CHAPTER 7

3. Write the query that will generate a combined list of customers (from tables CUSTOMER and CUSTOMER_2) that do not include the duplicate customer records. (Note that only the customer named Juan Ortega shows up in both customer tables.)

SELECT CUST_LNAME, CUST_FNAME FROM CUSTOMER

UNION

SELECT CUST_LNAME, CUST_FNAME FROM CUSTOMER_2;

4. Write the query that will generate a combined list of customers to include the duplicate customer records.

SELECT CUST_LNAME, CUST_FNAME FROM CUSTOMER

UNION ALL

SELECT CUST_LNAME, CUST_FNAME FROM CUSTOMER_2;

5. Write the query that will show only the duplicate customer records.

We have shown both Oracle and MS Access query formats:
Oracle

SELECT CUST_LNAME, CUST_FNAME FROM CUSTOMER

INTERSECT

SELECT CUST_LNAME, CUST_FNAME FROM CUSTOMER_2;

MS Access
SELECT C.CUST_LNAME, C.CUST_FNAME

FROM CUSTOMER AS C, CUSTOMER_2 AS C2

WHERE C.CUST_LNAME=C2.CUST_LNAME AND C.CUST_FNAME=C2.CUST_FNAME;

Because Access doesn’t support the INTERSECT SQL operator, you need to list only the rows in which all the attributes match.

6. Write the query that will generate only the records that are unique to the CUSTOMER_2 table.

We have shown both Oracle and MS Access query formats:
Oracle

SELECT CUST_LNAME, CUST_FNAME FROM CUSTOMER_2

MINUS

SELECT CUST_LNAME, CUST_FNAME FROM CUSTOMER;

MS Access

SELECT
C2.CUST_LNAME, C2.CUST_FNAME

FROM
CUSTOMER_2 AS C2

WHERE
C2.CUST_LNAME + C2.CUST_FNAME NOT IN

(SELECT C1.CUST_LNAME + C1.CUST_FNAME FROM CUSTOMER C1);

Because Access doesn’t support the MINUS SQL operator, you need to list only the rows that are in CUSTOMER_2 that do not have a matching row in CUSTOMER.

7. Write the query to show the invoice number, the customer number, the customer name, the invoice date, and the invoice amount for all the customers with a customer balance of $1,000 or more.

This command will run in Oracle and in MS Access:

SELECT
INV_NUM, CUSTOMER.CUST_NUM, CUST_LNAME, CUST_FNAME, INV_DATE, INV_AMOUNT

FROM
INVOICE INNER JOIN CUSTOMER ON INVOICE.CUST_NUM=CUSTOMER.CUST_NUM

WHERE
CUST_BALANCE>=1000;
8. Write the query that will show the invoice number, the average invoice amount, and the difference between the average invoice amount and the actual invoice amount.

There are at least two ways to do this query.

SELECT
INV_NUM, AVG_INV, (INV_AMOUNT - AVG_INV) AS DIFF

FROM
INVOICE, (SELECT AVG(INV_AMOUNT) AS AVG_INV FROM INVOICE)

GROUP BY
INV_NUM, AVG_INV, INV_AMOUNT- AVG_INV

Another way to write this query is:

SELECT
INV_NUM, INV_AMOUNT,

(SELECT AVG(INV_AMOUNT) FROM INVOICE) AS AVG_INV,

(INV_AMOUNT-(SELECT AVG(INV_AMOUNT) FROM INVOICE)) AS DIFF

FROM
INVOICE

GROUP BY
INV_NUM, INV_AMOUNT;

The preceding code examples will run in both Oracle and MS Access.
9. Write the query that will write Oracle sequences to produce automatic customer number and invoice number values. Start the customer numbers at 1000 and the invoice numbers at 5000.

The following code will only run in Oracle:

CREATE SEQUENCE CUST_NUM_SQ START WITH 1000 NOCACHE;

CREATE SEQUENCE INV_NUM_SQ START WITH 5000 NOCACHE;

10. Modify the CUSTOMER table to included two new attributes: CUST_DOB and CUST_AGE. Customer 1000 was born on March 15, 1969 and customer 1001 was born on December 22, 1977.

In Oracle:

ALTER TABLE CUSTOMER ADD (CUST_DOB DATE) ADD (CUST_AGE NUMBER);

The SQL code required to enter the date values is:

UPDATE CUSTOMER

SET CUST_DOB = ’15-MAR-1969’

WHERE CUST_NUM = 1000;

UPDATE CUSTOMER

SET CUST_DOB = ‘2-DEC-1977’

WHERE CUST_NUM = 1001;

11. Assuming you completed problem 10, write the query that would list the names and ages of your customers.

In Oracle:

SELECT CUST_LNAME, CUST_FNAME, ROUND((SYSDATE-CUST_DOB)/365,0) AS AGE

FROM CUSTOMER;

In MS Access:

SELECT CUST_LNAME, CUST_FNAME, ROUND((DATE()-CUST_DOB)/365,0) AS AGE

FROM CUSTOMER;

12. Assuming that the CUSTOMER table contains a CUST_AGE attribute, write the query to update the values in this attribute. Hint: use the results of the previous query.

In Oracle:

UPDATE CUSTOMER

SET CUST_AGE = ROUND((SYSDATE-CUST_DOB)/365,0);

In MS Access:

UPDATE CUSTOMER

SET CUST_AGE = ROUND((DATE()-CUST_DOB)/365,0);

13. Write the query that would list the average age of your customers. (Assume that the CUSTOMER table has been modified to include the CUST_DOB and the derived CUST_AGE attribute.)

SELECT AVG(CUST_AGE) FROM CUSTOMER;

14. Write the trigger to update the CUST_BALANCE in the CUSTOMER table when a new invoice record is entered. (Assume that the sale is a credit sale.) Test the trigger using the following new INVOICE record:

8005, 1001, ’27-APR-04’, 225.40

Name the trigger trg_updatecustbalance.
CREATE OR REPLACE TRIGGER TRG_UPDATECUSTBALANCE

AFTER INSERT ON INVOICE

FOR EACH ROW

BEGIN

UPDATE
CUSTOMER

SET
CUST_BALANCE = CUST_BALANCE + :NEW.INV_AMOUNT

WHERE
CUST_NUM = :NEW.CUST_NUM;

END;

To test the trigger you do the following:

SELECT * FROM CUSTOMER;

INSERT INTO INVOICE VALUES (8005,1001,’27-APR-04’,225.40);

SELECT * FROM CUSTOMER;

15. Write a procedure to add a new customer to the CUSTOMER table. Use the following values in the new record:

1002, ‘Rauthor’, ‘Peter’, 0.00

Name the procedure prc_cust_add. Run a query to see if the record has been added.

CREATE OR REPLACE PROCEDURE PRC_CUST_ADD

(W_CN IN NUMBER, W_CLN IN VARCHAR, W_CFN IN VARCHAR, W_CBAL IN NUMBER) AS

BEGIN

INSERT INTO CUSTOMER (CUST_NUM, CUST_LNAME, CUST_FNAME, CUST_BALANCE)

VALUES (W_CN, W_CLN, W_CFN, W_CBAL);

END;

To test the procedure:

EXEC PRC_CUST_ADD(1002,’Rauthor’,’Peter’,0.00);

SELECT * FROM CUSTOMER;

CHAPTER 9

1. Suppose that you are a manufacturer of product ABC, which is composed of parts A, B, and C. Each time a new product is created, it must be added to the product inventory, using the PROD_QOH in a table named PRODUCT. And each time the product ABC is created, the parts inventory, using PART_QOH in a table named PART, must be reduced by one each of parts A, B, and C. The sample database contents are shown in Table P9.1

Table P9.1 The Database for Problem 1

Table name: PRODUCT
Table name: PART

	PROD_CODE
	PROD_QOH
	
	PART_CODE
	PART_QOH

	ABC
	1,205
	
	A
	567

	
	
	
	B
	498

	
	
	
	C
	549

Given this information, answer questions a-e.

a. How many database requests can you identify for an inventory update for both PRODUCT and PART?

There are two correct answers 4 or 2. Depending in how the SQL statements are done.

b. Using SQL, write each database request you have identified in problem 1.

The database requests are shown in the following table.
	Four SQL statements
	Two SQL statements

	UPDATE PRODUCT

 SET PROD_QOH = PROD_OQH + 1

 WHERE PROD_CODE = ‘ABC’

UPDATE PART

 SET PART_QOH = PART_OQH - 1

 WHERE PART_CODE = ‘A’

UPDATE PART

 SET PART_QOH = PART_OQH - 1

 WHERE PART_CODE = ‘B’

UPDATE PART

 SET PART_QOH = PART_OQH - 1

 WHERE PART_CODE = ‘C’
	UPDATE PRODUCT

 SET PROD_QOH = PROD_OQH + 1

 WHERE PROD_CODE = ‘ABC’

UPDATE PART

 SET PART_QOH = PART_OQH - 1

 WHERE PART_CODE = ‘A’ OR

 PART_CODE = ‘B’ OR

 PART_CODE = ‘C’

c. Write the complete transaction(s).

The transactions are shown in the following table.
	Four SQL statements
	Two SQL statements

	BEGIN TRANSACTION

UPDATE PRODUCT

 SET PROD_QOH = PROD_OQH + 1

 WHERE PROD_CODE = ‘ABC’

UPDATE PART

 SET PART_QOH = PART_OQH - 1

 WHERE PART_CODE = ‘A’

UPDATE PART

 SET PART_QOH = PART_OQH - 1

 WHERE PART_CODE = ‘B’

UPDATE PART

 SET PART_QOH = PART_OQH - 1

 WHERE PART_CODE = ‘C’

COMMIT;
	BEGIN TRANSACTION

UPDATE PRODUCT

 SET PROD_QOH = PROD_OQH + 1

 WHERE PROD_CODE = ‘ABC’

UPDATE PART

 SET PART_QOH = PART_OQH - 1

 WHERE PART_CODE = ‘A’ OR

 PART_CODE = ‘B’ OR

 PART_CODE = ‘C’

COMMIT;

d. Write the transaction log, using Table 9.1 as your template.

We assume that product ‘ABC’ has a PROD_QOH = 23 at the start of the transaction and that the transaction is representing the addition of 1 new product. We also assume that PART components “A”, “B” and “C” have a PROD_QOH equal to 56, 12, and 45 respectively.

	TRL

ID
	TRX

NUM
	PREV

PTR
	NEXT

PTR
	OPERATION
	TABLE
	ROW

ID
	ATTRIBUTE
	BEFORE

VALUE
	AFTER

VALUE

	1
	1A3
	NULL
	2
	START
	**START TRANSACTION
	
	
	
	

	2
	1A3
	1
	3
	UPDATE
	PRODUCT
	‘ABC’
	PROD_QOH
	23
	24

	3
	1A3
	2
	4
	UPDATE
	PART
	‘A’
	PART_QOH
	56
	55

	4
	1A3
	3
	5
	UPDATE
	PART
	‘B’
	PART_QOH
	12
	11

	5
	1A3
	4
	6
	UPDATE
	PART
	‘C’
	PART_QOH
	45
	44

	6
	1A3
	5
	NULL
	COMMIT
	** END

TRANSACTION
	
	
	
	

e. Using the transaction log you created in Step d, trace its use in database recovery.
The text’s Table 9.13 is the template for the problem solution. Use the solution to problem 1d as the input segment.

CHAPTER 10

(1) At Site C:

a. SELECT *

FROM CUSTOMER;

This SQL sequence represents a remote request.
b. SELECT *

FROM INVOICE

WHERE INV_TOTAL > 1000;

This SQL sequence represents a remote request.

c. SELECT *

FROM PRODUCT

WHERE PROD_QOH < 10;

This SQL sequence represents a distributed request. Note that the distributed request is required when a single request must access two DP sites. The PRODUCT table is composed of two fragments, PRO_A and PROD_B, which are located in sites A and B, respectively.

d. BEGIN WORK;

UPDATE CUSTOMER

SET CUS_BALANCE = CUS_BALANCE + 100

WHERE CUS_NUM='10936';

INSERT INTO INVOICE(INV_NUM, CUS_NUM, INV_DATE, INV_TOTAL)

VALUES ('986391', '10936', ‘15-FEB-2002’, 100);

INSERT INTO INVLINE(INV_NUM, PROD_CODE, LINE_PRICE)

VALUES ('986391', '1023', 100);

UPDATE PRODUCT

SET PROD_QOH = PROD_QOH - 1

WHERE PROD_CODE = '1023';

COMMIT WORK;
This SQL sequence represents a distributed request.

Note that UPDATE CUSTOMER and the two INSERT statements only require remote request capabilities. However, the entire transaction must access more than one remote DP site, so we also need distributed transaction capability. The last UPDATE PRODUCT statement accesses two remote sites because the PRODUCT table is divided into two fragments located at two remote DP sites. Therefore, the transaction as a whole requires distributed request capability.

e. BEGIN WORK;

INSERT CUSTOMER(CUS_NUM, CUS_NAME, CUS_ADDRESS, CUS_BAL)

VALUES ('34210','Victor Ephanor', '123 Main St', 0.00);

INSERT INTO INVOICE(INV_NUM, CUS_NUM, INV_DATE, INV_TOTAL)

VALUES ('986434', '34210', ‘10-AUG-1999’, 2.00);

COMMIT WORK;

This SQL sequence represents a distributed transaction. Note that, in this transaction, each individual request requires only remote request capabilities. However, the transaction as a whole accesses two remote sites. Therefore, distributed request capability is required.

At Site A:

f. SELECT CUS_NUM, CUS_NAME, INV_TOTAL

FROM CUSTOMER, INVOICE

WHERE CUSTOMER.CUS_NUM = INVOICE.CUS_NUM;

This SQL sequence represents a distributed request. Note that the request accesses two DP sites, one local and one remote. Therefore distributed capability is needed.

g. SELECT *

FROM INVOICE

WHERE INV_TOTAL > 1000;

This SQL sequence represents a remote request, because it accesses only one remote DP site.

h. SELECT *

FROM PRODUCT

WHERE PROD_QOH < 10;

This SQL sequence represents a distributed request. In this case, the PRODUCT table is partitioned between two DP sites, A and B. Although the request accesses only one remote DP site, it accesses a table that is partitioned into two fragments: PROD-A and PROD-B. A single request can access a partitioned table only if the DBMS supports distributed requests.
At Site B:

i. SELECT *

FROM CUSTOMER;

This SQL sequence represents a remote request.

j. SELECT CUS_NAME, INV_TOTAL

FROM CUSTOMER, INVOICE

WHERE INV_TOTAL > 1000 AND

CUSTOMER.CUS_NUM = INVOICE.CUS_NUM;

This SQL sequence represents a distributed request.

k. SELECT *

FROM PRODUCT

WHERE PROD_QOH < 10;

This SQL sequence represents a distributed request. (See explanation for part h.)

2. The CUSTOMER table must be partitioned horizontally by state. (We show the partitions in the answer to 3c.)

3. Given the scenario and the requirements in Problem 2, answer the following questions:

a. What recommendations will you make regarding the type and characteristics of the required database system?

The Magazine Publishing Company requires a distributed system with distributed database capabilities. The distributed system will be distributed among the company locations in South Carolina, Georgia, Florida, and Tennessee.

The DDBMS must be able to support distributed transparency features, such as fragmentation transparency, replica transparency, transaction transparency, and performance transparency. Heterogeneous capability is not a mandatory feature since we assume there is no existing DBMS in place and that the company wants to standardize on a single DBMS.

b. What type of data fragmentation is needed for each table?

The database must be horizontally partitioned, using the STATE attribute for the CUSTOMER table and the REGION attribute for the INVOICE table.

c. What must be the criteria used to partition each database?

The following fragmentation segments reflect the criteria used to partition each database:

Horizontal Fragmentation of the CUSTOMER Table By State
	Fragment Name
	Location
	Condition
	Node name

	C1
	Tennessee
	CUS_STATE = 'TN'
	NAS

	C2
	Georgia
	CUS_STATE = 'GA'
	ATL

	C3
	Florida
	CUS_STATE = 'FL'
	TAM

	C4
	South Carolina
	CUS_STATE = 'SC'
	CHA

Horizontal Fragmentation Of the INVOICE Table By Region
	Fragment Name
	Location
	Condition
	Node name

	I1
	Tennessee
	REGION_CODE = 'TN'
	NAS

	I2
	Georgia
	REGION_CODE = 'GA'
	ATL

	I3
	Florida
	REGION_CODE = 'FL'
	TAM

	I4
	South Carolina
	REGION_CODE = 'SC'
	CHA

d. Design the database fragments. Show an example with node names, location, fragment names, attribute names, and demonstration data.

Fragment C1

Location: Tennessee

Node: NAS
	CUS_NUM
	CUS_NAME
	CUS_ADDRESS
	CUS_CITY
	CUS_STATE
	CUS_SUB_DATE

	10884
	James D. Burger
	123 Court Avenue
	Memphis
	TN
	8-DEC-01

	10993
	Lisa B. Barnette
	910 Eagle Street
	Nashville
	TN
	12-MAR-02

Fragment C2

Location: Georgia

Node: ATL
	CUS_NUM
	CUS_NAME
	CUS_ADDRESS
	CUS_CITY
	CUS_STATE
	CUS_SUB_DATE

	11887
	Ginny E. Stratton
	335 Main Street
	Atlanta
	GA
	11-AUG-01

	13558
	Anna H. Ariona
	657 Mason Ave.
	Dalton
	GA
	23-JUN-01

Fragment C3

Location: Florida

Node: TAM
	CUS_NUM
	CUS_NAME
	CUS_ADDRESS
	CUS_CITY
	CUS_STATE
	CUS_SUB_DATE

	10014
	John T. Chi
	456 Brent Avenue
	Miami
	FL
	18-NOV-01

	15998
	Lisa B. Barnette
	234 Ramala Street
	Tampa
	FL
	23-MAR-02

Fragment C4

Location: South Carolina

Node: CHA
	CUS_NUM
	CUS_NAME
	CUS_ADDRESS
	CUS_CITY
	CUS_STATE
	CUS_SUB_DATE

	21562
	Thomas F. Matto
	45 N. Pratt Circle
	Charleston
	SC
	2-DEC-01

	18776
	Mary B. Smith
	526 Boone Pike
	Charleston
	SC
	28-OCT-01

Fragment I1

Location: Tennessee

Node: NAS
	INV_NUM
	REGION_CODE
	CUS_NUM
	INV_DATE
	INV_TOTAL

	213342
	TN
	10884
	1-NOV-01
	45.95

	209987
	TN
	10993
	15-FEB-02
	45.95

Fragment I2

Location: Georgia

Node: ATL
	INV_NUM
	REGION_CODE
	CUS_NUM
	INV_DATE
	INV_TOTAL

	198893
	GA
	11887
	15-AUG-01
	70.45

	224345
	GA
	13558
	1-JUN-01
	45.95

Fragment I3

Location: Florida

Node: TAM
	INV_NUM
	REGION_CODE
	CUS_NUM
	INV_DATE
	INV_TOTAL

	200915
	FL
	10014
	1-NOV-01
	45.95

	231148
	FL
	15998
	1-MAR-02
	24.95

Fragment I4

Location: South Carolina

Node: CHA
	INV_NUM
	REGION_CODE
	CUS_NUM
	INV_DATE
	INV_TOTAL

	243312
	SC
	21562
	15-NOV-01
	45.95

	231156
	SC
	18776
	1-OCT-01
	45.95

e. What type of distributed database operations must be supported at each remote site?
To answer this question, we must first draw a map of the locations, the fragments at each location, and the type of transaction or request support required to access the data in the distributed database.

	
	
	Node
	
	
	

	Fragment
	NAS
	ATL
	TAM
	CHA
	Headquarters

	CUSTOMER
	C1
	C2
	C3
	C4
	

	INVOICE
	I1
	I2
	I3
	I4
	

	Distributed Operations Required
	none
	none
	none
	none
	distributed request

Given the problem's specifications, we conclude that no interstate access of CUSTOMER or INVOICE data is required. Therefore, no distributed database access is required in the four nodes. For the headquarters, the manager wants to be able to access the data in all four nodes through a single SQL request. Therefore, the DDBMS must support distributed requests.

f. What type of distributed database operations must be supported at the headquarters site?

See the answer for part e.

