
1

Core Core ServletsServlets and and JavaServerJavaServer Pages / 2ePages / 2e
Volume 1: Core TechnologiesVolume 1: Core Technologies

Marty Hall Marty Hall Larry BrownLarry Brown

Handling Cookies

2

Agenda
• Understanding the benefits and drawbacks

of cookies
• Sending outgoing cookies
• Receiving incoming cookies
• Tracking repeat visitors
• Specifying cookie attributes
• Differentiating between session cookies and

persistent cookies
• Simplifying cookie usage with utility classes
• Modifying cookie values
• Remembering user preferences

3

The Potential of Cookies
• Cookies are small bits of textual information that a

Web server sends to a browser and that the
browser later returns unchanged when visiting the
same Web site

• Typical Uses of Cookies
– Identifying a user during an e-commerce session and remembering

items selected despite the fact that the HTTP connection is usually
closed after each page is sent

• Servlets have a higher-level API for session tracking
– Remembering username and password on unshared computers

• When a user registers at a site, a cookie containing a unique
user ID is sent to him

• When the client reconnects at a later date, the user ID is
returned automatically, the server looks it up and determines it
belongs to a registered user who prefers to user autologin.

• Access is permitted without an explicit username and password

4

The Potential of Cookies

– Customizing a site based on user preferences
• Select what you want to see on a website (weather,

stocks, sports, etc.) and how and where it should be
displayed

• Settings could be stored in the cookie or in a server side
database based on a unique client identifier

– Focusing advertising by remembering what interests a
user

• Advertisers are willing to pay more for advertisements that
are shown to people who are interested in them

• Cookies provide the ability to remember previous searches

5

Cookies and Focused
Advertising

6

Cookies Not A Security Threat

• Cookies can not be used to insert
viruses or attack the computer
– Cookies are never interpreted or executed in

any way so they
• Cookies can not fill up a hard drive

– Browsers can limit how many cookies per
site are accepted and how many total cookies
it stores. Also can limit the size of a cookie

7

Privacy Is A Problem
• The problem is privacy, not security.

– Servers can remember your previous actions
– If you give out personal information, servers can link that

information to your previous actions
– Servers can share cookie information through use of a

cooperating third party like doubleclick.net
– An image (with an attached cookie) sent with an e-mail can

identify you if you visit their website at a later time
– Poorly designed sites store sensitive information like credit

card numbers directly in cookie
• Moral for servlet authors

– As some users turn off cookies, avoid servlets that totally
fail when cookies are disabled if cookies are not critical to
your task,

– Don't put sensitive info in cookies

8

Manually Deleting Cookies
(To Simplify Testing)

9

Sending Cookies to the Client
• To send cookies to a client, a servlet should

– use the Cookie constructor to create one or more cookies
with designated names and values

– set any optional attributes
– insert the cookies into the HTTP response headers with
response.addCookie

• To read incoming cookies, a servlet should
– Call request.getCookies
– Loop through the array calling getName on each cookie

until it finds the one it is looking for
– Call getValue on that cookie to see the associated

values

10

Sending Cookies to the Client
• Create a Cookie object.

– Call the Cookie constructor with a cookie name and a cookie value,
both of which are strings.

– Special characters not allowed in either string
Cookie c = new Cookie("userID", "a1234");

• Set the maximum age.
– By default, a cookie is session-level - stored in the browser’s memory

and deleted when the user quits the browser
– To tell browser to store cookie on disk instead of just in memory, use

setMaxAge (argument is in seconds)
c.setMaxAge(60*60*24*7); // One week

• Place the Cookie into the HTTP response
– Use response.addCookie before any other content is sent to the client
– If you forget this step, no cookie is sent to the browser!

response.addCookie(c);

11

Reading Cookies from the Client
• Call request.getCookies

– This yields an array of Cookie objects.
• Loop down the array, calling getName on each

entry until you find the cookie of interest
– Use the value (getValue) in application-specific way.

String cookieName = "userID";
Cookie[] cookies = request.getCookies();
if (cookies != null) {

for(int i=0; i<cookies.length; i++) {
Cookie cookie = cookies[i];
if (cookieName.equals(cookie.getName())) {

doSomethingWith(cookie.getValue());
}

}
}

12

Using Cookies to Detect
First-Time Visitors
public class RepeatVisitor extends HttpServlet {
public void doGet(HttpServletRequest request,

HttpServletResponse response)
throws ServletException, IOException {

boolean newbie = true;
Cookie[] cookies = request.getCookies();
if (cookies != null) {

for(int i=0; i<cookies.length; i++) {
Cookie c = cookies[i];
if ((c.getName().equals("repeatVisitor"))&&

(c.getValue().equals("yes"))) {
newbie = false;
break;

}
}

}

13

Using Cookies to Detect
First-Time Visitors

• A cookie enables you to differentiate
between first-time users and repeat visitors
and to display different information based
on the type of user
– Check for the name of a uniquely named cookie

• If present, user is repeat visitior
• Not present, first-time user

• You can check if the Cookie[] array is not
null, but that does not necessarily tell you
that the visitor is new
– It shows the client has been to your site but not that they

have been to your servlet
– Other servlets, JSP pages or non-Java Web applications

can set cookies which can be returned to your browser

14

Using Cookies to Detect
First-Time Visitors
boolean newbie = true;
Cookie[] cookies = request.getCookies();
if (cookies != null) {

for(int i=0; i<cookies.length; i++) {
Cookie c = cookies[i];
// Could omit test and treat cookie name as a flag
if ((c.getName().equals("repeatVisitor")) &&

(c.getValue().equals("yes"))) {
newbie = false;
break;

}
}

}

15

Using Cookies to Detect
First-Time Visitors

String title;
if (newbie) {
Cookie returnVisitorCookie =

new Cookie("repeatVisitor", "yes");
returnVisitorCookie.setMaxAge(60*60*24*365);
response.addCookie(returnVisitorCookie);
title = "Welcome Aboard";

} else {
title = "Welcome Back";

}
response.setContentType("text/html");
PrintWriter out = response.getWriter();
… // (Output page with above title)

16

Using Cookies to Detect
First-Time Visitors (Results)

17

Using Cookie Attributes
• Before adding the cookie to the outgoing

header, you can set various properties of
the cookie by using the setXxx methods

• Each SetXxx method has a corresponding
getXxx method to retrieve the attribute value
– Note that the attributes are part of the header sent from

the server to the browser, they are not part of the header
returned by the browser to the servers

– Except for name and value, the cookie attributes apply
only to outgoing cookies from the server to the client;
they are not set on cookies that come from the browser to
the server

– Each time you want to send a cookie you have to do
addCookie; you won’t find it in the incoming array on the
next request even if you set the maxAge to a large value

18

Using Cookie Attributes
• getDomain/setDomain

– Lets you specify domain to which cookie applies. Normally, the
browser returns cookies only to the exact same hostname that sent
the cookies. Current host must be part of domain specified.

• getMaxAge/setMaxAge
– Gets/sets the cookie expiration time (in seconds). If you fail to set

this, cookie applies to current browsing session only.
• Negative value means the cookie will last only for the current

browsing session (i.e., until the user quits the browser)
• A value of zero instructs the browser to delete the cookie

• getName
– Gets the cookie name. There is no setName method; you supply

name to constructor. For incoming cookie array, you use getName
to find the cookie of interest.

19

Using Cookie Attributes
• getPath/setPath

– Gets/sets the path to which cookie applies. If unspecified, cookie
applies to URLs that are within or below directory containing
current page.

– To specify that a cookie apply to all URLs on your site, use
cookie.setPath(“/”)

• getSecure/setSecure
– Gets/sets flag indicating whether cookie should apply only to SSL

connections or to all connections; default is false
• getValue/setValue

– Gets/sets value associated with cookie. For new cookies, you supply
value to constructor, not to setValue. For incoming cookie array,
you use getName to find the cookie of interest, then call getValue
on the result. If you set the value of an incoming cookie, you still
have to send it back out with response.addCookie.

20

Differentiating Session Cookies
from Persistent Cookies

• The following example sets six outgoing
cookies.
– Three have no explicit age and apply only in the current

browsing session i.e., until the users restarts the browser
– The other three use setMaxAge so that they will be

written to disk and persist for the next hour regardless of
whether or not the user restarts the browser or reboots the
computer

– Then the servlet uses request.getCookies to find all the
incoming cookies and display their names and values in
the browser window

21

Differentiating Session Cookies
from Persistent Cookies
public class CookieTest extends HttpServlet {
public void doGet(HttpServletRequest request,

HttpServletResponse response)
throws ServletException, IOException {

for(int i=0; i<3; i++) {
Cookie cookie =

new Cookie("Session-Cookie-" + i,
"Cookie-Value-S" + i);

// No maxAge (ie maxAge = -1)
response.addCookie(cookie);
cookie = new Cookie("Persistent-Cookie-" + i,

"Cookie-Value-P" + i);
cookie.setMaxAge(3600);
response.addCookie(cookie);

}

22

Differentiating Session Cookies
from Persistent Cookies (Cont)

… // Start an HTML table
Cookie[] cookies = request.getCookies();
if (cookies == null) {
out.println("<TR><TH COLSPAN=2>No cookies");

} else {
Cookie cookie;
for(int i=0; i<cookies.length; i++) {

cookie = cookies[i];
out.println
("<TR>\n" +
" <TD>" + cookie.getName() + "\n" +
" <TD>" + cookie.getValue());

}
}

23

Differentiating Session Cookies
from Persistent Cookies

• Result of initial visit to CookieTest servlet
– Same result as when visiting the servlet, quitting the

browser, waiting an hour, and revisiting the servlet.

24

Differentiating Session Cookies
from Persistent Cookies

• Result of revisiting CookieTest within an hour
of original visit (same browser session)
– i.e., browser stayed open between the original visit and

the visit shown here

25

Differentiating Session Cookies
from Persistent Cookies

• Result of revisiting CookieTest within an hour
of original visit (different browser session)
– I.e., browser was restarted between the original visit and

the visit shown here.

26

Utility: Finding Cookies with
Specified Names

public class CookieUtilities {
public static String getCookieValue

(HttpServletRequest request,
String cookieName,
String defaultValue) {

Cookie[] cookies = request.getCookies();
if (cookies != null) {
for(int i=0; i<cookies.length; i++) {
Cookie cookie = cookies[i];
if (cookieName.equals(cookie.getName())) {
return(cookie.getValue());

}
}

}
return(defaultValue);

}
…
}

27

Cookie Utilities -getCookieValue
• Given the request object, a name, and a default

value,this method tries to find the value of the cookie
with the given name. If no cookie matches the name,
the default value is returned.
public static String getCookieValue

(HttpServletRequest request,
String cookieName,String defaultValue)

{
Cookie[] cookies = request.getCookies();
if (cookies != null) {

for(int i=0; i<cookies.length; i++) {
Cookie cookie = cookies[i];
if (cookieName.equals(cookie.getName())) {

return(cookie.getValue());
}

}
}
return(defaultValue);

}

28

Cookie Utilities -getCookie
• Given the request object and a name, this method tries

to find and return the cookie that has the given name. If
no cookie matches the name, null is returned.

public static Cookie getCookie(HttpServletRequest
request,String cookieName)

{
Cookie[] cookies = request.getCookies();
if (cookies != null) {

for(int i=0; i<cookies.length; i++) {
Cookie cookie = cookies[i];
if (cookieName.equals(cookie.getName())) {

return(cookie);
}

}
}
return(null);

}

29

Utility: Creating Long-Lived
Cookies

public class LongLivedCookie extends Cookie {
public static final int SECONDS_PER_YEAR =

60*60*24*365;

public LongLivedCookie(String name, String value) {
super(name, value);
setMaxAge(SECONDS_PER_YEAR);

}
}

30

Applying Utilities
• The class RepeatVisitor2 redoes the

RepeatVisitor servlet but
– Invokes CookieUtilities.getCookieValue and
– Instantiates an object of the LongLivedCookie class

`

31

Applying Utilities: RepeatVisitor2
public class RepeatVisitor2 extends HttpServlet {
public void doGet(HttpServletRequest request,

HttpServletResponse response)
throws ServletException, IOException {

boolean newbie = true;
String value = CookieUtilities.getCookieValue

(request, "repeatVisitor2","no");
if (value.equals("yes")) {
newbie = false;

}
String title;
if (newbie) {
LongLivedCookie returnVisitorCookie =
new LongLivedCookie("repeatVisitor2", "yes");

response.addCookie(returnVisitorCookie);
title = "Welcome Aboard";

} else {
title = "Welcome Back";

}
remainder of code to write HTML output to client

32

Modifying Cookie Values
• Replacing a cookie value

– Send the same cookie name with a different cookie value.
– Reusing incoming Cookie objects.

• Need to call response.addCookie; merely calling setValue
is not sufficient.

• Also need to reapply any relevant cookie attributes by
calling setMaxAge, setPath, etc.—cookie attributes are not
specified for incoming cookies.

• Usually not worth the bother, so new Cookie object used
• Instructing the browser to delete a cookie

– Use setMaxAge to assign a maximum age of 0.
• The following example reuses a cookie to

keep track of how many times each client
has visited the site

33

Tracking User Access Counts
public class ClientAccessCounts extends HttpServlet {

public void doGet(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, IOException {
String countString =

CookieUtilities.getCookieValue(request,
"accessCount", // name of cookie
"1"); // default value

int count = 1;
try {

count = Integer.parseInt(countString);
} catch(NumberFormatException nfe) { }
LongLivedCookie c =

new LongLivedCookie("accessCount",
String.valueOf(count+1));

response.addCookie(c);

34

Tracking User Access Counts
(Continued)

…
out.println(docType +

"<HTML>\n" +
"<HEAD><TITLE>" + title +
"</TITLE></HEAD>\n" +
"<BODY BGCOLOR=\"#FDF5E6\">\n" +
"<CENTER>\n" +
"<H1>" + title + "</H1>\n" +
"<H2>This is visit number " +
count + " by this browser.</H2>\n"+
"</CENTER></BODY></HTML>");

}
}

35

Tracking User Access Counts
(Results)

36

Using Cookies to Remember
User Preferences

• RegistrationForm servlet
– Uses cookie values to prepopulate form field

values
– Uses default values if no cookies are found

• Registration servlet
– Creates cookies based on request parameters

received
– Displays values if all parameters are present
– Redirects to form if any parameter is missing

37

RegistrationForm Servlet
public class RegistrationForm extends HttpServlet {

public void doGet(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, IOException {
response.setContentType("text/html");
PrintWriter out = response.getWriter();
String actionURL =

"/servlet/coreservlets.RegistrationServlet";
String firstName =

CookieUtilities.getCookieValue(request,
"firstName", "");

String lastName =
CookieUtilities.getCookieValue(request,

"lastName", "");
String emailAddress =

CookieUtilities.getCookieValue(request,
"emailAddress",
"");

38

RegistrationForm Servlet
(Continued)

out.println
(docType +
"<HTML>\n" +
"<HEAD><TITLE>" + title + "</TITLE></HEAD>\n" +
"<BODY BGCOLOR=\"#FDF5E6\">\n" +
"<CENTER>\n" +
"<H1>" + title + "</H1>\n" +
"<FORM ACTION=\"" + actionURL + "\">\n" +
"First Name:\n" +
" <INPUT TYPE=\"TEXT\" NAME=\"firstName\" " +

"VALUE=\"" + firstName + "\">
\n" +
"Last Name:\n" +
" <INPUT TYPE=\"TEXT\" NAME=\"lastName\" " +

"VALUE=\"" + lastName + "\">
\n"+
"Email Address: \n" +
" <INPUT TYPE=\"TEXT\" NAME=\"emailAddress\" " +

"VALUE=\"" + emailAddress + "\"><P>\n" +
"<INPUT TYPE=\"SUBMIT\" VALUE=\"Register\">\n" +
"</FORM></CENTER></BODY></HTML>");

}
}

39

Registration Servlet
public class RegistrationServlet extends HttpServlet {

public void doGet(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, IOException {
response.setContentType("text/html");
boolean isMissingValue = false;
String firstName =

request.getParameter("firstName");
if (isMissing(firstName)) {

firstName = "Missing first name";
isMissingValue = true;

}
String lastName =

request.getParameter("lastName");
if (isMissing(lastName)) {

lastName = "Missing last name";
//above line causes error as cookie stores value with
double quotes around it. This causes an HTML error.
Change to “Missing_last_name”;

isMissingValue = true;
}
…

40

Registration Servlet
(Continued)

Cookie c1 =
new LongLivedCookie("firstName", firstName);

response.addCookie(c1);
Cookie c2 =
new LongLivedCookie("lastName", lastName);

response.addCookie(c2);
Cookie c3 = new LongLivedCookie("emailAddress",

emailAddress);
response.addCookie(c3);
String formAddress =
"/servlet/coreservlets.RegistrationForm";

if (isMissingValue) {
response.sendRedirect(formAddress);

} else { … }
// isMissing method needs to check for values of

Missing_... as this should be considered missing
as well

41

RegistrationForm (Initial Result)

42

RegistrationForm (Submitting
Incomplete Form)

43

RegistrationForm (Submitting
Complete Form)

44

RegistrationForm
(Initial Result on Later Visit)

45

Summary
• Cookies involve name/value pairs sent from

server to browser and returned when the
same page, site, or domain is visited later

• Let you
– Track sessions (use higher-level API)
– Permit users to avoid logging in at low-security sites
– Customize sites for different users
– Focus content or advertising

• Setting cookies
– Call Cookie constructor, set age, call response.addCookie

• Reading cookies
– Call request.getCookies, check for null, look through

array for matching name, use associated value

	Handling Cookies
	Agenda
	The Potential of Cookies
	The Potential of Cookies
	Cookies and Focused Advertising
	Cookies Not A Security Threat
	Privacy Is A Problem
	Manually Deleting Cookies �(To Simplify Testing)
	Sending Cookies to the Client
	Sending Cookies to the Client
	Reading Cookies from the Client
	Using Cookies to Detect �First-Time Visitors
	Using Cookies to Detect �First-Time Visitors
	Using Cookies to Detect �First-Time Visitors
	Using Cookies to Detect �First-Time Visitors
	Using Cookies to Detect �First-Time Visitors (Results)
	Using Cookie Attributes
	Using Cookie Attributes
	Using Cookie Attributes
	Differentiating Session Cookies from Persistent Cookies
	Differentiating Session Cookies from Persistent Cookies
	Differentiating Session Cookies from Persistent Cookies (Cont)
	Differentiating Session Cookies from Persistent Cookies
	Differentiating Session Cookies from Persistent Cookies
	Differentiating Session Cookies from Persistent Cookies
	Utility: Finding Cookies with Specified Names
	Cookie Utilities -getCookieValue
	Cookie Utilities -getCookie
	Utility: Creating Long-Lived Cookies
	Applying Utilities
	Applying Utilities: RepeatVisitor2
	Modifying Cookie Values
	Tracking User Access Counts
	Tracking User Access Counts (Continued)
	Tracking User Access Counts (Results)
	Using Cookies to Remember User Preferences
	RegistrationForm Servlet
	RegistrationForm Servlet (Continued)
	Registration Servlet
	Registration Servlet (Continued)
	RegistrationForm (Initial Result)
	RegistrationForm (Submitting Incomplete Form)
	RegistrationForm (Submitting Complete Form)
	RegistrationForm �(Initial Result on Later Visit)
	Summary

