Core Servlets and JavaServer Pages / 2e
Volume 1: Core Technologies
Marty Hall eLarry Brown

Session Tracking

Agenda

Implementing session tracking from scratch
Using basic session tracking
Understanding the session-tracking API

Differentiating between server and browser
sessions

Encoding URLSs

Storing immutable objects vs. storing
mutable objects

Tracking user access counts
Accumulating user purchases
Implementing a shopping cart
Building an online store

Session Tracking

« HTTP Is a stateless protocol

— Each time a client retrieves a Web page, the client
opens a separate connection to the Web server

— The server does not automatically maintain
contextual information about the client

— When clients at on-line store add item to their
shopping cart, how does server know what’s
already In cart?

— When clients decide to proceed to checkout, how
can server determine which previously created
cart Is theirs?

Rolling Your Own Session
Tracking: Cookies

 Use cookies to store an ID for a shopping session
— Each subsequent connection looks up the current session ID

— Use the ID to extract information about that session from a
lookup table on the server

e Here’'s how it could be done:

String sessionlD = makeUniqueString();
HashMap sessionInfo = new HashMap();
HashMap globalTable = findTableStoringSessions();
globalTable.put(sessionlD, sessioninfo);
Cookie sessionCookie =

new Cookie("'JSESSIONID", sessionlD);
sessionCookie.setPath(''/");
response.addCookie(sessionCookie);

— The server could use the global Tabl e hash table to
associate a session ID from the ISESSION D cookie with the
sessionlInfo hash table of user-specific data

Rolling Your Own Session
Tracking: Cookies

 This Is a widely accepted solution
e Servlets have a higher-level API that
handles all this plus the following:

— Extracting the cookie that stores the session
Identifier from the other cookies

— Setting appropriate expiration time for cookie

— Determining when idle sessions have expired and
reclaiming them

— Associating the hash tables with each request
— GGenerating the unique session identifiers

Rolling Your Own Session
Tracking: URL-Rewriting

e ldea

— Client appends some extra data on the end of each URL
that identifies the session

— Server assoclates that identifier with data i1t has stored
about that session

— e.g., http://host/path/file.html;jsessionid=al234

« al234 is the ID that uniquely identifies the table of data
associated with that user

 Advantage
— Works even if cookies are disabled or unsupported
 Disadvantages
— Must encode all URLSs that refer to your own site
— All pages must be dynamically generated
— Fails for bookmarks and links from other sites

Rolling Your Own Session
Tracking: Hidden Form Fields

e |dea:
<INPUT TYPE=""HIDDEN" NAME="'session' VALUE="___.">

 Advantage
— Works even if cookies are disabled or unsupported

 Disadvantages
— Lots of tedious processing

— All pages must be dynamically generated by a form
submissions

Session Tracking Basics

e Access the session object

— Call request.getSession to get HttpSession object
* This is a hashtable associated with the user

 Look up information associated with a
session.

— Call getAttribute on the HttpSession object, cast the
return value to the appropriate type, and check whether
the result is null.

e Store information in a session.
— Use setAttribute with a key and a value.

e Discard session data.
— Call removeAttribute discards a specific value.
— Call invalidate to discard an entire session.

Accessing the Session Object of
the Current Request

e Session objects are of type HttpServilet, but

they are basically hash tables that can store
arbitrary user objects (each associated with a key)

Look up the HttpSession object hy calling the
getSession method of HttpServletRequest

HttpSession session = request.getSession();
— Must be called before you send any document content to the client

Behind the scenes, the system extracts a user ID
from a cookie or attached URL data, then uses that
ID as a key into a table of previously created
HttpSession objects

— If no session ID is found in an incoming cookie or attached URL
information, the system creates a new, empty session

— If cookies are beinl% used, the system creates an outgoing cookie
named JSESSIOND with a unique value representing the session 1D

Accessing the Session Object of
the Current Request

e Use getSession() Or getSession(true) to
add data to the session, regardless of
whether data were there or not.

— It creates a new session if no session already exists

* To just view a session, use |
getSession(false) which returns null if no

session already exists for the current client

HttpSession session = request.getSession(false);
IT (session==null) printMessageSayingCartlsEmpty():
else extractCartAndPrintContents(session);

Looking Up Session Information

e HttpSession objects live on the server, they
don’t go back and forth over the network

e Sessions automatically associated with
client via cookies or URL-rewriting

— Use request.getSession to get session

* Behind the scenes, the system looks at cookie or URL
extra info and sees if it matches the key to some
previously stored session object. If so, it returns that
object. If not, it creates a new one, assigns a cookie or
URL info as its key, and returns that new session object.

 Hashtable-like mechanism lets you store
arbitrary objects inside session
— setAttribute stores values
— getAttribute retrieves values

Information Associated with a Session

HttpSession session = request.getSession();

SomeClass value =
(SomeClass)session.getAttribute(''somelD™);

iIT (value == null) {
value = new SomeClass(...);
session.setAttribute('somelD", value);

}
doSomethingWith(value);

— In most cases, you have a specific attribute name in mind and want to
find the value already associated with that name.

— To discover all attribute names, use getAttributesNames which returns
an Enumeration

— To specify information use setAttribute, it replaces any previous value

session.setAttribute(''somelD", "value);

— removeAttribute removes a value without supplying a replacement

Information Associated with a Session

e Discarding Session Data

— Remove only the data your servlet created using
removeAttribute

— Delete the whole session in the current a Web application
using invalidate

 All of the user’s session data is lost, not just the session
data that your servlet or JSP page created

— Log the user out and delete all sessions belonging to the
user using logout

HttpSession Methods

getAttribute

— Extracts a previously stored value from a session object. Returns null
If no value is associated with given name.

e setAttribute

— Associates a value with a name. he object supplied to setAttribute
|mPIemnets the HttpSessionBindingListener interface, the object’s
valueBound method is called after It is stored in the session. If the
prclelvlé)us value implements the listener, its valueUnbound method is
called.

e removeAttribute

— Removes values associated with name; invokes valueUnbound if
listener is implemented

o getAttributeNames

— Returns names of all attributes in the session.
e getld

— Returns the unique identifier generated for each sessin
e getCreationTime

— Returns time at which session was first created (pass to Date
constructor)

HttpSession Methods

ISNew

— Returns true if the client I.e., the browser (not the page) has never
seen the session; returns false for preexisting sessions. Can be
misleading — false value shows that the user has visited the Web
application before but not that they visited your servlet or JSP
Page

getLastAccessedTime

— Returns time at which session was last sent from client

getMaxlInactivelnterval, setMaxInactivelnterval

— Gets or sets the amount of time session should go without access
before being invalidated. Negative value means session should
never time out

Invalidate

— Invalidates current session and unbinds all objects associated with
It. Sessions are associated with clients not with individual servlets
or JSP pages. Invalidating a session might destroy data that
another servlet is using.

Browser Sessions VvsS.
Server Sessions

By default, session tracking is based on cookies
that are stored in the browser’s memory, not
written to disk

Unless the servlet explicitly reads the incoming
JSESSIONID cookie, sets the maximum age and
path and sends it back out, quitting the browser
results in the session being broken

— The client will not be able to access the session again

The server, however, does not know that the
browser was closed and thus the server maintains
the session in memory until the inactive interval
has been exceeded

Logout and invalidate tell the server that your
session is completed

A Servlet that Shows Per-Client
Access Counts

e This servilet shows basic information about
a client’s session

— When client connects, servlet uses request.getSession
either to retrieve the existing session or create a new one
(if there iIs no session)

— Then it looks for an attribute called accessCount of type
Integer

« If not found, it uses 0 as the number of previous accesses

= Because Integer is an immutable data structure, a new
Integer is allocated on each request and setAttribute

IS used to replace the old object

— This value 1s incremented and associated with the session
by setAttribute

— Finally, a small table of session information is printed

A Servlet that Shows Per-Client
Access Counts

public class ShowSession extends HttpServlet {
public void doGet(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, [10Exception {
response.setContentType(""text/html™);
HttpSession session = request.getSession();
String heading;
Integer accessCount =
(Integer)session.getAttribute('accessCount™™);

iIT (accessCount == null) {
accessCount = new Integer(0);
heading = "Welcome, Newcomer';
} else {
heading = "Welcome Back'';
//1immutable object, iInstantiate new one
accessCount =

new Integer(accessCount.intValue() + 1);

}

session.setAttribute("accessCount', accessCount);

A Servlet that Shows Per-Client
Access Counts

PrintWriter out = response.getWriter();
String title = "Session Tracking Example';
String docType =
"<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0 ' +
“"Transitional//EN\' >\n";
out. prlntln(docType + "<HTML>\n"" +
"<HEAD><TITLE>" + title + "</TITLE></HEAD>\n"" +
""<BODY BGCOLOR=\"#FDF5E6\''>\n"" +
"<CENTER>\n"" +
"<H1>" + heading + "'</H1>\n"" +
"<H2>Information on Your Session:</H2>\n" +
"<TABLE BORDER=1>\n"" +
"<TR BGCOLOR=\"#FFADOO\"'>\n"" +
<TH>Info Type<TH>Value\n" +

A Servlet that Shows Per-Client
Access Counts

"<TR>\n"" +
" <TD>ID\n" +
<TD>" + session.getld() + "\n" +
"<TR>\n"" +
" <TD>Creation Time\n" +
<TD>"" +
new Date(session.getCreationTime()) + "\n" +
"<TR>\n"" +
" <TD>Time of Last Access\n' +
<TD>"" +
new Date(session.getLastAccessedTime()) + '"\n"
+

“"<TR>\n"" +

" <TD> Number of Previous Accesses \n" +

" <TD>"" + accessCount + "\n"" +

“"</TABLE>\n"" +
}"</CENTER></BODY></HTML>");

A Servlet that Shows Per-Client
Access Counts: Result 1

-3 Session Tracking Example - Microsoft Internet Explorer - 0] x|

File Edit ‘iew Fawvorites Tools Help |
«-2-0L A QEFD B S
Address Iiﬂj http:f flocalhostfservletfcoreservlets, ShowSession ""'I @GD

Welcome, Newcomer

Information on Your Session:

Info Type Value
D E4DED4SA02D66B14A9ECO0D3722558C6
Creation Tine Wed Apr 16 11:39:45 EDT 2003
Tune of Last Access Wed Apr 16 11:40:05 EDT 2003
Number of Previous Accesses |D

=l
/

€] Done | | | Local inkranet

A Servlet that Shows Per-Client
Access Counts: Result 2

-3 Session Tracking Example - Microsoft Internet Explorer - 0] x|

File Edit ‘“ew Favaorites Tools Help |
-2 -0 QEEFI B-S
Address Iiéj http:f localbostservlet fcoreservlets, ShowsSession ‘"’I f*}GD

Welcome Back

Information on Your Session:

Info Type Value
D E4DED45A02ZD6OB14A9ECO0D3722558C6
Creation Tine Wed Apr 16 11:39:45 EDT 2003
Tune of Last Access Wed Apr 16 11:42:07 EDT 2003
Number of Previous Accesses |11

=l
4

€] Dane | | | Local inkranet

Accumulating a List of User Data

e HttpSession data can also be stored in a
mutable data structure (such as an array,
List, etc.) or an application specific data
structure that has writable instance

variables
— setAttribute Is called only when the object is first

allocated
HttpSession session = request.getSession();

SomeMutableClass value =
SomeMutableClass)session.getAttribute(“someldentifier™);

iIT (value == null) {
value = new SomeMutableClass(..);
session.setAttribute(““someldentifier'”, value);

}

value.updatelnternalState(..);
doSomethingWith(value);

Accumulating a List of User Data

 The following example is a simplified
version of a shopping cart
— A basic list of items that each user has purchased Is
maintained
— An ArrayList Is used to store the items purchased by each
user

— The servlet:
* finds or creates the session
e inserts the newly purchased item into the list (not saved as
a cookie)
e Outputs a bulleted list of the items In the “cart”
* The code that outputs the ArrayList is synchronized even

though the need for this is very rare (if the same user
submits two purchases in rapid succession)

Accumulating a List of User Data

public class Showltems extends HttpServilet {
public void doGet(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, 10Exception {
HttpSession session = request.getSession();
ArrayList previousltems =
(ArrayList)session.getAttribute('previousltems);
iIT (previouslitems == null) {
previousltems = new ArrayList();
session.setAttribute("'previousltems™,
previousltems);

Accumulating a List
of User Data (Continued)

String newltem = request.getParameter("'newltem');
PrintWriter out = response.getWriter();

synchronized(previousltems) {
iIT ((hewltem I= null) &&
('newltem.trim().equals("))) {
previousltems.add(newltem);
}
IT (previousltems.size() == 0) {
out.printIn("<I>No items</I1>");
} else {
out.printin('");
for(int 1=0; i1<previousltems.size(); 1++) {
out.printin('" +
(String)previousltems.get(i));
}
out.printin("");
}

}
out.printIn(*'</BODY></HTML>");

1

Accumulating a List

of User Data: Front End

() Order Form - Netscape

. File Edit VMiew Go Bookmarks Tools Window Help

B @u @ﬂ @ Q O htkpe fflocalbiost forderFarm, html

Order Form

New Item to Order: I*I’Eu:ht

Order and Show All Purchases

Document: Done (0,06 secs) |

=N

Accumulating a List
of User Data: Result

(X) Items Purchased - Netscape

. File Edit Miew Go Bookmarks Tools Window Help

@ﬂ O @ Q O htkp: [flocalbostfservlet fcoreserylets, ShowIkemsy?

Items Purchased

+ Yacht

+ Chalet

+ Lamborghim

+ Core Serviets and JavaServer Pages

Document: Done (0,06 secs)

=4 =S

An On-Line Bookstore

e Session tracking code stays the same as Iin
simple examples

 Shopping cart class is relatively complex
— ldentifies items by a unique catalog ID

— Does not repeat items in the cart
 Instead, each entry has a count associated with it
e If count reaches zero, item is deleted from cart
 The first section of code describes the
building pages that display items for sale

— The code for each display page lists the page title and the
identifiers of the items listed on the page

— Pages built automatically by methods in the parent class,
based on the item description stored in the catalog

An On-Line Bookstore

 The second section of code shows the page
the handle the orders

— Order handling uses session tracking to associate a
shopping cart with each user and permits the user to
modify orders of previously selected items

 The third section of code presents the
Implementation of the shopping cart, the
data structures representing individual
items and orders and the catalog

CatalogPage.java

Base class for pages showing catalog entries.

Servlets that extend this class must specify the
catalog entries that they are selling and the
page title before the servlet is ever accessed.

This is done by putting calls to setltems and
setTitle In Init.

CatalogPage.java

» setltems() method

— Given an array of item IDs, look them up in the
Catalog and put their corresponding Catalogltem
entry into the items array.

— The Catalogltem contains a short description, a long
description, and a price, using the item ID as the
unique key.

— Servlets that extend CatalogPage must call this
method (usually from init) before the servlet is
accessed.

CatalogPage.java

public abstract class CatalogPage extends HttpServilet {
private Catalogltem|[] i1tems;
private String[] i1temlDs;
private String title;
protected void setltems(String[] 1temIDs) {
this.1temIDs = 1temlDs;
items = new Catalogltem[i1temlDs.length];
for(int 1=0; i1<items.length; 1++) {
items|[1] = Catalog.getltem(itemIDs[1]);

CatalogPage.java

e doGet method
— First displays the title

— Then, for each catalog item, put its short description
In a level-two (H2) heading with the price In
parentheses and long description below.

— Below each entry, put an order button that submits
Info to the OrderPage servlet for the associated
catalog entry.

doGet method()

public void doGet(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, 10Exception {

1T (items == null) {
response.sendError(response.SC_NOT_FOUND, "Missing
Items.");

return;
}
response.setContentType(""text/html™);
PrintWriter out = response.getWriter(Q);

String docType = "<IDOCTYPE HTML PUBLIC \"-//W3C//DTD HTML
4.0 " + "Transitional//EN\"">\n"";

out.printin(docType +

"<HTML>\n"" +

"<HEAD><TITLE>" + title +
“"</TITLE></HEAD>\n"" +

""<BODY BGCOLOR=\"'#FDF5E6\'">\n"" +

""<H1 ALIGN=\"CENTER\'>" + title + "</H1>");

CatalogPage.java

Catalogltem item;
for(int 1=0; i<items.length; i1++) {
out.printin(''<HR>");
item = 1tems[i];
// Show error message 1f subclass lists i1tem ID not in the
catalog.
it (item == null) {
out.printIn("'*
+ "Unknown item ID " + 1temIDs[i1] + "");

else {

out.printin();

String formURL = "'/servlet/coreservlets.OrderPage';

// Pass URLs that reference own site through encodeURL.
formURL = response.encodeURL(formURL) ;

out.printin ("<FORM ACTION=\'""" + formURL + ""\"">\n"" +

II§INPUT TYPE:\“HIDDEN\" NAME:\IIitemID\II (] + (1] VALUE:\l." +
item.getltemID() + "\">\n" +

"<H2>" + 1tem.getShortDescription() +

" ($" + 1tem.getCost + "Y</H2>\n"" + item.getLongDescription
+ ™\n" + "<Pg\n<CEN$ER>\n2 + 9 g P O

"<INPUT TYPE=\"SUBMIT\"™ " +
"VALUE=\"Add to Shopping Cart\'">\n" +
""</CENTER>\n <P>\n </FORM>");

y }
out.printIn(’'<HR>\n</BODY></HTML>"") ;

The catalogs

/** A specialization of the CatalogPage servlet that displays a
page
selling computer or children’s books.

Orders are sent to the OrderPage servlet.
*/

public class TechBooksPage extends CatalogPage {
public void init()
{ String[] ids = { "hallO01", "hall002" };
setltems(ids);
setTitle(C""AllI-Time Best Computer Books');
+
+

public class KidsBooksPage extends CatalogPage {
public void init()
{ String[] i1ds = { "lewis001", "alexander001', "rowling001" };
setltems(ids);
setTitle(C""All-Time Best Children®s Fantasy Books');
+
+

An On-Line

Bookstore

3 All-Time Best Computer Books - Microsoft Internet Explorer — | Dlll
a All-Time Best Children's Fantasy Books - Microsoft Internet Explorer A EE WEw Foels s GH ﬁ
File Edit Yiew Favorites Tools Help S v @ ﬁ | @ 3| @ @ ‘ l%' é
oo @) | @ (3 @ @ | I%v =] Address IfE;I] http:fflocalhostservietfcoreserylets, TechBooksPage d @Gn

Address I@ http:jflacalhastiserviet/coreservlets KidsBooksPage

All-Time Best Children's F

The Chronicles of Narnia by C.S. Lewis ($19.9:

The classic children's adventure pitting Aslan the Great Lion and lis follo
of evil. Dragons, magicians, quests, and talking animals wound around a
Magician's Nephew, The Lion, the Witch and the Wardrobe, The Horse
of the Dawn Treader. The Silver Chalr, and The Last Battle.

Add to Shopping Cart |

The Prydain Series by Lloyd Alexander ($19.91

Humble pig-keeper Taran joins mighty Lord Gwydion in lis battle agamsi
loyal friends the beautiful princess Edonwy, wannabe bard Fflewddur Ffl:
digcovers courage, nobility, and other values along the way. Series includ
The Castle of Llyr. Taran Wanderer, and The High Eing.

Add to Shopping Cart |

The Harry Potter Series by J.K. Rowling ($59.¢

The first five of the popular stories about wizard-in-training Harry Potter |
seller lists. Series includes Harry Potter and the Sorcerer's Stone, Harry
Potter and the Prisoner of Azliaban, Harry Potter and the Goblet of Fiv
FPhoenix.

Add to Shopping Cart |

|:Ej Done

All-Time Best Computer Books

Core Serviets and JavaServer Pages 2nd Edition (Volume 1) by Marty Hall
and Larry Brown ($39.95)

The definitive reference on servlets and JSP from Prentice Hall and Sun Microsystems Press.
Nominated for the Nobel Prize in Literature.

Add to Shopping Cart |

Core Web Programming, 2nd Edition by Marty Hall and Larry Brown
($49.99)

One stop ghopping for the Web programmer. Topics include

s Thorough coverage of Java 2; including Threads, Networking, Swing, Java 2D, RMI, JDBC, and Collections
A fast mtroduction to HTML 4.01, including frames, style sheets, and layers.
A fast mtroduction to HTTP 1.1, gervletz, and JavaServer Pages.

A quick overview of JavaScript 1.2

Add to Shopping Cart |

-]
’_ ’_ ’_ E Local intranet v

|@ Dane

Handling the Orders

* The servlet uses session tracking to associate a
shopping cart with each user

— Multiple threads are not needed as each user has a
separate session but, if a user has multiple browser
windows open and sends updates from more than one
window In quick succession a problem could arise

Handling the Orders

public class OrderPage extends HttpServlet {

public void doGet(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, 10Exception {

HttpSession session = request.getSession();
ShoppingCart cart;

synchronized(session) {

cart =
(ShoppingCart)session.getAttribute(''shoppingCart™);

// New visitors get a fresh shopping cart.
// Previous visitors keep using their existing cart.
IT (cart == null) {
cart = new ShoppingCart();
session.setAttribute('shoppingCart', cart);

}

Handling the Orders

String i1temlD = request.getParameter(*'itemlD");
it (itemID = null) {
String numltemsString = request.getParameter("'numltems™);
iIT (numltemsString == null) {
// 1T request specified an ID but no number, then got here
// via an "Add Item to Cart' button on a catalog page.
cart.addltem(itemlD);
} else {
// 1T request specified an ID and number, then got here
// via an "Update Order™ button after changing the number of
// i1tems in order. A value of O results in item being deleted from cart.
int numltems;

try {
numltems = Integer.parselnt(numltemsString);

} catch(NumberFormatException nfe) {
numltems = 1;

}

cart.setNumOrdered(itemlD, numltems);

Handling the Orders

// Whether or not the customer changed the order, show order status.
response.setContentType('"text/html'");
PrintWriter out = response.getWriter();
String title = "Status of Your Order';
String docType =
"<IDOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0 ' +
"Transitional//EN\"">\n"";
out.printin(docType +"<HTML>\n" +
“"<HEAD><TITLE>" + title + "</TITLE></HEAD>\n" +
""<BODY BGCOLOR=\"#FDF5E6\'">\n"" +
""<H1 ALIGN=\"CENTER\''>" + title + "</H1>");
synchronized(session) {
List 1temsOrdered = cart.getltemsOrdered();
iIT (itemsOrdered.size() == 0) {
out.printIn("'<H2><I>No 1tems in your cart...</I1></H2>'");
} else {

// 1T there 1s at least one 1tem 1In cart, show table of items
ordered.

out.printin
("'<TABLE BORDER=1 ALIGN=\""CENTER\"'>\n"" +
"<TR BGCOLOR=\"#FFADOO\''>\n"" +
<TH>ltem ID<TH>Description\n' +
<TH>Uni1t Cost<TH>Number<TH>Total Cost");

Handling the Orders

ItemOrder order;
NumberFormat formatter = NumberFormat.getCurrencylnstance();
// For each entry in shopping cart, make table row showing ID,
// description, per-item cost, number ordered, and total cost.
// Put number ordered iIn textfield that user can change, with
// "'Update Order™ button next to 1t, which resubmits to this same page
// but specifying a different number of i1tems.
for(int 1=0; i<itemsOrdered.size(); 1++) {
order = (1temOrder)itemsOrdered.get(i);
out.println ("<TR>\n"" +
" <TD>" + order.getltemID() + "\n" +
<TD>" + order.getShortDescription() + "\n" +

e <TD>II +
formatter.format(order.getUnitCost()) + "\n" +
<TD>"'" +

"<FORM>\n" + // Submit to current URL

"<INPUT TYPE=\""HIDDEN\" NAME=\"i1temID\'"\n" +

" VALUE=\""" + order.getltemID() + "\">\n" +

"<INPUT TYPE=\"TEXT\" NAME=\""numltems\"\n" +

" SI1ZE=3 VALUE=\""" + order.getNumltems() + "\'>\n" +
"<SMALL>\n" +

"<INPUT TYPE=\"SUBMIT\'"\n "+ " VALUE=\"Update Order\'>\n" +
"</SMALL>\n"" + "</FORM>\n" + " <TD>" +
formatter.format(order.getTotalCost()));

Handling the Orders

String checkoutURL =
response.encodeURL("../Checkout._html™);
// "Proceed to Checkout' button below table
out.println
("'</TABLE>\n"" +
"<FORM ACTION=\""" + checkoutURL + "\'"'>\n"" +
"<BIG><CENTER>\n"" +
"<INPUT TYPE=\"SUBMIT\'"\n"" +
" VALUE=\""Proceed to Checkout\''>\n"" +
""</CENTER></BIG></FORM>"") ;

¥
out.printIn(’'</BODY></HTML>"");

An On-Line Bookstore

/2 Status of Your Order - Microsoft Internet Explorer o]}
File Edit “iew Favorites Tools Help ﬁ
-2 QR QEFI BT
Address I@ http:filocalhostfserviet/coreservlets, OrderPageiterID=hall001 &numltems=52 j @Go
El
Status of Your Order
L Unit Total
Item ID Description Cost Numnber Cost
4
alexander001 | The Prydain Series by Lloyd Alexander $19.05 Update Order $79.80
I
rowling001 |The Harry Potter Series by 1 K. Rowling $59.95 Update Order $59.95
i
lewiz001 The Chronicles af Narnia by C.S. Lewis $19.95 Update Order $19.95
" _ E2
Core Serviets and JavaServer Pages 2nd Edition (Volume - I .
hall01 1) by Marty Hall and Larry Brown $39.05 Update Order $2.077.40
. o 23
Core Web FProgramming, 2nd Edition by Marty Hall and I
halloo2 Sl s g Y Marty $49.99 | Update Order §1,149.77
Froceedto Checkout |
E

| &7 Done [T [[BE Localintranet i

Shopping Cart Infrastructure

Shopping Cart
— ArrayList itemsOrdered of type ItemQOrder
» getltemsOrdered / additem / setNumOrdered

Catalogltem
— String itemID
— String shortDescription
— String longDescription
— double cost
» get and set for each instance variable

ltemOrder
— Catalogltem item
— Int numltems
» get and set for instance variables and i.v.s of Catalogltem
« cancelOrder / getTotalCost / incrementNumltems
Catalog
— Catalogltem[] items

Distributed and Persistent
Sessions

« Some servers support distributed Web
applications

— Load balancing used to send different requests to
different machines

— Session tracking still guaranteed to work

e Some servers suport persistent sessions

— Session data written to disk and reloaded when server 1s
restarted

 To support both, session data should
Implement the java.io.Serializable interface

— There are no methods in this interface; it is just a flag.

What Changes If Server Uses
URL Rewriting?

e Session tracking code:
— No change
 Code that generates hypertext links back to

same site:

— Pass URL through response.encodeURL.
* |f server is using cookies, this returns URL unchanged

e |f server is using URL rewriting, this appends the session
Info to the URL

e E.Q.
String url = "order-page.html";
url = response.encodeURL(url);

« Code that does sendRedirect to own site:
— Pass URL through response.encodeRedirectURL

	Session Tracking
	Agenda
	Session Tracking
	Rolling Your Own Session Tracking: Cookies
	Rolling Your Own Session Tracking: Cookies
	Rolling Your Own Session Tracking: URL-Rewriting
	Rolling Your Own Session Tracking: Hidden Form Fields
	Session Tracking Basics
	Accessing the Session Object of the Current Request
	Accessing the Session Object of the Current Request
	Looking Up Session Information
	Information Associated with a Session
	Information Associated with a Session
	HttpSession Methods
	HttpSession Methods
	Browser Sessions vs. �Server Sessions
	A Servlet that Shows Per-Client Access Counts
	A Servlet that Shows Per-Client Access Counts
	A Servlet that Shows Per-Client Access Counts
	A Servlet that Shows Per-Client Access Counts
	A Servlet that Shows Per-Client Access Counts: Result 1
	A Servlet that Shows Per-Client Access Counts: Result 2
	Accumulating a List of User Data
	Accumulating a List of User Data
	Accumulating a List of User Data
	Accumulating a List �of User Data (Continued)
	Accumulating a List �of User Data: Front End
	Accumulating a List �of User Data: Result
	An On-Line Bookstore
	An On-Line Bookstore
	CatalogPage.java
	CatalogPage.java
	CatalogPage.java
	CatalogPage.java
	doGet method()
	CatalogPage.java
	The catalogs
	An On-Line Bookstore
	Handling the Orders
	Handling the Orders
	Handling the Orders
	Handling the Orders
	Handling the Orders
	Handling the Orders
	An On-Line Bookstore
	Shopping Cart Infrastructure
	Distributed and Persistent Sessions
	What Changes if Server Uses URL Rewriting?

