
1

Core Core ServletsServlets and and JavaServerJavaServer Pages / 2ePages / 2e
Volume 1: Core TechnologiesVolume 1: Core Technologies

Marty Hall Marty Hall Larry BrownLarry Brown

Session Tracking

2

Agenda
• Implementing session tracking from scratch
• Using basic session tracking
• Understanding the session-tracking API
• Differentiating between server and browser

sessions
• Encoding URLs
• Storing immutable objects vs. storing

mutable objects
• Tracking user access counts
• Accumulating user purchases
• Implementing a shopping cart
• Building an online store

3

Session Tracking

• HTTP is a stateless protocol
– Each time a client retrieves a Web page, the client

opens a separate connection to the Web server
– The server does not automatically maintain

contextual information about the client
– When clients at on-line store add item to their

shopping cart, how does server know what’s
already in cart?

– When clients decide to proceed to checkout, how
can server determine which previously created
cart is theirs?

4

Rolling Your Own Session
Tracking: Cookies

• Use cookies to store an ID for a shopping session
– Each subsequent connection looks up the current session ID
– Use the ID to extract information about that session from a

lookup table on the server
• Here’s how it could be done:

String sessionID = makeUniqueString();
HashMap sessionInfo = new HashMap();
HashMap globalTable = findTableStoringSessions();
globalTable.put(sessionID, sessionInfo);
Cookie sessionCookie =
new Cookie("JSESSIONID", sessionID);

sessionCookie.setPath("/");
response.addCookie(sessionCookie);

– The server could use the globalTable hash table to
associate a session ID from the JSESSIONID cookie with the
sessionInfo hash table of user-specific data

5

Rolling Your Own Session
Tracking: Cookies

• This is a widely accepted solution
• Servlets have a higher-level API that

handles all this plus the following:
– Extracting the cookie that stores the session

identifier from the other cookies
– Setting appropriate expiration time for cookie
– Determining when idle sessions have expired and

reclaiming them
– Associating the hash tables with each request
– Generating the unique session identifiers

6

Rolling Your Own Session
Tracking: URL-Rewriting

• Idea
– Client appends some extra data on the end of each URL

that identifies the session
– Server associates that identifier with data it has stored

about that session
– e.g., http://host/path/file.html;jsessionid=a1234

• a1234 is the ID that uniquely identifies the table of data
associated with that user

• Advantage
– Works even if cookies are disabled or unsupported

• Disadvantages
– Must encode all URLs that refer to your own site
– All pages must be dynamically generated
– Fails for bookmarks and links from other sites

7

Rolling Your Own Session
Tracking: Hidden Form Fields

• Idea:
<INPUT TYPE="HIDDEN" NAME="session" VALUE="...">

• Advantage
– Works even if cookies are disabled or unsupported

• Disadvantages
– Lots of tedious processing
– All pages must be dynamically generated by a form

submissions

8

Session Tracking Basics
• Access the session object

– Call request.getSession to get HttpSession object
• This is a hashtable associated with the user

• Look up information associated with a
session.
– Call getAttribute on the HttpSession object, cast the

return value to the appropriate type, and check whether
the result is null.

• Store information in a session.
– Use setAttribute with a key and a value.

• Discard session data.
– Call removeAttribute discards a specific value.
– Call invalidate to discard an entire session.

9

Accessing the Session Object of
the Current Request

• Session objects are of type HttpServlet, but
they are basically hash tables that can store
arbitrary user objects (each associated with a key)

• Look up the HttpSession object by calling the
getSession method of HttpServletRequest
HttpSession session = request.getSession();
– Must be called before you send any document content to the client

• Behind the scenes, the system extracts a user ID
from a cookie or attached URL data, then uses that
ID as a key into a table of previously created
HttpSession objects
– If no session ID is found in an incoming cookie or attached URL

information, the system creates a new, empty session
– If cookies are being used, the system creates an outgoing cookie

named JSESSIOND with a unique value representing the session ID

10

Accessing the Session Object of
the Current Request

• Use getSession() or getSession(true) to
add data to the session, regardless of
whether data were there or not.
– It creates a new session if no session already exists

• To just view a session, use
getSession(false) which returns null if no
session already exists for the current client
HttpSession session = request.getSession(false);
if (session==null) printMessageSayingCartIsEmpty():
else extractCartAndPrintContents(session);

11

Looking Up Session Information

• HttpSession objects live on the server, they
don’t go back and forth over the network

• Sessions automatically associated with
client via cookies or URL-rewriting
– Use request.getSession to get session

• Behind the scenes, the system looks at cookie or URL
extra info and sees if it matches the key to some
previously stored session object. If so, it returns that
object. If not, it creates a new one, assigns a cookie or
URL info as its key, and returns that new session object.

• Hashtable-like mechanism lets you store
arbitrary objects inside session
– setAttribute stores values
– getAttribute retrieves values

12

Information Associated with a Session

HttpSession session = request.getSession();
SomeClass value =
(SomeClass)session.getAttribute("someID");

if (value == null) {
value = new SomeClass(...);
session.setAttribute("someID", value);

}
doSomethingWith(value);

– In most cases, you have a specific attribute name in mind and want to
find the value already associated with that name.

– To discover all attribute names, use getAttributesNames which returns
an Enumeration

– To specify information use setAttribute, it replaces any previous value
session.setAttribute("someID", value);

– removeAttribute removes a value without supplying a replacement

13

Information Associated with a Session

• Discarding Session Data
– Remove only the data your servlet created using

removeAttribute
– Delete the whole session in the current a Web application

using invalidate
• All of the user’s session data is lost, not just the session

data that your servlet or JSP page created
– Log the user out and delete all sessions belonging to the

user using logout

14

HttpSession Methods
• getAttribute

– Extracts a previously stored value from a session object. Returns null
if no value is associated with given name.

• setAttribute
– Associates a value with a name. he object supplied to setAttribute

implemnets the HttpSessionBindingListener interface, the object’s
valueBound method is called after it is stored in the session. If the
previous value implements the listener, its valueUnbound method is
called.

• removeAttribute
– Removes values associated with name; invokes valueUnbound if

listener is implemented
• getAttributeNames

– Returns names of all attributes in the session.
• getId

– Returns the unique identifier generated for each sessin
• getCreationTime

– Returns time at which session was first created (pass to Date
constructor)

15

HttpSession Methods
• isNew

– Returns true if the client i.e., the browser (not the page) has never
seen the session; returns false for preexisting sessions. Can be
misleading – false value shows that the user has visited the Web
application before but not that they visited your servlet or JSP
page

• getLastAccessedTime
– Returns time at which session was last sent from client

• getMaxInactiveInterval, setMaxInactiveInterval
– Gets or sets the amount of time session should go without access

before being invalidated. Negative value means session should
never time out

• invalidate
– Invalidates current session and unbinds all objects associated with

it. Sessions are associated with clients not with individual servlets
or JSP pages. Invalidating a session might destroy data that
another servlet is using.

16

Browser Sessions vs.
Server Sessions

• By default, session tracking is based on cookies
that are stored in the browser’s memory, not
written to disk

• Unless the servlet explicitly reads the incoming
JSESSIONID cookie, sets the maximum age and
path and sends it back out, quitting the browser
results in the session being broken
– The client will not be able to access the session again

• The server, however, does not know that the
browser was closed and thus the server maintains
the session in memory until the inactive interval
has been exceeded

• Logout and invalidate tell the server that your
session is completed

17

A Servlet that Shows Per-Client
Access Counts

• This servlet shows basic information about
a client’s session
– When client connects, servlet uses request.getSession

either to retrieve the existing session or create a new one
(if there is no session)

– Then it looks for an attribute called accessCount of type
Integer

• If not found, it uses 0 as the number of previous accesses
• Because Integer is an immutable data structure, a new

Integer is allocated on each request and setAttribute
is used to replace the old object

– This value is incremented and associated with the session
by setAttribute

– Finally, a small table of session information is printed

18

A Servlet that Shows Per-Client
Access Counts

public class ShowSession extends HttpServlet {
public void doGet(HttpServletRequest request,

HttpServletResponse response)
throws ServletException, IOException {

response.setContentType("text/html");
HttpSession session = request.getSession();
String heading;
Integer accessCount =

(Integer)session.getAttribute("accessCount");
if (accessCount == null) {

accessCount = new Integer(0);
heading = "Welcome, Newcomer";

} else {
heading = "Welcome Back";
//immutable object, instantiate new one
accessCount =

new Integer(accessCount.intValue() + 1);
}
session.setAttribute("accessCount", accessCount);

19

A Servlet that Shows Per-Client
Access Counts

PrintWriter out = response.getWriter();
String title = "Session Tracking Example";
String docType =
"<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0 " +

"Transitional//EN\">\n";
out.println(docType + "<HTML>\n" +
"<HEAD><TITLE>" + title + "</TITLE></HEAD>\n" +
"<BODY BGCOLOR=\"#FDF5E6\">\n" +
"<CENTER>\n" +
"<H1>" + heading + "</H1>\n" +
"<H2>Information on Your Session:</H2>\n" +
"<TABLE BORDER=1>\n" +
"<TR BGCOLOR=\"#FFAD00\">\n" +
" <TH>Info Type<TH>Value\n" +

20

A Servlet that Shows Per-Client
Access Counts

"<TR>\n" +
" <TD>ID\n" +
" <TD>" + session.getId() + "\n" +
"<TR>\n" +
" <TD>Creation Time\n" +
" <TD>" +

new Date(session.getCreationTime()) + "\n" +
"<TR>\n" +
" <TD>Time of Last Access\n" +
" <TD>" +

new Date(session.getLastAccessedTime()) + "\n"
+

"<TR>\n" +
" <TD> Number of Previous Accesses \n" +
" <TD>" + accessCount + "\n" +
"</TABLE>\n" +
"</CENTER></BODY></HTML>");

}
}

21

A Servlet that Shows Per-Client
Access Counts: Result 1

22

A Servlet that Shows Per-Client
Access Counts: Result 2

23

Accumulating a List of User Data

• HttpSession data can also be stored in a
mutable data structure (such as an array,
List, etc.) or an application specific data
structure that has writable instance
variables
– setAttribute is called only when the object is first

allocated
HttpSession session = request.getSession();
SomeMutableClass value =

SomeMutableClass)session.getAttribute(“someIdentifier");
if (value == null) {
value = new SomeMutableClass(…);
session.setAttribute(“someIdentifier", value);

}
value.updateInternalState(…);
doSomethingWith(value);

24

Accumulating a List of User Data

• The following example is a simplified
version of a shopping cart
– A basic list of items that each user has purchased is

maintained
– An ArrayList is used to store the items purchased by each

user
– The servlet:

• finds or creates the session
• inserts the newly purchased item into the list (not saved as

a cookie)
• Outputs a bulleted list of the items in the “cart”
• The code that outputs the ArrayList is synchronized even

though the need for this is very rare (if the same user
submits two purchases in rapid succession)

25

Accumulating a List of User Data

public class ShowItems extends HttpServlet {
public void doGet(HttpServletRequest request,

HttpServletResponse response)
throws ServletException, IOException {

HttpSession session = request.getSession();
ArrayList previousItems =
(ArrayList)session.getAttribute("previousItems");

if (previousItems == null) {
previousItems = new ArrayList();
session.setAttribute("previousItems",

previousItems);
}

26

Accumulating a List
of User Data (Continued)

String newItem = request.getParameter("newItem");
PrintWriter out = response.getWriter();
…
synchronized(previousItems) {
if ((newItem != null) &&

(!newItem.trim().equals(""))) {
previousItems.add(newItem);

}
if (previousItems.size() == 0) {
out.println("<I>No items</I>");

} else {
out.println("");
for(int i=0; i<previousItems.size(); i++) {
out.println("" +

(String)previousItems.get(i));
}
out.println("");

}
}
out.println("</BODY></HTML>");

}

27

Accumulating a List
of User Data: Front End

28

Accumulating a List
of User Data: Result

29

An On-Line Bookstore
• Session tracking code stays the same as in

simple examples
• Shopping cart class is relatively complex

– Identifies items by a unique catalog ID
– Does not repeat items in the cart

• Instead, each entry has a count associated with it
• If count reaches zero, item is deleted from cart

• The first section of code describes the
building pages that display items for sale
– The code for each display page lists the page title and the

identifiers of the items listed on the page
– Pages built automatically by methods in the parent class,

based on the item description stored in the catalog

30

An On-Line Bookstore
• The second section of code shows the page

the handle the orders
– Order handling uses session tracking to associate a

shopping cart with each user and permits the user to
modify orders of previously selected items

• The third section of code presents the
implementation of the shopping cart, the
data structures representing individual
items and orders and the catalog

31

CatalogPage.java
• Base class for pages showing catalog entries.

• Servlets that extend this class must specify the
catalog entries that they are selling and the
page title before the servlet is ever accessed.

•
• This is done by putting calls to setItems and

setTitle in init.

32

CatalogPage.java
• setItems() method

– Given an array of item IDs, look them up in the
Catalog and put their corresponding CatalogItem
entry into the items array.

– The CatalogItem contains a short description, a long
description, and a price, using the item ID as the
unique key.

– Servlets that extend CatalogPage must call this
method (usually from init) before the servlet is
accessed.

33

CatalogPage.java
public abstract class CatalogPage extends HttpServlet {

private CatalogItem[] items;

private String[] itemIDs;

private String title;

protected void setItems(String[] itemIDs) {

this.itemIDs = itemIDs;

items = new CatalogItem[itemIDs.length];

for(int i=0; i<items.length; i++) {

items[i] = Catalog.getItem(itemIDs[i]);

}

}

34

CatalogPage.java
• doGet method

– First displays the title
– Then, for each catalog item, put its short description

in a level-two (H2) heading with the price in
parentheses and long description below.

– Below each entry, put an order button that submits
info to the OrderPage servlet for the associated
catalog entry.

35

doGet method()
public void doGet(HttpServletRequest request,

HttpServletResponse response)
throws ServletException, IOException {
if (items == null) {

response.sendError(response.SC_NOT_FOUND, "Missing
Items.");
return;

}
response.setContentType("text/html");
PrintWriter out = response.getWriter();

String docType = "<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML
4.0 " + "Transitional//EN\">\n";

out.println(docType +
"<HTML>\n" +
"<HEAD><TITLE>" + title +
"</TITLE></HEAD>\n" +
"<BODY BGCOLOR=\"#FDF5E6\">\n" +
"<H1 ALIGN=\"CENTER\">" + title + "</H1>");

36

CatalogPage.java
CatalogItem item;
for(int i=0; i<items.length; i++) {

out.println("<HR>");
item = items[i];
// Show error message if subclass lists item ID not in the
catalog.

if (item == null) {
out.println("“
+ "Unknown item ID " + itemIDs[i] + "");
}
else {
out.println();
String formURL = "/servlet/coreservlets.OrderPage";
// Pass URLs that reference own site through encodeURL.
formURL = response.encodeURL(formURL);
out.println ("<FORM ACTION=\"" + formURL + "\">\n" +
"<INPUT TYPE=\"HIDDEN\" NAME=\"itemID\" " + " VALUE=\"" +
item.getItemID() + "\">\n" +
"<H2>" + item.getShortDescription() +
" ($" + item.getCost() + ")</H2>\n" + item.getLongDescription()
+ "\n" + "<P>\n<CENTER>\n" +
"<INPUT TYPE=\"SUBMIT\" " +

"VALUE=\"Add to Shopping Cart\">\n" +
"</CENTER>\n <P>\n </FORM>");

}
}
out.println("<HR>\n</BODY></HTML>");

}
}

37

The catalogs
/** A specialization of the CatalogPage servlet that displays a

page
selling computer or children’s books.
Orders are sent to the OrderPage servlet.

*/

public class TechBooksPage extends CatalogPage {
public void init()
{ String[] ids = { "hall001", "hall002" };

setItems(ids);
setTitle("All-Time Best Computer Books");

}
}

public class KidsBooksPage extends CatalogPage {
public void init()
{ String[] ids = { "lewis001", "alexander001", "rowling001" };

setItems(ids);
setTitle("All-Time Best Children's Fantasy Books");

}
}

38

An On-Line Bookstore

39

Handling the Orders
• The servlet uses session tracking to associate a

shopping cart with each user
– Multiple threads are not needed as each user has a

separate session but, if a user has multiple browser
windows open and sends updates from more than one
window in quick succession a problem could arise

40

Handling the Orders
public class OrderPage extends HttpServlet {

public void doGet(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, IOException {

HttpSession session = request.getSession();
ShoppingCart cart;

synchronized(session) {
cart =

(ShoppingCart)session.getAttribute("shoppingCart");
// New visitors get a fresh shopping cart.
// Previous visitors keep using their existing cart.
if (cart == null) {
cart = new ShoppingCart();
session.setAttribute("shoppingCart", cart);

}

41

Handling the Orders
String itemID = request.getParameter("itemID");
if (itemID != null) {
String numItemsString = request.getParameter("numItems");
if (numItemsString == null) {

// If request specified an ID but no number, then got here
// via an "Add Item to Cart" button on a catalog page.

cart.addItem(itemID);
} else {

// If request specified an ID and number, then got here
// via an "Update Order" button after changing the number of
// items in order. A value of 0 results in item being deleted from cart.

int numItems;
try {
numItems = Integer.parseInt(numItemsString);

} catch(NumberFormatException nfe) {
numItems = 1;

}
cart.setNumOrdered(itemID, numItems);

}
}

}

42

Handling the Orders
// Whether or not the customer changed the order, show order status.
response.setContentType("text/html");
PrintWriter out = response.getWriter();
String title = "Status of Your Order";
String docType =
"<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0 " +

"Transitional//EN\">\n";
out.println(docType +"<HTML>\n" +

"<HEAD><TITLE>" + title + "</TITLE></HEAD>\n" +
"<BODY BGCOLOR=\"#FDF5E6\">\n" +
"<H1 ALIGN=\"CENTER\">" + title + "</H1>");

synchronized(session) {
List itemsOrdered = cart.getItemsOrdered();
if (itemsOrdered.size() == 0) {
out.println("<H2><I>No items in your cart...</I></H2>");

} else {
// If there is at least one item in cart, show table of items

ordered.
out.println
("<TABLE BORDER=1 ALIGN=\"CENTER\">\n" +
"<TR BGCOLOR=\"#FFAD00\">\n" +
" <TH>Item ID<TH>Description\n" +
" <TH>Unit Cost<TH>Number<TH>Total Cost");

43

Handling the Orders
ItemOrder order;
NumberFormat formatter = NumberFormat.getCurrencyInstance();

// For each entry in shopping cart, make table row showing ID,
// description, per-item cost, number ordered, and total cost.
// Put number ordered in textfield that user can change, with
// "Update Order" button next to it, which resubmits to this same page
// but specifying a different number of items.
for(int i=0; i<itemsOrdered.size(); i++) {
order = (ItemOrder)itemsOrdered.get(i);
out.println ("<TR>\n" +

" <TD>" + order.getItemID() + "\n" +
" <TD>" + order.getShortDescription() + "\n" +
" <TD>" +
formatter.format(order.getUnitCost()) + "\n" +
" <TD>" +
"<FORM>\n" + // Submit to current URL
"<INPUT TYPE=\"HIDDEN\" NAME=\"itemID\"\n" +
" VALUE=\"" + order.getItemID() + "\">\n" +
"<INPUT TYPE=\"TEXT\" NAME=\"numItems\"\n" +
" SIZE=3 VALUE=\"" + order.getNumItems() + "\">\n" +
"<SMALL>\n" +
"<INPUT TYPE=\"SUBMIT\"\n "+ " VALUE=\"Update Order\">\n" +
"</SMALL>\n" + "</FORM>\n" + " <TD>" +
formatter.format(order.getTotalCost()));

}

44

Handling the Orders
String checkoutURL =
response.encodeURL("../Checkout.html");

// "Proceed to Checkout" button below table
out.println
("</TABLE>\n" +
"<FORM ACTION=\"" + checkoutURL + "\">\n" +
"<BIG><CENTER>\n" +
"<INPUT TYPE=\"SUBMIT\"\n" +
" VALUE=\"Proceed to Checkout\">\n" +
"</CENTER></BIG></FORM>");

}
out.println("</BODY></HTML>");

}
}

}

45

An On-Line Bookstore

46

Shopping Cart Infrastructure
• Shopping Cart

– ArrayList itemsOrdered of type ItemOrder
• getItemsOrdered / addItem / setNumOrdered

• CatalogItem
– String itemID
– String shortDescription
– String longDescription
– double cost

• get and set for each instance variable

• ItemOrder
– CatalogItem item
– int numItems

• get and set for instance variables and i.v.s of CatalogItem
• cancelOrder / getTotalCost / incrementNumItems

• Catalog
– CatalogItem[] items

47

Distributed and Persistent
Sessions

• Some servers support distributed Web
applications
– Load balancing used to send different requests to

different machines
– Session tracking still guaranteed to work

• Some servers suport persistent sessions
– Session data written to disk and reloaded when server is

restarted
• To support both, session data should

implement the java.io.Serializable interface
– There are no methods in this interface; it is just a flag.

48

What Changes if Server Uses
URL Rewriting?

• Session tracking code:
– No change

• Code that generates hypertext links back to
same site:
– Pass URL through response.encodeURL.

• If server is using cookies, this returns URL unchanged
• If server is using URL rewriting, this appends the session

info to the URL
• E.g.:
String url = "order-page.html";
url = response.encodeURL(url);

• Code that does sendRedirect to own site:
– Pass URL through response.encodeRedirectURL

	Session Tracking
	Agenda
	Session Tracking
	Rolling Your Own Session Tracking: Cookies
	Rolling Your Own Session Tracking: Cookies
	Rolling Your Own Session Tracking: URL-Rewriting
	Rolling Your Own Session Tracking: Hidden Form Fields
	Session Tracking Basics
	Accessing the Session Object of the Current Request
	Accessing the Session Object of the Current Request
	Looking Up Session Information
	Information Associated with a Session
	Information Associated with a Session
	HttpSession Methods
	HttpSession Methods
	Browser Sessions vs. �Server Sessions
	A Servlet that Shows Per-Client Access Counts
	A Servlet that Shows Per-Client Access Counts
	A Servlet that Shows Per-Client Access Counts
	A Servlet that Shows Per-Client Access Counts
	A Servlet that Shows Per-Client Access Counts: Result 1
	A Servlet that Shows Per-Client Access Counts: Result 2
	Accumulating a List of User Data
	Accumulating a List of User Data
	Accumulating a List of User Data
	Accumulating a List �of User Data (Continued)
	Accumulating a List �of User Data: Front End
	Accumulating a List �of User Data: Result
	An On-Line Bookstore
	An On-Line Bookstore
	CatalogPage.java
	CatalogPage.java
	CatalogPage.java
	CatalogPage.java
	doGet method()
	CatalogPage.java
	The catalogs
	An On-Line Bookstore
	Handling the Orders
	Handling the Orders
	Handling the Orders
	Handling the Orders
	Handling the Orders
	Handling the Orders
	An On-Line Bookstore
	Shopping Cart Infrastructure
	Distributed and Persistent Sessions
	What Changes if Server Uses URL Rewriting?

