accommodated into the existing categories
displayed on the query screen but nevertheless must
be stored along with the other trial-related metadata.
One approach would be to add a field within a table

for each new type of test, subject and/or apparatus.
However, this approach would lead to many fields,
which have no entries, leading to a sparsely
populated table and overly complicated user
interface. The ongoing addition of new fields would
also incur the cost and time of programming
changes to the database and application code but in
the end would be used infrequently as to not warrant
the expenditures. To address these problem while
maintaining a manageable number of search
parameters, a free format text field, COMMENT,
has been added to the EXPERIMENT table to hold
trial related information that does not fit into the
existing query categories. As opposed to the combo
boxes that provide a drop down list of entries to
choose from, the user is required to type specific
text in the COMMENT query text field (Figure 1) –
a minor inconvenience for the results obtained. It is
also possible to combine key words in searching the
COMMENTS field by using OR and AND
connectors. The program parses the input, constructs
the appropriate SQL statement and displays the
returned rows in the Results tab (Figure 2). Thus, the
COMMENTS field together with the ability to
perform free-format search on the field is a simple
mechanism to provide scalability without adding
overhead and complexity to the interface.

Figure 1. Free-text query in Trail Desc text box

Figure 2. Results of free-text query

3. FLEXIBLE SECURITY

Another purpose of this work was to determine how
security features could be embedded within the
database retrieval design. Such features are critical
if the data must be protected from unauthorized
access, such as in multi-user environments.
Although Oracle9i provides extensive security
features, their implementation is not user friendly
ans a database administrator (DBA) would be
required to properly administer them. Security in the
application is required not only to control access to
database objects, such as tables and rows within
tables, but to restrict functionality of the user
interface as well. We therefore designed and
implemented a security model that employs our own
tables and an interface that is reusable in other
applications and extendable to other relational
database systems and platforms.

The security features are implemented using
Microsoft Foundation Classes as well as our own
classes written in C++ . Each SecurityObject i.e.,
any resource that needs to be secured (for example,
a table, a particular column or a tab in our
application), contains a SecurityDescriptor. The
SecurityDescriptor contains two Access Control
Lists (ACLs) - one holds user permissions and the
other group permissions. An ACL entry consists of
three Access Control Entries (ACEs), which control
allowed, denied, and grantable permissions of a
particular user or group. An ACL associates
grantees (users and groups) to the permissions that
apply to them. SecurityObjects are arranged in a
hierarchical form so that permission settings may be
inherited by a child. Every SecurityObject instance
has a parent and zero to many children.

Figure 3. Security tables and their relationships

Four tables have been added to the database to
implement security – USERS, GROUPS,
USERGROUPS and PERMISSIONS (Figure 3).
The USERS table contains information relating to
individual users of the system while the GROUPS
table is used to associate an individual user or group

with another group. That is, an individual user can
belong to one or more groups and a group can
belong to one or more other groups. This
information is stored in the USERGROUPS table.

An object that is to be secured, such as a table, has
an entry in the PERMISSIONS table for each
grantee (user or group) that is associated with it.
Each bit in the BITMASK column identifies
whether a specific right is granted. For example, if a
bitmask has two bits – the first representing read
permission and the second write permission, 0 in the
first bit indicates no read access while a 1 in the
second bit indicates that write access is granted.
Thus, the bitmask string of 1’s and 0’s defines all
rights to the object for a grantee. By ANDing the
bitmask of an object for which the user is a grantee
together with the bitmasks of all groups the user
belongs to, the rights of a user relative to that object
are determined. The classes and tables developed in
this research provide an adaptable security
infrastructure to grant detailed knowledge of
individual experiments only to those individuals or
groups permitted under security regulations.

The user interface implementing the security
features can be visualized as a tree hierarchy. By
clicking on the Users heading of the tree, a list of all
users and their related information is displayed on
the right side of the screen (Figure 4). Only select
users will have permission to make changes to
permissions. By selecting an individual user, the
right hand side of the screen displays detail user
information (Figure 5). Any changes entered can be
saved by clicking on the Save button. A new user

 Figure 4. Security Screen – All Users

can be added to the tree by selecting the Users
category, then clicking the right-hand button of the
mouse and choosing Add from the menu. The detail
screen will appear on the right side of the screen

where the user-related data is entered and saved. To
delete an existing user, it is necessary to select that
user in the tree, right-mouse click and a Delete
menu will appear on the screen.

Figure 5. Security screen – individual user detail

Group information appears as another level in the
tree (Figure 6). By clicking on the Groups heading,
a list of all groups appears on the right side of the
screen with detail information about each group.
Selecting an individual group brings up, on the right
of the screen, a form with two tabs (Figure 7). By
default, the General tab is displayed. This tab
provides the ability to change the group name.
Selecting the Role Members tab displays the form
shown in Figure 8. Here, individual users can be
added to or removed from the group (top half of the
screen) and other groups can be added to or
removed from the group. This allows the user to

 Figure 6. Security screen – All Groups

formulate the security in a modular way by using
existing groups to serve as the basis for a new
group.

Finally, the permissions branch can be viewed by
clicking on the Permissions node of the tree (Figure
9). On the right side of the screen, each table is
listed along with its current permission settings
(SELECT, INSERT, UPDATE and DELETE).

Those checked off indicate where permission is
allowed while those disallowed are unchecked.

Figure 7. Security screen – individual group detail

These settings can be made at the user level or
group level. For each table, an individual user’s
SELECT, INSERT, UPDATE and DELETE rights
are then determined by ANDing the individual’s
bitmasks along with the corresponding bitmasks for
each group of which the user is a member. We have
thus added a user-friendly security feature to our
system that provides protection at the table level.
Security can be administered by a user with
appropriate permission and having basic experience
in traversing and manipulating a Windows-type
graphical interface. By allowing individual users to
belong to groups and groups to belong to other
groups, the security is flexible and robust. In
addition, the design is easily portable to other
relational database systems as it does not employ
any product specific features of the database.

Figure 8. Security screen: Assigning users and groups to the
Researchers group

Figure 9. Permissions screen

4. CONCLUSION

Thus, we have designed and implemented a
database system that can be accessed through data
analysis applications having flexible and scalable
querying capabilities within a secure data context.
As the number and variety of experiments grows,
the search capability can grow in parallel without
requiring continuous software enhancements. By
implementing security in an object oriented manner,
new users and groups as well as tables and
functionality can be made to inherit security features
that have already been built into the system in a
selective manner. The interface structures that we
designed have the potential of being utilized across
a wide range of relational database platforms.

5. ACKNOWLEDGEMENTS
This work was supported by grants 65397-00 34
from PSC-CUNY, P30 DC05204, DC05222,
EY04148 from the NIH and NASA Cooperative
Agreement NCC 9-58 with the National Space
Biomedical Research Institute.

6. REFERENCES

 [1] C. Meghini,, F. Sebastiani and U. Straccia, “A
Model of Multimedia Information Retrieval”,
Journal of the ACM , 48(5), pp.909-970, 2001.
[2] R. Weber, J. Bolliger, T. Gross and H.-J. Schek,
“Architecture of a Networked Image Search and
Retrieval System”, Eighth International
Conference on Information and Knowledge
Management, Kansas City, Missouri, USA , pp.
430-441, Nov. 1999.
[3] B. Ozden, R. Rastogi and A. Silberschatz,
“Multimedia Support for Databases”, Proceedings
of the Sixteenth ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database
Systems, pp 1-11, May 1997.
[4] C. Faloutsos, R. Barber, M. Flickner, J. Hafner,
W. Niblack, D. Petkovic, and W. Equitz, “Efficient
and Effective Querying by Image Content”, J.
Intell. Inf. Syst. 3(4):231-262, 1994.
[5] C. Traina Jr., A.J.M. Traina, R.R. dos Santos
and E.Y. Senzako, “Support to Content-Based
Image Query in Object-Oriented Databases”,
Proceedings of the ACM Symposium on Applied
Computing, February 1998.
[6] V.E. Ogle and M. Chabot, “Retrieval from a
Relational Database of Images”, IEEE Computer,
28(9) pp. 40-56, September 1995.
[7] S. Chaudhuri and L. Gravano, “Optimizing
Queries over Multimedia Repositories”, In
Proceedings of SIGMOD ’96 (Montreal, Canada,
June 1996). ACM Press, New York, 1996, pp. 91-
102.
[8] I. Rudowsky et al, “Relational Database
Linkage of Scientific Applications and Their Data
Files”, Proceedings of the 2003 IEEE
International Workshop on Soft Computing in
Industrial Applications, June 23-25, 2003, pp. 55-
59.

