Chapter 10 Exercises

6.
ABC Markets sell products to customers. The relational diagram shown in Figure P10.6 represents the main entities for ABC’s database.
FIGURE P10.6 The ABC Markets Relational Diagram
[image: image1.png](nwoce) Ne

CUSTOMER

9 v ovser [=2{ 9 mw_nowser
= S, c PRODUCT

o o R Tecoe

P s P

o ; 3 poson

CUS_AREACODE :mg::‘;s LINE_PRICE oo

e 2 ran

o e i

o e Erec

o e o

CUS_DATELSTPUR PAYMEENTS VENDOR

¥ pvD 7 v_cobe
PMT_DATE V_NAME
cus_coe V_conTact
PMT_AMT V_AREACODE
PMT_TIPE V_PHONE
PMIT_DETALLS V_STATE

V_ORDER

Note the following important characteristics:
· A customer may make many purchases, each one represented by an invoice.

· The CUS_BALANCE is updated with each credit purchase or payment and represents the amount the customer owes.

· The CUS_BALANCE is increased (+) with every credit purchase and decreased (-) with every customer payment.

· The date of last purchase is updated with each new purchase made by the customer.

· The date of last payment is updated with each new payment made by the customer.

· An invoice represents a product purchase by a customer.

· An INVOICE can have many invoice LINEs, one for each product purchased.

· The INV_TOTAL represents the total cost of invoice including taxes.

· The INV_TERMS can be “30,” “60,” or “90” (representing the number of days of credit) or “CASH,” “CHECK,” or “CC.”
· The invoice status can be “OPEN,” “PAID,” or “CANCEL.”
· A product’s quantity on hand (P_QTYOH) is updated (decreased) with each product sale.

· A customer may make many payments. The payment type (PMT_TYPE) can be one of the following:

· “CASH” for cash payments.

· “CHECK” for check payments

· “CC” for credit card payments

· The payment details (PMT_DETAILS) are used to record data about check or credit card payments:

· The bank, account number, and check number for check payments

· The issuer, credit card number, and expiration date for credit card payments.

Note: Not all entities and attributes are represented in this example. Use only the attributes indicated.

Using this database, write the SQL code to represent each one of the following transactions. Use BEGIN TRANSACTION and COMMIT to group the SQL statements in logical transactions.

a. On May 11, 2012, customer ‘10010’ makes a credit purchase (30 days) of one unit of product ‘11QER/31’ with a unit price of $110.00; the tax rate is 8 percent. The invoice number is 10983, and this invoice has only one product line.
a. BEGIN TRANSACTION

b. INSERT INTO INVOICE

i. VALUES (10983, ‘10010’, ‘11-May-2012’, 118.80, ‘30’, ‘OPEN’);

c. INSERT INTO LINE

i. VALUES (10983, 1, ‘11QER/31’, 1, 110.00);

d. UPDATE PRODUCT

i. SET P_QTYOH = P_QTYOH – 1

ii. WHERE P_CODE = ‘11QER/31’;

e. UPDATE CUSTOMER

f. SET CUS_DATELSTPUR = ‘11-May-2012’, CUS_BALANCE = CUS_BALANCE +118.80

g. WHERE CUS_CODE = ‘10010’;

h. COMMIT;

b. On June 3, 2012, customer ‘10010’ makes a payment of $100 in cash. The payment ID is 3428.

a. BEGIN TRANSACTION

b. INSERT INTO PAYMENTS

VALUES (3428, ‘03-Jun-2012’, ‘10010’, 100.00, ‘CASH’, 'None');

UPDATE CUSTOMER;

SET CUS_DATELSTPMT = ‘03-Jun-2012’, CUS_BALANCE = CUS_BALANCE -100.00

WHERE CUS_CODE = ‘10010’;

COMMIT

7. Create a simple transaction log (using the format shown in Table 10.13) to represent the actions of the two previous transactions.
Table P10.7 The ABC Markets Transaction Log

	TRL

ID
	TRX

NUM
	PREV

PTR
	NEXT

PTR
	OPERATION
	TABLE
	ROW ID
	ATTRIBUTE
	BEFORE

VALUE
	AFTER

VALUE

	987
	101
	Null
	1023
	START
	* Start Trx.
	
	
	
	

	1023
	101
	987
	1026
	INSERT
	INVOICE
	10983
	
	
	10983, 10010,
11-May-2012, 118.80, 30, OPEN

	1026
	101
	1023
	1029
	INSERT
	LINE
	10983, 1
	
	
	10983, 1, 11QER/31, 1, 110.00

	1029
	101
	1026
	1031
	UPDATE
	PRODUCT
	11QER/31
	P_QTYOH
	47
	46

	1031
	101
	1029
	1032
	UPDATE
	CUSTOMER
	10010
	CUS_BALANCE
	345.67
	464.47

	1032
	101
	1031
	1034
	UPDATE
	CUSTOMER
	10010
	CUS_DATELSTPUR
	5-May-2010
	11-May-2012

	1034
	101
	1032
	Null
	COMMIT
	* End Trx. *
	
	
	
	

	1089
	102
	Null
	1091
	START
	* Start Trx.
	
	
	
	

	1091
	102
	1089
	1095
	INSERT
	PAYMENT
	3428
	
	
	3428, 3-Jun-2012, 10010, 100.00, CASH, None

	1095
	102
	1091
	1096
	UPDATE
	CUSTOMER
	10010
	CUS_BALANCE
	464.47
	364.47

	1096
	102
	1095
	1097
	UPDATE
	CUSTOMER
	10010
	CUS_DATELSTPMT
	2-May-2010
	3-Jun-2012

	1097
	102
	1096
	Null
	COMMIT
	* End Trx.
	
	
	
	

Note: Because we have not shown the table contents, the "before" values in the transaction can be assumed. The "after" value must be computed using the assumed "before" value, plus or minus the transaction value. Also, in order to save some space, we have combined the "after" values for the INSERT statements into a single cell. Actually, each value could be entered in individual rows.

8.
Assuming that pessimistic locking is being used, but the two-phase locking protocol is not, create a chronological list of the locking, unlocking, and data manipulation activities that would occur during the complete processing of the transaction described in Problem 6a.

	Time
	Action

	1
	Lock INVOICE

	2
	Insert row 10983 into INVOICE

	3
	Unlock INVOICE

	4
	Lock LINE

	5
	Insert into row 10983, 1 into LINE

	6
	Unlock LINE

	7
	Lock PRODUCT

	8
	Update PRODUCT 11QER/31, P_QTYOH from 47 to 46

	9
	Unlock PRODUCT

	10
	Lock CUSTOMER

	11
	Update CUSTOMER 10010, CUS_BALANCE from 345.67 to 464.47

	12
	Update CUSTOMER 10010, CUS_DATELSTPUR from 05-May-2010 to 11-May-2012

	13
	Unlock CUSTOMER

9.
Assuming that pessimistic locking with the two-phase locking protocol is being used, create a chronological list of the locking, unlocking, and data manipulation activities that would occur during the complete processing of the transaction described in Problem 6a.

	Time
	Action

	1
	Lock INVOICE

	2
	Lock LINE

	3
	Lock PRODUCT

	4
	Lock CUSTOMER

	5
	Insert row 10983 into INVOICE

	6
	Insert into row 10983, 1 into LINE

	7
	Update PRODUCT 11QER/31, P_QTYOH from 47 to 46

	8
	Update CUSTOMER 10010, CUS_BALANCE from 345.67 to 464.47

	9
	Update CUSTOMER 10010, CUS_DATELSTPUR from 05-May-2010 to 11-May-2012

	10
	Unlock INVOICE

	11
	Unlock LINE

	12
	Unlock PRODUCT

	13
	Unlock CUSTOMER

10.
Assuming that pessimistic locking is being used, but the two-phase locking protocol is not, create a chronological list of the locking, unlocking, and data manipulation activities that would occur during the complete processing of the transaction described in Problem 6b.

	Time
	Action

	1
	Lock PAYMENT

	2
	Insert row 3428 into PAYMENT

	3
	Unlock PAYMENT

	4
	Lock CUSTOMER

	5
	Update CUSTOMER 10010, CUS_BALANCE from 464.47 to 364.47

	6
	Update CUSTOMER 10010, CUS_DATELSTPMT from 02-May-2010 to 03-Jun-2012

	7
	Unlock CUSTOMER

11.
Assuming that pessimistic locking with the two-phase locking protocol is being used, create a chronological list of the locking, unlocking, and data manipulation activities that would occur during the complete processing of the transaction described in Problem 6b.

	Time
	Action

	1
	Lock PAYMENT

	2
	Lock CUSTOMER

	3
	Insert row 3428 into PAYMENT

	4
	Update CUSTOMER 10010, CUS_BALANCE from 464.47 to 364.47

	5
	Update CUSTOMER 10010, CUS_DATELSTPMT from 02-May-2010 to 03-Jun-2012

	6
	Unlock PAYMENT

	7
	Unlock CUSTOMER

Additional Problems and Answers
1. Write the SQL statements that might be used in transaction management and explain how they work.

The following transaction registers the credit sale of a product to a customer.

Comment

BEGIN TRANSACTION
Start transaction
INSERT INTO INVOICE
Add record to invoice
(INV_NUM, INV_DATE, ACCNUM, TOTAL)

VALUES (1020,’15-MAR-2012’,'60120010',3500);

UPDATE INVENTRY
Update the quantity on hand of the
SET ON_HAND = ON_HAND – 100
product
WHERE PROD_CODE = '345TYX';

UPDATE ACCREC
Update the customer balance
SET BALANCE = BALANCE + 3500
account
WHERE ACCNUM = '60120010';

COMMIT;

The credit sale transaction must do all of the following:

1. Create the invoice record.

2. Update the inventory data.

3. Update the customer account data.

In SQL, the transaction begins automatically with the first SQL statement, or the user can start with the BEGIN TRANSACTION statement. The SQL transaction ends when

· the last SQL statement is found and/or the program ends

· the user cancels the transaction

· COMMIT or ROLLBACK statements are found

The DBMS will ensure that all SQL statements are executed and completed before committing all work. If, for any reason, one or more of the SQL statements in the transaction cannot be completed, the entire transaction is aborted and the database is rolled back to its previous consistent state.

2. Starting with a consistent database state, trace the activities that are required to execute a set of transactions to produce an updated consistent database state.

The following example traces the execution of problem 1's credit sale transaction. We will assume that the transaction is based on a currently consistent database state. We will also assume that the transaction is the only transaction being executed by the DBMS.

	Time
	Transaction
	Table
	Operation
	Comment

	0
	
	
	
	Database is in a consistent state.

	1
	Write
	INVOICE
	INV_NUM = 1020
	INSERT Invoice number into the INVOICE table

	2
	Read
	INVENTORY
	ON_HAND = 134
	

	3
	
	
	ON_HAND = 134 - 100
	UPDATE the quantity on hand of product 345TYX

	4
	Write
	
	ON_HAND = 34
	

	5
	Read
	ACCREC
	ACC_BALANCE = 900
	

	6
	
	
	ACC_BALANCE = 900 + 3500
	

	7
	Write
	
	ACC_BALANCE = 4400
	

	8
	COMMIT
	
	
	Permanently saves all changes to the database. The database is in a consistent state.

3. Trace the use of the transaction log in database recovery.

The following transaction log traces the database transaction explained in problem 1.

	TRL

ID
	TRX

NUM
	PREV

PTR
	NEXT

PTR
	OPERATION
	TABLE
	ROW ID
	ATTRIBUTE
	BEFORE

VALUE
	AFTER

VALUE

	1
	101
	NULL
	2
	* Start TRX *
	
	
	
	
	

	2
	101
	1
	3
	INSERT
	INVOICE
	
	
	
	1020,
’10-Feb-2012’,
'60120010',
3500

	3
	101
	2
	4
	UPDATE
	PRODUCT
	345TYX
	PROD_ON_HAND
	134
	34

	4
	101
	3
	5
	UPDATE
	ACCOUNT
	60120010
	ACCT_BALANCE
	900
	4,400

	5
	101
	4
	NULL
	COMMIT
	
	
	
	
	

* The TID (Transaction ID) is automatically assigned by the DBMS

The transaction log maintains a record of all database transactions that changed the database. For example, the preceding transaction log records

· the insertion of a new row to the INVOICE table

· the update to the P_ON_HAND attribute for the row identified by '345TYX' in the PRODUCT table

· and the update of ACCT_BALANCE attribute for the row identified by '60120010' in the ACCOUNT table.

The transaction log also records the transaction's beginning and end in order to help the DBMS to determine the operations that must be rolled back if the transaction is aborted. Note: Only the current transaction may be rolled back, not all the previous transactions.

If the database must be recovered, the DBMS will:

· Change the BALANCE attribute of the row '60120010' from 4400 to 900 in the ACCREC table.

· Change the ON_HAND attribute of the row '345TYX' from 34 to 134 in the INVENTORY table.

· Delete row 1020 of the INVOICE table.

PAGE

