
Managing a Relational Database with Intelligent Agents

Ira Rudowsky1, Olga Kulyba1, Mikhail Kunin1, Dmitri Ogarodnikov2

 and Theodore Raphan1,2
1Institute of Neural & Intelligent Systems
Dept of Computer & Information Science

Brooklyn College of CUNY
e-mail: rudowsky@brooklyn.cuny.edu

2Department of Neurology
Mt Sinai School of Medicine

e-mail: raphan@nsi.brooklyn.cuny.edu

Abstract

A prototype relational database system was
developed that has indexing capability, which threads
into data acquisition and analysis programs used by a
wide range of researchers. To streamline the user
interface and table design, free-formatted table entries
were used as descriptors for experiments. This
approach potentially could increase data entry errors,
compromising system index and retrieval capabilities.
A methodology of integrating intelligent agents with
the relational database was developed to cleanse and
improve the data quality for search and retrieval. An
intelligent agent was designed using JACKTM (Agent
Oriented Software Group) and integrated with an
Oracle-based relational database. The system was
tested by triggering agent corrective measures and
was found to improve the quality of the data entries.
Wider testing protocols and metrics for assessing its
performance are subjects for future studies. This
methodology for designing intelligent-based database
systems should be useful in developing robust large-
scale database systems.

1. Introduction

The development of relational databases has
significantly improved the performance of storage,
search, and retrieval functions [1] [2]. With the
expansion of scientific data to include non-textual
information such as digital streams representing
analog and video information, relational databases
have been extended to incorporate these new
modalities [3-7]. Recently, we have designed and
implemented a relational database system, using
Oracle 9i, and interfaced it with a data analysis
application. This demonstrated that a flexible interface
between applications and databases are potentially

important ways to enhance data mining capabilities
[8]. The system stores metadata describing external
files of various modalities, including digitized analog
channels, event channels and video images linked to
the data. A graphical, user interface provides for
robust querying of the metadata and links have been
established between the query results and the
visualization/analysis program. As a result, selected
query results can be displayed immediately. The rapid
query and link capability enables the user to find
potential relationships between trials of experiments
that would otherwise be difficult for researchers to
determine. As the system developed, it became
necessary to use free-format table entries as
descriptors for experiments to maintain manageable
tables. This has raised issues of maintaining data
quality when it is entered so that the records are
properly indexed for efficient searching.

Data quality problems due to a wide range of
errors are prevalent in a number of database
applications ranging from simple entry to issues of
data quality in genomic studies, which could impact
data analysis and further research [9, 10]. A number of
software tools have been developed to address
problems of data quality. One way to improve data
quality is to utilize a technique commonly known as
data cleansing, which entails examining the database
following data entry to insure that errors in the data
are minimized [11]. Methods of data cleansing
include eliminating duplicate records as a result of
merged databases [12] or decomposing data into
elemental parts and reassembling the data and
verifying them across records [13]. A more systematic
technique represents the cleansing as a directed acyclic
graph of data transformations. The data cleansing is
performed as an iterative procedure that traverses the
graph [14]. An alternate approach for data cleansing
using artificial intelligence was to utilize an expert
system engine, Java Expert System Shell (JESS),

together with a set of rules for data cleansing [15].
JESS is a rule engine and scripting environment
written entirely in Java. JESS enables the creation of
software that has the capacity to "reason" using
knowledge supplied in the form of declarative rules.
The validation and verification stage, however,
requires human intervention. An overview of the
problems with data cleansing and their solutions is
found in [11, 16]. All presently proposed solutions to
the data cleansing problem are generally “reactive” in
the sense that the data cleansing is performed after the
accumulation of large amounts of data.

Within the past decade, agent-oriented
programming was introduced [17] and has the
potential for efficiently dealing with improving the
data quality of free formatted fields. These agent-
based systems differ from classical rule-based expert
systems in that they behave autonomously and interact
with each other. An important idea driving agent-
based programming is the representation of agent
properties in terms of belief, desire, and intention
(BDI). An agent is specified in terms of its capabilities
(things the agent can do), a set of initial beliefs, a set
of initial commitments (an agreement to perform a
particular action at a particular time) and a set of
commitment rules. Capabilities are used by agents to
decide whether to adopt commitments; an agent will
not adopt a commitment to perform an action if the
agent determines that there is no possibility for
performing that action. The set of commitment rules
determines the performance characteristics of the
agent. Each commitment rule contains a message
condition, a mental condition and an action. To
determine whether a commitment rule fires, the
message condition is matched against the message the
agent received and the mental condition is matched
against the agent’s beliefs. If the rule fires, the agent
then commits to performing the action. For example,
agent A sends a commitment request in a message to
agent B. Agent B will accept or reject the request
based on the details of the request, its behavioral rules,
and its current mental model. B will then send a
message to A indicating acceptance or rejection of the
request. If B accepts the request, it agrees to attempt to
perform the requested action at the requested time if
possible.

The purpose of this study was to develop and
present a methodology for integrating intelligent
agents with databases to improve the efficiency and
robustness of the integrated system. We have
implemented a prototype agent design using JACKTM
(Agent Oriented Software Group) and developed an
interface to Oracle. We have also tested the system by
deliberately triggering agent actions. The results of
this experimental study show that agent actions

improve data integrity. A complete experimental study
with metrics for assessing the performance over a
wide range of users is ongoing, but is beyond the
scope of this paper and is a subject for a future paper.

2. Prototype Intelligent Agent

In this study, an intelligent agent package,
JACKTM Agent Language (Agent Oriented Software
Group http://www.agent-software.com/shared/home),
was utilized to build the intelligent agent database
interaction. The JACKTM Agent Language is a
development environment that extends and is fully
integrated with the Java programming language. It
defines new base classes, interfaces, and methods as
well as provides extensions to the Java syntax to
support new agent-oriented classes, definitions and
statements. By enabling an agent to pursue its given
goals (desires) and adopt the appropriate plans
(intentions) according to its current set of data
(beliefs), it follows the BDI model of artificial
intelligence [17].

The class-level constructs that JACKTM employs
include Agents, Events, Plans and BeliefSets. Agent
classes are used to define the behavior of an intelligent
software agent by specifying all internal and external
events that it will handle, events the agent can post
internally to be handled by other plans, events the
agent can send externally to other agents, plans the
agent can execute, and beliefsets the agent can refer to.
When an agent is instantiated, it waits until it is given
a goal to achieve or experiences an event that it must
respond to. The types of events an agent responds to
include internal stimuli representing events an agent
sends to itself or external stimuli which are messages
from other agents or percepts that an agent receives
from its own environment. JACKTM provides two
categories of events.

1. A normal event in which the agent reacts to
transient information in the system. In the database
quality application, this would occur if typing errors
were made while entering free formatted information.
The agent would then select the first applicable plan
instance for the event and execute only that plan.

2. A BDI or goal directed event that commits the
agent to a desired outcome rather than a specific
method to achieve that outcome. In this case the agent
selects from a set of plans based on relevancy and
applicability. If the selected plan fails to execute, the
agent executes an alternative plan until it succeeds or
runs out of plans from which to choose.

A plan is analogous to an agent’s functions i.e.,
the instructions the agent follows that attempt to
achieve its goals and handle its designated events.
Each plan handles a single event, but multiple plans

may handle the same event. An agent can discriminate
further between plans by executing the plan’s
relevant() method to determine whether it is relevant
for the instance of a given event. From those selected
as relevant, the agent can further decide which plans
are applicable by executing each plans context()
method. Both relevant() and context() are functions
within the JACKTM environment.

An agent’s beliefs about the world are stored in a
beliefset using a tuple-based relational model. In a
Closed World relation the tuples stored are believed to
be true, those not stored are assumed false. In an Open
World relation both true and false tuples are stored;
anything not stored is “unknown”. Events can be
posted when changes are made to the beliefset and
thus initiate action within the agent based on a change
of beliefs.

3. Intelligent Agent-Database Prototype
Experiment

To test these ideas, a prototype system was
implemented and experiments were done to
deliberately invoke agent corrective measures. This
change was accomplished by two agents, Monitor and
Updater. The agent system also has two events,
Update and UpdateRequest and three plans,
SendUpdateCommand, UpdateMonkey and
UpdateMouse. Figure 1 illustrates the flow of action
steps. When the driver class, Program, found the
record that contains ‘monkey’ or ‘mouse’ in the field
SubjectType (box(1)), it invoked the
submitUpdateRequest() method of the Updater agent,
(box(2)). This method, in turn, posted a synchronous
UpdateRequest event and invoked the request()
method of the UpdateRequest event (box(3)). The
UpdateRequest event was added to the event queue of
the Updater agent to await processing. The Updater
agent includes the statement #uses plan
SendUpdateCommand; which informs the agent

(1) Program.class
When a record with

SubjectType mouse or
monkey is found, it
invokes the method

submitUpdateRequest() of
the Updater agent

(2) Updater.agent
submitUpdateRequest
invokes the request()

method of the
UpdateRequest event

(3) UpdateRequest.event
 the request method is invoked

(5) Update.event
 the update method is executed

(6) SendUpdateCommand.plan
@send method sends Update
 event to the Monitor agent.

Selects relevant plan to execute
 (UpdateMonkey or UpdateMouse)

(7) UpdateMonkey.plan
Handles the Update event,

updates record in table
@reply messages

the Finished event

(9)SendUpdateCommand.plan
 the @wait_for method receives the

reply from UpdateMonkey and returns
control to Program

(4) SendUpdateCommand.plan
 invokes update() method of Update

(8)Finished.event
the finished() method is

executed

Figure 1. Sequence of events within the system

what plan it should execute to handle any events it
receives. Thus, the system progressed to box(4) where
the SendUpdateCommand plan handles the
UpdateRequest event. First the plan instantiated an
Update event and invoked the update method of
Update (box(5)). Then the SendUpdatePlan “sent” an
update event to the Monitor agent and waited for a
reply before continuing. The Monitor agent evaluated
the relevant() and context () methods of UpdateMouse
and UpdateMonkey in order to choose between two
plans of action (box (6)). The selected plan executed
and updated the value of SelectType to ‘animal’ for
the given record (box(7)). Upon completion of the
plan, an @reply with a Finished event wass issued
which invoked the finished method of the Finished
event (box(8)). The @wait_for command in
SendUpdateCommand received this message and
interpreted the response (box(9)).
SendUpdateCommand terminated and control returned
to Program (box(1)). Thus, through a series of events
and messages, the system monitored the database table
and under the proper conditions triggered a sequence
of steps to update the record. More complicated
textual fields could be handled in a similar fashion.

To test the performance of the system, the context
of the prototype intelligent agent-database interaction
was used with a program that is used to obtain data in
scientific experiments performed by a number of
investigators using different subjects, storing them in
an Oracle 9i database [8, 18, 19]. The relational
database contains a field SubjectType within a table
named Experiment. This field should contain a
keyword that specifies whether the subject is “human”
or “animal.” However, a researcher may mistakenly
type the name of the specific animal being used, which
requires corrective measures. The intelligent agent
must recognize the character of the information and
make appropriate corrections in the field. In the
experiment, we deliberately entered this erroneous
information. When the agent found ‘monkey’ or
‘mouse’ entered in the SubjectType field, this error
was detected and the entry was changed to the value
‘animal’.

Thus, we have developed a simple intelligent
agent-database interaction, which can be extended to
consider more complex data entries. It was tested by
deliberately introducing errors in data entry and was
found to be responsive in correcting errors.

4. Acknowledgements

This work was supported by grants 65397-00 34
and 66442-00 35 from PSC-CUNY, P30 DC05204,
DC05222, EY04148 from the NIH.

5. References

[1] C. Meghini, F. Sebastiani, and U. Straccia, "A model of
Multimedia Information Retrieval," Journal of the ACM,
vol. 48, pp. 909-970, 2001.
[2] R. Weber, J. Bolliger, T. Gross, and H.-J. Schek,
"Architecture of a Networked Image Search and Retrieval
Syestem," presented at 8th Intl Conference on Information
and Knowlwedge Management, Kansas City, Missouri,
1999.
[3] S. Chaudhuri and L. Gravano, "Optimizing Queries over
Multimedia Repositories," presented at Proceedings of
SIGMOD '96, Montreal, Canada, 1996.
[4] C. Faloutsos, R. Barber, M. Flickner, J. Hafner, W.
Niblack, D. Petkovic, and W. Equitz, "Efficient and
Effective querying by image content," J. Intell. Inf. Syst.,
vol. 3, pp. 231-262, 1994.
[5] V. E. Ogle and M. Stonebraker, "Chabot: Retrieval from
a Relational Database of Images," IEEE Computer, vol. 28,
pp. 40-56, 1995.
[6] B. Ozden, R. Rastogi, and A. Silberschatz, "A
multimedia support for databases," presented at Proc. 16th
ACM SIGACT-SIGMOD-SIGART symposium on
Principles of Database Systems, 1997.
[7] C. Traina Jr., A. J. M. Traina, R. R. dos Santos, and E. Y.
Senzako, "Support to Content-Based Image Query in Object-
Oriented Databases," presented at Proc. of the ACM
Symposium on Applied Computing, 1998.
[8] I. Rudowsky, O. Kulyba, M. Kunin, D. Ogarodnikov,
and T. Raphan, "Relational Database Linkage of Scientific
Applications and Their Data Files," presented at Proc of the
IEEE International Workshop on Soft Computing in
Industrial Applications, 2003.
[9] T. Redman, "The Impact of Poor Data Quality on the
Typical Enterprise," CACM, vol. 41, pp. 79-82, 1998.
[10] K. Orr, "Data Quality and Systems Theory," CACM,
vol. 41, pp. 66-71, 1998.
[11] E. Rahm and H. H. Do, "Data Cleaning: Problems and
Current Approaches," IEEE Bulletin of the Technical
Committee in data Engineering, vol. 23, pp. 1-11, 2000.
[12] M. A. Hernandez and S. J. Stolfo, "Real-world Data is
Dirty: Data Cleansing and The Merge/Purge Problem," Data
Mining and Knowledge Discovery, vol. 2, pp. 9-37, 1998.
[13] R. Kimball, "Dealing with Dirty Data," DBMS, vol. 9,
pp. 55, 1996.
[14] H. Galhardas, D. Florescu, D. Shasha, and E. Simon,
"Declaratively cleaning your data using AJAX," Journees
Bases de Donnees, 2000.
[15] E. J. Friedman-Hill, "JESS, the rule engine for the Java
platform Available at URL
http://herzberg.ca.sandia.gov/jess/," 1999.
[16] J. Maletic and A. Marcus, "Data Cleansing: Beyond
Integrity Analysis," presented at Information Quality 2000 -
IQ 2000, Boston, MA, 2000.
[17] Y. Shoham, "Agent Oriented Programming," Journal of
Artificial Intelligence, vol. 60, pp. 51-92, 1993.
[18] I. Rudowsky, O. Kulyba, M. Kunin, D. Ogarodnikov,
and T. Raphan, "Flexible Security and Search Capability for
a relational Database with Externally Linked Multimedia
data Files," presented at Proceedings of SCI2004 - The 8th

World Multi-Conference on Systemics, Cybernetics and
Informatics, Orlando, FL, 2004.
[19] I. Rudowsky, O. Kulyba, M. Kunin, D. Ogarodnikov,
and T. Raphan, "Relational Database Integrity with
Externally Linked Multimedia Data Files," Journal of
Integrative Neuroscience, 2004.

