
1

Core Core ServletsServlets and and JavaServerJavaServer Pages / 2ePages / 2e
Volume 1: Core TechnologiesVolume 1: Core Technologies

Marty Hall Marty Hall Larry BrownLarry Brown

© 2003-2004 Marty Hall

Handling the Client
Request: HTTP

Request Headers

2

Agenda

• Reading HTTP request headers
• Building a table of all the request headers
• Understanding the various request headers
• Reducing download times by compressing

pages
• Differentiating among types of browsers

3

HTTP Request Header

• This information is not the same as the
form (query) data

• Form data result from user input and is
sent via GET or POST

• Request headers are sent indirectly by
the browser

4

A Typical HTTP Request
GET /servlet/Search?keywords=servlets+jsp HTTP/1.1
Accept: image/gif, image/jpg, */*
Accept-Encoding: gzip
Connection: Keep-Alive
Cookie: userID=id456578
Host: www.somebookstore.com
Referer: http://www.somebookstore.com/findbooks.html
User-Agent: Mozilla/4.0 (compatible; MSIE 6.0;

Windows NT 5.0)

• The server needs to explicitly read the
request headers to make use of this
information

5

Reading Request Headers
(Methods in HttpServletRequest)

• General http://java.sun.com/j2ee/1.4/docs/api/index.html
– getHeader (header name is not case sensitive)
– getHeaders
– getHeaderNames

• Specialized
– getCookies
– getAuthType and getRemoteUser
– getContentLength
– getContentType
– getDateHeader
– getIntHeader

• Related info
– getMethod, getRequestURI , getQueryString, getProtocol

http://java.sun.com/j2ee/1.4/docs/api/index.html

6

Checking For Missing Headers
• HTTP 1.0

– All request headers are optional
• HTTP 1.1

– Only Host is required
• Conclusion

– Always check that request.getHeader is non-null before
trying to use it

String val = request.getHeader("Some-Name");
if (val != null) {

…
}

7

Making a Table of
All Request Headers

public class ShowRequestHeaders extends HttpServlet {
public void doGet(HttpServletRequest request,

HttpServletResponse response)
throws ServletException, IOException {

out.println
(docType +
"<HTML>\n" +
"<HEAD><TITLE>"+title+"</TITLE></HEAD>\n"+
"<BODY BGCOLOR=\"#FDF5E6\">\n" +
"<H1 ALIGN=\"CENTER\">" + title + "</H1>\n" +
"Request Method: " +
request.getMethod() + "
\n" +
"Request URI: " +
request.getRequestURI() + "
\n" +
"Request Protocol: " +
request.getProtocol() + "

\n" +

8

Making a Table of All Request
Headers (Continued)

"<TABLE BORDER=1 ALIGN=\"CENTER\">\n" +
"<TR BGCOLOR=\"#FFAD00\">\n" +
"<TH>Header Name<TH>Header Value");

Enumeration headerNames = request.getHeaderNames();
while(headerNames.hasMoreElements()) {
String headerName = (String)headerNames.nextElement();
out.println("<TR><TD>" + headerName);
out.println(" <TD>"+request.getHeader(headerName));

}
out.println("</TABLE>\n</BODY></HTML>");

}

/** Since this servlet is for debugging, have it
* handle GET and POST identically.
*/

public void doPost(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, IOException {
doGet(request, response);

}
}

9

Making a Table of All Request
Headers (Result 1)

10

Making a Table of All Request
Headers (Result 2)

11

Common HTTP 1.1 Request
Headers

• Accept
– Indicates MIME types browser can handle

• Multipurpose internet mail extension
text/html application/pdf image/gif

– Can send different content to different clients. For example,
PNG files have good compression characteristics but are not
widely supported in browsers. A servlet could check to see if
PNG is supported, sending if it
is supported, and if not.

– Warning: IE 5 & 6 incorrectly set this header when you hit the
Refresh button. They set it correctly on original request.

• Accept-Encoding
– Indicates encodings (e.g., gzip or compress) browser can

handle.
– gzip can reduce download time by a factor of 10

12

Common HTTP 1.1 Request
Headers (Continued)

• Authorization
– User identification for password-protected pages.
– Instead of HTTP authorization, use HTML forms to send

username/password and store info in session object. This
approach is usually preferable because standard HTTP
authorization results in a small, terse dialog box that is
unfamiliar to many users.

– Servers have high-level way to set up password-protected
pages without explicit programming in the servlets.

• For details, see Chapter 7 (Declarative Security) and
Chapter 8 (Programmatic Security) of More Servlets and
JavaServer Pages, www.moreservlets.com.

13

Common HTTP 1.1 Request
Headers (Continued)

• Connection
– In HTTP 1.0, keep-alive means browser can handle

persistent connection. In HTTP 1.1, persistent connection is
default. Persistent connections mean that the server can
reuse the same socket over again for requests very close
together from the same client (e.g., the images associated
with a page, or cells within a framed page).

• This saves the overhead of negotiating several independent
connections

– Servlets need to cooperate with the server by making it
possible for the server to use persistent connections.

• This is done by the servlet by setting the Content-Length
response header

• Cookie
– Returns cookies to servers that previously sent then to the

browser. Use .getCookies, not getHeader.

14

Common HTTP 1.1 Request
Headers (Continued)

• Host
– Indicates host and port given in original URL
– This is a required header in HTTP 1.1. This fact is

important to know if you write a custom HTTP client
(e.g., WebClient used in book) or telnet to a server and
use the HTTP/1.1 version.

• If-Modified-Since
– Indicates client wants page only if it has been changed

after specified date
• Server sends a 304 (Not Modified) header if no newer

result is available
– Server should not handle this situation directly;

implement getLastModified instead to have the system
handle modification dates atomatically

15

Common HTTP 1.1 Request
Headers (Continued)

• Referer
– URL of referring Web page; sent when user clicks on link
– Useful for tracking traffic; logged by many servers
– Can also be used to let users set preferences and then return to the

page they came from
– Can be easily spoofed; don't let this header be sole means of

deciding how much to pay sites that show your banner ads.
– Some browsers (Opera), ad filters (Web Washer), and personal

firewalls (Norton) screen out this header
• User-Agent

– Best used for identifying category of client so that different content
can be returned to different browser types

• Web browser vs. I-mode cell phone, etc.
– Most IE versions list Mozilla with the real browser listed in

parentheses - this is for Javascript compatibility.
– Again, can be easily spoofed

16

Sending Compressed
Web Pages

Dilbert used with permission of United Syndicates Inc.

17

Sending Compressed Pages
• Gzip

– A text compression scheme that can dramatically reduce the
size of HTML or plain text pages

– The server compresses the document, sends the smaller file
over the network and the browser automatically reverses the
compression

– Particularly useful over dialup connections
– Must check the Accept-Encoding parameter in the request

header to verify that the browser supports gzip
• Class GzipUtilities

– Requires import of java.util.zip.*
– isGzipSupported checks request header Accept-

Encoding
– isGzipDisabled checks parameter to see if gzip is

disabled
– getGzipWriter instantiates a PrintWriter that can use gzip

18

Sending Compressed Pages:
GzipUtilities.java

public class GzipUtilities {
public static boolean isGzipSupported

(HttpServletRequest request) {
String encodings = request.getHeader("Accept-Encoding");
return((encodings != null) &&

(encodings.indexOf("gzip") != -1));
}

public static boolean isGzipDisabled
(HttpServletRequest request) {

String flag = request.getParameter("disableGzip");
return((flag != null)&&

(!flag.equalsIgnoreCase("false")));
}

public static PrintWriter getGzipWriter
(HttpServletResponse response) throws IOException {

return(new PrintWriter
(new GZIPOutputStream
(response.getOutputStream())));

}
}

19

Sending Compressed Pages:
LongServlet.java

public class LongServlet extends HttpServlet {
public void doGet(HttpServletRequest request,

HttpServletResponse response)
throws ServletException, IOException {

response.setContentType("text/html");

// Change the definition of "out" depending on
// whether or not gzip is supported.
PrintWriter out;
if (GzipUtilities.isGzipSupported(request) &&

!GzipUtilities.isGzipDisabled(request)) {
out = GzipUtilities.getGzipWriter(response);
response.setHeader("Content-Encoding", "gzip");

} else {
out = response.getWriter();

}

20

Sending Compressed Pages:
LongServlet.java (Continued)

…
out.println

(docType +
"<HTML>\n" +
"<HEAD><TITLE>" + title + "</TITLE></HEAD>\n" +
"<BODY BGCOLOR=\"#FDF5E6\">\n" +
"<H1 ALIGN=\"CENTER\">" + title + "</H1>\n");

String line = "Blah, blah, blah, blah, blah. " +
"Yadda, yadda, yadda, yadda.";

for(int i=0; i<10000; i++) {
out.println(line);

}
out.println("</BODY></HTML>");
out.close(); //Needed for gzip; always recommended

}
}

21

Sending Compressed Pages:
Results

• Uncompressed (28.8K modem),
Netscape and Internet Explorer:
> 50 seconds

• Compressed (28.8K modem),
Netscape and Internet Explorer:
< 5 seconds

• Caution:
be careful
about
generalizing
benchmarks

22

Differentiating Among
Different Browser Types

• Use User-Agent only when necessary.
– Otherwise, you will have difficult-to-maintain code that consists of

tables of browser versions and associated capabilities.
• Check for null.

– The header is not required by the HTTP 1.1 specification, some
browsers let you disable it (e.g., Opera), and custom clients (e.g.,
Web spiders or link verifiers) might not use the header at all.

• To differentiate between Netscape and Internet
Explorer, check for “MSIE,” not “Mozilla.”
– Both Netscape and Internet Explorer say “Mozilla” at the beginning

of the header for JavaScript compatability.
• Note that the header can be faked.

– If a client fakes this header, the servlet cannot tell the difference.

23

Differentiating Among
Different Browser Types (Code)

public class BrowserInsult extends HttpServlet {
public void doGet(HttpServletRequest request,

HttpServletResponse response)
throws ServletException, IOException {

response.setContentType("text/html");
PrintWriter out = response.getWriter();
String title, message;
// Assume for simplicity that Netscape and IE are
// the only two browsers.
String userAgent = request.getHeader("User-Agent");
if ((userAgent != null) &&

(userAgent.indexOf("MSIE") != -1)) {
title = "Microsoft Minion";
message = "Welcome, O spineless slave to the " +

"mighty empire.";
} else {
title = "Hopeless Netscape Rebel";
message = "Enjoy it while you can. " +

"You <I>will</I> be assimilated!";
}

24

Differentiating Among
Browser Types (Result)

25

Where you came from
• The Referer header tells you the location of

the page users were on when they clicked a
link to get to the current page
– If the user typed in the address, the
request.getHeader(“Referer”) returns null

– This enables you to customize the current page based on
how the user got here

– Also, you can create a link to take the user back to the
page he came from

– Using the default Tomcat directory structure, HTML files
are put under ROOT/request-headers/ while images
are stored under ROOT/request-headers/images

26

Where you came from
public class CustomizeImage extends HttpServlet {

public void doGet(HttpServletRequest request,
HttpServletResponse response) throws
ServletException, IOException

{

response.setContentType("text/html");
PrintWriter out = response.getWriter();
String referer = request.getHeader("Referer");
if (referer == null) { referer = "<I>none</I>"; }

String title = "Referring page: " + referer;
String imageName;
if (contains(referer, "JRun"))

{ imageName = "jrun-powered.gif"; }
else if (contains(referer, "Resin"))

{ imageName = "resin-powered.gif"; }
else { imageName = "tomcat-powered.gif"; }

27

Where you came from

String imagePath = "../request-headers/images/" +
imageName;

String docType = "<!DOCTYPE HTML PUBLIC \"-
//W3C//DTD HTML 4.0 " + "Transitional//EN\">\n";

out.println(docType + "<HTML>\n" + "<HEAD><TITLE>“
+ title + "</TITLE></HEAD>\n" + "<BODY
BGCOLOR=\"#FDF5E6\">\n" + "<CENTER><H2>" + title +
"</H2>\n" + “ \n" +
"</CENTER></BODY></HTML>");

} // end doGet

private boolean contains(String mainString, String
subString)
{

return(mainString.indexOf(subString) != -1);
}

}

	Handling the Client Request: HTTP Request Headers
	Agenda
	HTTP Request Header
	A Typical HTTP Request
	Reading Request Headers (Methods in HttpServletRequest)
	Checking For Missing Headers
	Making a Table of �All Request Headers
	Making a Table of All Request Headers (Continued)
	Making a Table of All Request Headers (Result 1)
	Making a Table of All Request Headers (Result 2)
	Common HTTP 1.1 Request Headers
	Common HTTP 1.1 Request Headers (Continued)
	Common HTTP 1.1 Request Headers (Continued)
	Common HTTP 1.1 Request Headers (Continued)
	Common HTTP 1.1 Request Headers (Continued)
	Sending Compressed �Web Pages
	Sending Compressed Pages
	Sending Compressed Pages: GzipUtilities.java
	Sending Compressed Pages: LongServlet.java
	Sending Compressed Pages: LongServlet.java (Continued)
	Sending Compressed Pages:�Results
	Differentiating Among �Different Browser Types
	Differentiating Among �Different Browser Types (Code)
	Differentiating Among �Browser Types (Result)
	Where you came from
	Where you came from
	Where you came from

