
1

Integrating Servlets and
JSP: The Model View

Controller (MVC)
Architecture

Core Servlets and JavaServer Pages / 2e
Volume 1: Core Technologies
Marty Hall Larry Brown

2

Agenda

• Understanding the benefits of MVC
• Using RequestDispatcher to implement MVC
• Forwarding requests from servlets to JSP

pages
• Handling relative URLs
• Choosing among different display options
• Comparing data-sharing strategies

3

Uses of JSP Constructs

• Scripting elements calling servlet
code directly

• Scripting elements calling servlet
code indirectly (by means of utility
classes)

• Beans
• Servlet/JSP combo (MVC)
• MVC with JSP expression language
• Custom tags

Simple
Application

Complex
Application

4

Why Combine Servlets & JSP?
• Typical picture: use JSP to make it easier to

develop and maintain the HTML content
– For simple dynamic code, call servlet code from

scripting elements
– For slightly more complex applications, use custom

classes called from scripting elements
– For moderately complex applications, use beans and

custom tags
• But, that's not enough

– For complex processing, starting with JSP is awkward
– Despite the ease of separating the real code into separate

classes, beans, and custom tags, the assumption behind
JSP is that a single page gives a single basic look

5

Possibilities for Handling a
Single Request

• Servlet only. Works well when:
– Output is a binary type. E.g.: an image
– There is no output. E.g.: you are doing forwarding or redirection as

in Search Engine example.
– Format/layout of page is highly variable. E.g.: portal.

• JSP only. Works well when:
– Output is mostly character data. E.g.: HTML
– Format/layout mostly fixed.

• Combination (MVC architecture). Needed when:
– A single request will result in multiple substantially different-

looking results.
– You have a large development team with different team members

doing the Web development and the business logic.
– You perform complicated data processing, but have a relatively

fixed layout.

6

MVC Misconceptions
• An elaborate framework is necessary

– Frameworks are sometimes useful
• Struts
• JavaServer Faces (JSF)

– They are not required!
• Implementing MVC with the builtin RequestDispatcher

works very well for most simple and moderately complex
applications

• MVC totally changes your overall system
design
– You can use MVC for individual requests
– Think of it as the MVC approach, not the

MVC architecture
• Also called the Model 2 approach

7

Review: Beans
• Java classes that follow certain conventions

– Must have a zero-argument (empty) constructor
• You can satisfy this requirement either by explicitly

defining such a constructor or by omitting all constructors
– Should have no public instance variables (fields)

• I hope you already follow this practice and use accessor
methods instead of allowing direct access to fields

– Persistent values should be accessed through methods
called getXxx and setXxx

• If class has method getTitle that returns a String, class
is said to have a String property named title

• Boolean properties can use isXxx instead of getXxx

8

Example: StringBean
package coreservlets;

public class StringBean {
private String message = "No message specified";

public String getMessage() {
return(message);

}

public void setMessage(String message) {
this.message = message;

}
}

• Beans installed in normal Java directory
– …/WEB-INF/classes/directoryMatchingPackageName

• Beans (and utility classes) must always be
in packages!

9

Implementing MVC with
RequestDispatcher

1. Define beans to represent the data
2. Use a servlet to handle requests

– Servlet reads request parameters, checks for missing
and malformed data, etc.

3. Populate the beans
– The servlet invokes business logic (application-specific

code) or data-access code to obtain the results. Results
are placed in the beans that were defined in step 1.

4. Store the bean in the request, session, or
servlet context

– The servlet calls setAttribute on the request, session, or
servlet context objects to store a reference to the beans
that represent the results of the request.

10

Implementing MVC with
RequestDispatcher (Continued)

5. Forward the request to a JSP page.
– The servlet determines which JSP page is appropriate to

the situation and uses the forward method of
RequestDispatcher to transfer control to that page.

6. Extract the data from the beans.
– The JSP page accesses beans with jsp:useBean and a

scope matching the location of step 4. The page then
uses jsp:getProperty to output the bean properties.

– The JSP page does not create or modify the bean; it
merely extracts and displays data that the servlet
created.

11

Request Forwarding Example
public void doGet(HttpServletRequest request,

HttpServletResponse response)
throws ServletException, IOException {
String operation = request.getParameter("operation");
if (operation == null) {

operation = "unknown";
}
String address;
if (operation.equals("order")) {

address = "/WEB-INF/Order.jsp";
} else if (operation.equals("cancel")) {

address = "/WEB-INF/Cancel.jsp";
} else {

address = "/WEB-INF/UnknownOperation.jsp";
}
RequestDispatcher dispatcher =

request.getRequestDispatcher(address);
dispatcher.forward(request, response);

}

12

jsp:useBean in MVC vs.
in Standalone JSP Pages

• The JSP page should not create
the objects
– The servlet, not the JSP page, should create all the data

objects. So, to guarantee that the JSP page will not create
objects, you should use

<jsp:useBean ... type="package.Class" />
instead of

<jsp:useBean ... class="package.Class" />

• The JSP page should not modify
the objects
– So, you should use jsp:getProperty but not

jsp:setProperty.

13

Reminder: jsp:useBean
Scope Alternatives

• request
– <jsp:useBean id="..." type="..." scope="request" />

• session
– <jsp:useBean id="..." type="..." scope="session" />

• application
– <jsp:useBean id="..." type="..." scope="application" />

• page
– <jsp:useBean id="..." type="..." scope="page" />

or just
<jsp:useBean id="..." type="..." />

– This scope is not used in MVC (Model 2) architecture

14

Request-Based Data Sharing
• Servlet
ValueObject value = new ValueObject(...);
request.setAttribute("key", value);
RequestDispatcher dispatcher =

request.getRequestDispatcher
("/WEB-INF/SomePage.jsp");

dispatcher.forward(request, response);

• JSP 1.2
<jsp:useBean id="key" type="somePackage.ValueObject"

scope="request" />
<jsp:getProperty name="key" property="someProperty" />

• JSP 2.0
${key.someProperty}

15

Session-Based Data Sharing
• Servlet
ValueObject value = new ValueObject(...);
HttpSession session = request.getSession();
session.setAttribute("key", value);
RequestDispatcher dispatcher =

request.getRequestDispatcher
("/WEB-INF/SomePage.jsp");

dispatcher.forward(request, response);

• JSP 1.2
<jsp:useBean id="key" type="somePackage.ValueObject"

scope="session" />
<jsp:getProperty name="key" property="someProperty" />

• JSP 2.0
${key.someProperty}

16

Session-Based Data Sharing:
Variation

• Use response.sendRedirect instead of
RequestDispatcher.forward

• Distinctions: with sendRedirect:
– User sees JSP URL (user sees only servlet URL with

RequestDispatcher.forward)
– Two round trips to client (only one with forward)

• Advantage of sendRedirect
– User can visit JSP page separately

• User can bookmark JSP page
• Disadvantage of sendRedirect

– Since user can visit JSP page without going through
servlet first, JSP data might not be available

• So, JSP page needs code to detect this situation

17

ServletContext-Based Data
Sharing

• Servlet
synchronized(this) {

ValueObject value = new ValueObject(...);
getServletContext().setAttribute("key", value);
RequestDispatcher dispatcher =

request.getRequestDispatcher
("/WEB-INF/SomePage.jsp");

dispatcher.forward(request, response);
}

• JSP 1.2
<jsp:useBean id="key" type="somePackage.ValueObject"

scope="application" />
<jsp:getProperty name="key" property="someProperty" />

• JSP 2.0
${key.someProperty}

18

Relative URLs in JSP Pages
• Issue:

– Forwarding with a request dispatcher is transparent to the
client. Original URL is only URL browser knows about.

• Why does this matter?
– What will browser do with tags like the following:

<LINK REL=STYLESHEET

HREF="JSP-Styles.css"
TYPE="text/css">

…
– Answer: browser treats them as relative to servlet URL

• Simplest solution:
– Use URLs that begin with a slash

19

Applying MVC:
Bank Account Balances

• Bean
– BankCustomer

• Servlet that populates bean and forwards to
appropriate JSP page
– Reads customer ID, calls data-access code to populate

BankCustomer
– Uses current balance to decide on appropriate result page

• JSP pages to display results
– Negative balance: warning page
– Regular balance: standard page
– High balance: page with advertisements added
– Unknown customer ID: error page

20

Bank Account Balances:
Servlet Code

public class ShowBalance extends HttpServlet {
public void doGet(HttpServletRequest request,

HttpServletResponse response)
throws ServletException, IOException {

BankCustomer customer =
BankCustomer.getCustomer

(request.getParameter("id"));
String address;
if (customer == null) {
address =
"/WEB-INF/bank-account/UnknownCustomer.jsp";

} else if (customer.getBalance() < 0) {
address =
"/WEB-INF/bank-account/NegativeBalance.jsp";

request.setAttribute("badCustomer", customer);
}
…
RequestDispatcher dispatcher =
request.getRequestDispatcher(address);

dispatcher.forward(request, response);

21

Bank Account Balances:
JSP 1.2 Code (Negative Balance)
…
<BODY>
<TABLE BORDER=5 ALIGN="CENTER">

<TR><TH CLASS="TITLE">
We Know Where You Live!</TABLE>

<P>

<jsp:useBean id="badCustomer"

type="coreservlets.BankCustomer"
scope="request" />

Watch out,
<jsp:getProperty name="badCustomer"

property="firstName" />,
we know where you live.
<P>
Pay us the $<jsp:getProperty name="badCustomer"

property="balanceNoSign" />
you owe us before it is too late!
</BODY></HTML>

22

Bank Account Balances:
JSP 2.0 Code (Negative Balance)
…
<BODY>
<TABLE BORDER=5 ALIGN="CENTER">

<TR><TH CLASS="TITLE">
We Know Where You Live!</TABLE>

<P>

Watch out,
${badCustomer.firstName},
we know where you live.
<P>
Pay us the $${badCustomer.balanceNoSign}
you owe us before it is too late!
</BODY></HTML>

23

Bank Account Balances:
Results

24

Comparing Data-Sharing
Approaches: Request

• Goal
– Display a random number to the user

• Type of sharing
– Each request should result in a new number, so request-

based sharing is appropriate.

25

Request-Based Sharing: Bean
package coreservlets;

public class NumberBean {
private double num = 0;

public NumberBean(double number) {
setNumber(number);

}

public double getNumber() {
return(num);

}

public void setNumber(double number) {
num = number;

}
}

26

Request-Based Sharing: Servlet
public class RandomNumberServlet extends HttpServlet {

public void doGet(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, IOException {
NumberBean bean =

new NumberBean(Math.random());
request.setAttribute("randomNum", bean);
String address =

"/WEB-INF/mvc-sharing/RandomNum.jsp";
RequestDispatcher dispatcher =

request.getRequestDispatcher(address);
dispatcher.forward(request, response);

}
}

27

Request-Based Sharing: JSP 1.2
…
<BODY>
<jsp:useBean id="randomNum"

type="coreservlets.NumberBean"
scope="request" />

<H2>Random Number:
<jsp:getProperty name="randomNum"

property="number" />
</H2>
</BODY></HTML>

28

Request-Based Sharing: JSP 2.0
…
<BODY>
<H2>Random Number:
${randomNum.number}
</H2>
</BODY></HTML>

29

Request-Based Sharing:
Results

30

Comparing Data-Sharing
Approaches: Session

• Goal
– Display users’ first and last names.
– If the users fail to tell us their name, we want to use

whatever name they gave us previously.
– If the users do not explicitly specify a name and no

previous name is found, a warning should be displayed.

• Type of sharing
– Data is stored for each client, so session-based sharing is

appropriate.

31

Session-Based Sharing: Bean
package coreservlets;

public class NameBean {
private String firstName = "Missing first name";
private String lastName = "Missing last name";

public NameBean() {}

public NameBean(String firstName, String lastName) {
setFirstName(firstName);
setLastName(lastName);

}

public String getFirstName() {
return(firstName);

}

…
}

32

Session-Based Sharing: Servlet
public class RegistrationServlet extends HttpServlet {

public void doGet(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, IOException {
HttpSession session = request.getSession();
NameBean nameBean =

(NameBean)session.getAttribute("nameBean");
if (nameBean == null) {

nameBean = new NameBean();
session.setAttribute("nameBean", nameBean);

}

33

Session-Based Sharing: Servlet
(Continued)

String firstName =
request.getParameter("firstName");

if ((firstName != null) &&
(!firstName.trim().equals(""))) {

nameBean.setFirstName(firstName);
}
String lastName =

request.getParameter("lastName");
if ((lastName != null) &&

(!lastName.trim().equals(""))) {
nameBean.setLastName(lastName);

}
String address =

"/WEB-INF/mvc-sharing/ShowName.jsp";
RequestDispatcher dispatcher =

request.getRequestDispatcher(address);
dispatcher.forward(request, response);

}
}

34

Session-Based Sharing: JSP 1.2
…
<BODY>
<H1>Thanks for Registering</H1>
<jsp:useBean id="nameBean"

type="coreservlets.NameBean"
scope="session" />

<H2>First Name:
<jsp:getProperty name="nameBean"

property="firstName" /></H2>
<H2>Last Name:
<jsp:getProperty name="nameBean"

property="lastName" /></H2>
</BODY></HTML>

35

Session-Based Sharing: JSP 2.0
…
<BODY>
<H1>Thanks for Registering</H1>
<H2>First Name:
${nameBean.firstName}</H2>
<H2>Last Name:
${nameBean.lastName}</H2>
</BODY></HTML>

36

Session-Based Sharing:
Results

37

Comparing Data-Sharing
Approaches: ServletContext

• Goal
– Display a prime number of a specified length.
– If the user fails to tell us the desired length, we want to

use whatever prime number we most recently computed
for any user.

• Type of sharing
– Data is shared among multiple clients, so application-

based sharing is appropriate.

38

ServletContext-Based Sharing:
Bean

package coreservlets;
import java.math.BigInteger;

public class PrimeBean {
private BigInteger prime;

public PrimeBean(String lengthString) {
int length = 150;
try {

length = Integer.parseInt(lengthString);
} catch(NumberFormatException nfe) {}
setPrime(Primes.nextPrime(Primes.random(length)));

}

public BigInteger getPrime() {
return(prime);

}
…

}

39

ServletContext-Based Sharing:
Servlet

public class PrimeServlet extends HttpServlet {
public void doGet(HttpServletRequest request,

HttpServletResponse response)
throws ServletException, IOException {

String length = request.getParameter("primeLength");
ServletContext context = getServletContext();
synchronized(this) {
if ((context.getAttribute("primeBean") == null) ||

(length != null)) {
PrimeBean primeBean = new PrimeBean(length);
context.setAttribute("primeBean", primeBean);

}
String address =
"/WEB-INF/mvc-sharing/ShowPrime.jsp";

RequestDispatcher dispatcher =
request.getRequestDispatcher(address);

dispatcher.forward(request, response);
}

}
}

40

ServletContext-Based Sharing:
JSP 1.2

…
<BODY>
<H1>A Prime Number</H1>
<jsp:useBean id="primeBean"

type="coreservlets.PrimeBean"
scope="application" />

<jsp:getProperty name="primeBean"
property="prime" />

</BODY></HTML>

41

ServletContext-Based Sharing:
JSP 2.0

…
<BODY>
<H1>A Prime Number</H1>
${primeBean.prime}
</BODY></HTML>

42

ServletContext-Based Sharing:
Results

43

Forwarding from JSP Pages
<% String destination;

if (Math.random() > 0.5) {
destination = "/examples/page1.jsp";

} else {
destination = "/examples/page2.jsp";

}
%>
<jsp:forward page="<%= destination %>" />

• Legal, but bad idea
– Business and control logic belongs in servlets
– Keep JSP focused on presentation

44

Including Pages Instead of
Forwarding to Them

• With the forward method of
RequestDispatcher:
– Control is permanently transferred to new page
– Original page cannot generate any output

• With the include method of
RequestDispatcher:
– Control is temporarily transferred to new page
– Original page can generate output before and after the

included page
– Original servlet does not see the output of the included

page (for this, see later topic on servlet/JSP filters)
– Useful for portals: JSP presents pieces, but pieces

arranged in different orders for different users

45

Including Pages Instead of
Forwarding to Them

response.setContentType("text/html");
String firstTable, secondTable, thirdTable;
if (someCondition) {
firstTable = "/WEB-INF/Sports-Scores.jsp";
secondTable = "/WEB-INF/Stock-Prices.jsp";
thirdTable = "/WEB-INF/Weather.jsp";

} else if (...) { ... }
RequestDispatcher dispatcher =
request.getRequestDispatcher("/WEB-INF/Header.jsp");

dispatcher.include(request, response);
dispatcher =
request.getRequestDispatcher(firstTable);

dispatcher.include(request, response);
dispatcher =
request.getRequestDispatcher(secondTable);

dispatcher.include(request, response);
dispatcher =
request.getRequestDispatcher(thirdTable);

dispatcher.include(request, response);
dispatcher =
request.getRequestDispatcher("/WEB-INF/Footer.jsp");

dispatcher.include(request, response);

46

Summary
• Use MVC (Model 2) approach when:

– One submission will result in more than one basic look
– Several pages have substantial common processing

• Architecture
– A servlet answers the original request
– Servlet does the real processing & stores results in beans

• Beans stored in HttpServletRequest, HttpSession, or
ServletContext

– Servlet forwards to JSP page via forward method of
RequestDispatcher

– JSP page reads data from beans by means of jsp:useBean
with appropriate scope (request, session, or application)

	Integrating Servlets and JSP: The Model View Controller (MVC) Architecture
	Agenda
	Uses of JSP Constructs
	Why Combine Servlets & JSP?
	Possibilities for Handling a Single Request
	MVC Misconceptions
	Review: Beans
	Example: StringBean
	Implementing MVC with RequestDispatcher
	Implementing MVC with RequestDispatcher (Continued)
	Request Forwarding Example
	jsp:useBean in MVC vs. �in Standalone JSP Pages
	Reminder: jsp:useBean �Scope Alternatives
	Request-Based Data Sharing
	Session-Based Data Sharing
	Session-Based Data Sharing: Variation
	ServletContext-Based Data Sharing
	Relative URLs in JSP Pages
	Applying MVC: �Bank Account Balances
	Bank Account Balances:�Servlet Code
	Bank Account Balances:�JSP 1.2 Code (Negative Balance)
	Bank Account Balances:�JSP 2.0 Code (Negative Balance)
	Bank Account Balances: Results
	Comparing Data-Sharing Approaches: Request
	Request-Based Sharing: Bean
	Request-Based Sharing: Servlet
	Request-Based Sharing: JSP 1.2
	Request-Based Sharing: JSP 2.0
	Request-Based Sharing: Results
	Comparing Data-Sharing Approaches: Session
	Session-Based Sharing: Bean
	Session-Based Sharing: Servlet
	Session-Based Sharing: Servlet (Continued)
	Session-Based Sharing: JSP 1.2
	Session-Based Sharing: JSP 2.0
	Session-Based Sharing: Results
	Comparing Data-Sharing Approaches: ServletContext
	ServletContext-Based Sharing: Bean
	ServletContext-Based Sharing: Servlet
	ServletContext-Based Sharing: JSP 1.2
	ServletContext-Based Sharing: JSP 2.0
	ServletContext-Based Sharing: Results
	Forwarding from JSP Pages
	Including Pages Instead of Forwarding to Them
	Including Pages Instead of Forwarding to Them
	Summary

