
1

Core Core ServletsServlets and and JavaServerJavaServer Pages / 2ePages / 2e
Volume 1: Core TechnologiesVolume 1: Core Technologies

Marty Hall Marty Hall Larry BrownLarry Brown

Invoking Java Code
with JSP Scripting

Elements

2

Agenda
• Static vs. dynamic text
• Dynamic code and good JSP design
• JSP expressions
• Servlets vs. JSP pages for similar tasks
• JSP scriptlets
• JSP declarations
• Predefined variables
• Comparison of expressions, scriptlets, and

declarations

3

Uses of JSP Constructs

• Scripting elements calling servlet
code directly

• Scripting elements calling servlet
code indirectly (by means of utility
classes)

• Beans
• Servlet/JSP combo (MVC)
• MVC with JSP expression language
• Custom tags

Simple
Application

Complex
Application

4

Design Strategy: Limit Java
Code in JSP Pages

• You have two options
– Put 25 lines of Java code directly in the JSP page
– Put those 25 lines in a separate Java class and put 1 line

in the JSP page that invokes it
• Why is the second option much better?

– Development. You write the separate class in a Java
environment (editor or IDE), not an HTML environment

– Debugging. If you have syntax errors, you see them
immediately at compile time. Simple print statements can
be seen.

– Testing. You can write a test routine with a loop that
does 10,000 tests and reapply it after each change.

– Reuse. You can use the same class from multiple pages.

5

Which is better?

• JSP works best when the structure of
the HTML page is fixed but the values
at various places need to be computed
dyamically

• If the structure of the page is dynamic,
servlets may be more beneficial

• If the page has little static content,
servlets are clearly superior

6

Basic Syntax
• HTML Text

– <H1>Blah</H1>
– Passed through to client. Really turned into servlet code

that looks like
• out.print("<H1>Blah</H1>");

• HTML Comments
– <!-- Comment -->
– Same as other HTML: passed through to client

• JSP Comments
– <%-- Comment --%>
– Appears in the JSP page but not sent to client

• To get <% in output, use <\%

7

Types of Scripting Elements
• Expressions

– Format: <%= expression %>
• <%= new java.util.Date() %>

– Evaluated and inserted into the servlet’s output.
i.e., results in something like out.print(expression)

• Scriptlets
– Format: <% code %>
– Inserted verbatim into the servlet’s _jspService method

(called by service)
• Declarations

– Format: <%! code %>
– Inserted verbatim into the body of the servlet class,

outside of any existing methods

8

JSP Expressions
• Format

– <%= Java Expression %>
• Result

– Expression evaluated, converted to String, and placed
into HTML page at the place it occurred in JSP page

– That is, expression placed in _jspService inside out.print
• Examples (code in a .jsp file)
Current time: <%= new java.util.Date() %>
Your hostname: <%= request.getRemoteHost() %>

9

Predefined Variables
• The autogenerated servlets use predefined variable names

– There are eight automatically defined local variables in jspService; known
as implicit objects. The five below are the most commonly used.

– Not accessible in declarations or in utility classes invoked by JSP pages
• request

– The HttpServletRequest (1st argument to service/doGet)
• response

– The HttpServletResponse (2nd arg to service/doGet)
• out

– The Writer (a buffered version of type JspWriter) used to send output to the
client

• session
– The HttpSession associated with the request (unless disabled with the

session attribute of the page directive). Sessions are created automatically
in JSP.

• application
– The ServletContext obtained by getServletContext. Servlets and JSP pages

can store persistent data in this object rather than in instance variables
making it available to all servlets and JSP pages in the Web application.

10

JSP Expressions: Example
…<BODY> http://localhost/Ch10HTML/Expressions.jsp

<H2>JSP Expressions</H2>

Current time: <%= new java.util.Date() %>
Server: <%= application.getServerInfo() %>
Session ID: <%= session.getId() %>
The <CODE>testParam</CODE> form parameter:

<%= request.getParameter("testParam") %>

</BODY></HTML>

http://localhost/Ch10HTML/Expressions.jsp

11

JSP/Servlet Correspondence

• JSP expressions become print
statements in the servlet that
results from the JSP page
– Instead of being placed in the doGet method, they are

placed in a new method called _jspService that is called
by service for GET and POST requests

– Instantiates a JSPWriter

12

JSP/Servlet Correspondence
• Original JSP

<H1>A Random Number</H1>
<%= Math.random() %>
<% Math.random() %>

• Representative resulting servlet code
public void _jspService (HttpServletRequest request,

HttpServletResponse response)
throws ServletException, IOException {

response.setContentType("text/html");
HttpSession session = request.getSession();
JspWriter out = response.getWriter();
out.println("<H1>A Random Number</H1>");
out.println(Math.random());
Math.random();
...

}

13

Comparing Servlets to JSP:
Reading Three Params

public class ThreeParams extends
HttpServlet {

public void doGet
(HttpServletRequest request,
HttpServletResponse response)
throws ServletException,
IOException {
…

out.println(docType +
"<HTML>\n" +"<HEAD><TITLE>"+title +
"</TITLE></HEAD>\n" +
"<BODY BGCOLOR=\"#FDF5E6\">\n" +
"<H1 ALIGN=\"CENTER\">" + title +
"</H1>\n" + "\n" +

"param1: " +
request.getParameter("param1")+ "\n”
+"param2: "
+request.getParameter("param2")+"\n”
+"param3: "
+request.getParameter("param3")+"\n”
+"\n" +
"</BODY></HTML>");

}
}

<!DOCTYPE …>
<HTML> <HEAD>
<TITLE>Reading Three Request
Parameters</TITLE>
<LINK REL=STYLESHEET HREF="JSP-Styles.css"

TYPE="text/css">
</HEAD>
<BODY>
<H1>Reading Three Request Parameters</H1>

param1:
<%= request.getParameter("param1") %>
param2:
<%= request.getParameter("param2") %>
param3:
<%= request.getParameter("param3") %>

</BODY></HTML>

14

Reading Three Params
(Servlet): Result

15

Reading Three Params
(Servlet): Result

16

JSP Scriptlets: Example
• Suppose you want to let end users

customize the background color
of a page
<BODY BGCOLOR=
"<%= request.getParameter("bgColor") %>">

– The syntax is correct but there is no validation of the
input (missing or incorrect)

– Scriplets can provide the solution

17

Scriplets
• Scriplets let you insert arbitrary code into the

servlet’s _jspService method
– They allow you to set response headers and status codes, execute

code that has loops, conditionals
– Takes the form <% Java Code %>

• Have access to the predefined variables
– Explicitly send output to a page via a scriplet
<%

String queryData = request.getQueryString();
out.println("Attached GET data: " + queryData);

%>

– Could also be done with scriplet and expression
<%String queryData = request.getQueryString(); %>
Attached GET data : <% =queryData %>

– Or could be accomplished with only an expression
Attached GET data: <% = request.getQueryString(); %>

18

JSP Scriptlets: Example
<!DOCTYPE …>
<HTML>
<HEAD>
<TITLE>Color Testing</TITLE>

</HEAD>
<%
String bgColor = request.getParameter("bgColor");
if ((bgColor == null) || bgColor.trim().equals("")))
{
bgColor = "WHITE";

}
%>
<BODY BGCOLOR="<%= bgColor %>">
<H2 ALIGN="CENTER">Testing a Background of
"<%= bgColor %>"</H2>
</BODY></HTML>

19

JSP Scriptlets: Result

20

Using Scriptlets to Make Parts
of the JSP File Conditional

• Point
– Scriplets are inserted into servlet exactly as written
– Need not be complete Java expressions
– Complete expressions are usually clearer and easier to

maintain, however
• Example

– <% if (Math.random() < 0.5) { %>
Have a nice day!
<% } else { %>
Have a lousy day!
<% } %>

• Representative result
– if (Math.random() < 0.5) {

out.println("Have a nice day!");
} else {

out.println("Have a lousy day!");
}

21

JSP Declarations
• You can define methods or fields that get

inserted into the main body of the servlet
class (outside the _jspService method)

• They don’t generate output but are normally
used in conjunction with JSP expressions
or scriplets

• Do not override the standard servlet life-
cycle methods (service, doGet, init, etc.)
– You can override jspInit and jspDestroy but not init or

destroy
• In general, define most methods in Java

classes not declarations (easier to test,
debug and reuse)

22

JSP Declarations
• Format

– <%! Java Code %>
• Result

– Code is inserted verbatim into servlet's class definition,
outside of any existing methods

• Examples
– <%! private int someField = 5; %>
– <%! private void someMethod(...) {...} %>

• Design consideration
– Fields are clearly useful. For methods, it is usually better

to define the method in a separate Java class.

23

JSP/Servlet Correspondence

• Original JSP
<H1>Some Heading</H1>
<%!
private String randomHeading() {
return("<H2>" + Math.random() +

"</H2>");
}

%>
<%= randomHeading() %>

24

JSP/Servlet Correspondence
• Possible resulting servlet code
public class xxxx implements HttpJspPage {
private String randomHeading() {

return("<H2>" + Math.random() + "</H2>");
}

public void _jspService(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, IOException {
response.setContentType("text/html");
HttpSession session = request.getSession();
JspWriter out = response.getWriter();
out.println("<H1>Some Heading</H1>");
out.println(randomHeading());
...

} ...
}

25

Declaration Example

• A two line “hit counter”
– Multiple client requests to the same servlet result

only in multiple threads calling the service method of
a single service instance

– Instance variables of a normal servlet are shared by
multiple requests so accessCount does not have to be
declared static
<!DOCTYPE …>
<HTML> <BODY>
<H1> JSP Declarations </H1>
<%! private int accessCount=0; %>
<H2> Accesses to page since server reboot:
<%= ++accessCount %> </H2> //out.println
</BODY></HTML>

26

JSP Declarations and
Predefined Variables

• Problem
– The predefined variables (request, response, out, session,

etc.) are local to the _jspService method. Thus, they are
not available to methods defined by JSP declarations or to
methods in helper classes. What can you do about this?

• Solution: pass them as arguments
<%!
private void someMethod(HttpSession s) {
doSomethingWith(s);

}
%>
<% someMethod(session); %>

• Note that the println method of JspWriter
throws IOException
– Use “throws IOException” for methods that use println

27

Comparing Expressions,
Scriptlets and Declarations

• Task 1
– Output a bulleted list of five random ints from 1 to 10.

• Since the structure of this page is fixed and we use a
separate helper class for the randomInt method,
JSP expressions are all that is needed.

• Task 2
– Generate a list of between 1 and 10 entries (selected at

random), each of which is a number between 1 and 10.
• Because the number of entries in the list is dynamic, a

JSP scriptlet is needed.
• Task 3

– Generate a random number on the first request, then show
the same number to all users until the server is restarted.

• Instance variables (fields) are the natural way to
accomplish this persistence. Use JSP declarations for this.

28

Helper Class: RanUtilities
package coreservlets; // Always use packages!!

/** Simple utility to generate random integers. */

public class RanUtilities {

/** A random int from 1 to range (inclusive). */

public static int randomInt(int range) {
return(1 + ((int)(Math.random() * range)));

}

public static void main(String[] args) {
int range = 10;
try {
range = Integer.parseInt(args[0]);

} catch(Exception e) { // Array index or number format
// Do nothing: range already has default value.

}
for(int i=0; i<100; i++) {
System.out.println(randomInt(range));

}}}

29

Task 1: JSP Expressions
<!DOCTYPE …>
<HTML>
<HEAD>
<TITLE>Five random numbers between 1 and 10</TITLE>
<LINK REL=STYLESHEET HREF="JSP-Styles.css"

TYPE="text/css">
</HEAD>
<BODY>
<H1>Random Numbers</H1>

<%= coreservlets.RanUtilities.randomInt(10) %>
<%= coreservlets.RanUtilities.randomInt(10) %>
<%= coreservlets.RanUtilities.randomInt(10) %>
<%= coreservlets.RanUtilities.randomInt(10) %>
<%= coreservlets.RanUtilities.randomInt(10) %>

</BODY></HTML>

30

Task 1: JSP Expressions

31

Task 2: JSP Scriptlets (version 1)
<!DOCTYPE …>
<HTML>
<HEAD>
<TITLE> Randomly generates a number between 1 and 10

and generate that amount of random numbers</TITLE>
<LINK REL=STYLESHEET HREF="JSP-Styles.css"

TYPE="text/css">
</HEAD>
<BODY>
<H1>Random List (Version 1)</H1>

<%
int numEntries =

coreservlets.RanUtilities.randomInt(10);
for(int i=0; i<numEntries; i++) {

out.println("" +
coreservlets.RanUtilities.randomInt(10));

}
%>

</BODY></HTML>

32

Task 2: JSP Scriptlets
(Result: Version 1)

33

Task 2: JSP Scriptlets (version 2)
<!DOCTYPE …>
<HTML>
<HEAD>
<TITLE> Randomly generates a number between 1 and 10

and generate that amount of random numbers </TITLE>
<LINK REL=STYLESHEET HREF="JSP-Styles.css"

TYPE="text/css">
</HEAD>
<BODY>
<H1>Random List (Version 2)</H1>

<%
int numEntries =

coreservlets.RanUtilities.randomInt(10);
for(int i=0; i<numEntries; i++) {
%>
<%= coreservlets.RanUtilities.randomInt(10) %>
<% } %> // becomes an out.println

</BODY></HTML>

34

Task 2: JSP Scriptlets
(Result: Version 2)

35

Task 3: JSP Declarations
(Code)

<!DOCTYPE …>
<HTML>
<HEAD>
<TITLE> Generate a random number on the first request

and show the same number to all users until the
server is restarted </TITLE>

<LINK REL=STYLESHEET
HREF="JSP-Styles.css"
TYPE="text/css">

</HEAD>
<BODY>
<%!
private int randomNum =

coreservlets.RanUtilities.randomInt(10);
%>
<H1>Semi-Random Number:
<%= randomNum %></H1>
</BODY>
</HTML>

36

Task 3: JSP Declarations
(Result)

• Instance variables are initialized only when
the object is built; servlets are built once
and remain in memory between requests
until the server is restarted

• JSP expressions and scriplets deal with
code inside the _jspService method

37

JSP Declarations: Result

38

JSP Declarations: the
jspInit and jspDestroy Methods

• JSP pages, like regular servlets, sometimes
want to use init and destroy

• Problem: the servlet that gets built from the
JSP page might already use init and destroy
– Overriding them would cause problems.
– Thus, it is illegal to use JSP declarations to declare

init or destroy.
• Solution: use jspInit and jspDestroy.

– The auto-generated servlet is guaranteed to call these
methods from init and destroy, but the standard versions
of jspInit and jspDestroy are empty (placeholders for you
to override).

	Invoking Java Code with JSP Scripting Elements
	Agenda
	Uses of JSP Constructs
	Design Strategy: Limit Java Code in JSP Pages
	Which is better?
	Basic Syntax
	Types of Scripting Elements
	JSP Expressions
	Predefined Variables
	JSP Expressions: Example
	JSP/Servlet Correspondence
	JSP/Servlet Correspondence
	Comparing Servlets to JSP: Reading Three Params
	Reading Three Params (Servlet): Result
	Reading Three Params (Servlet): Result
	JSP Scriptlets: Example
	Scriplets	
	JSP Scriptlets: Example
	JSP Scriptlets: Result
	Using Scriptlets to Make Parts of the JSP File Conditional
	JSP Declarations
	JSP Declarations
	JSP/Servlet Correspondence
	JSP/Servlet Correspondence
	Declaration Example
	JSP Declarations and Predefined Variables
	Comparing Expressions, Scriptlets and Declarations
	Helper Class: RanUtilities
	Task 1: JSP Expressions
	Task 1: JSP Expressions
	Task 2: JSP Scriptlets (version 1)
	Task 2: JSP Scriptlets �(Result: Version 1)
	Task 2: JSP Scriptlets (version 2)
	Task 2: JSP Scriptlets �(Result: Version 2)
	Task 3: JSP Declarations�(Code)
	Task 3: JSP Declarations�(Result)
	JSP Declarations: Result
	JSP Declarations: the �jspInit and jspDestroy Methods

