1. Determine the R or S configuration of each of the chiral centers in the molecule shown below. Clearly number the priority of each group. (8 points, 6 minutes)

2. Give the IUPAC name of the following molecule. (8 points, 6 minutes)

3. Label all the acids and bases in the following reaction. (8 points, 6 minutes)

Does the reaction go to the right or to the left?

4. What is the relationship between these two molecules (identical, enantiomers, diasteriomers, unrelated)? You are not required to determine R and S. (8 points, 6 minutes)

5a. Draw both chair conformations of the following molecule. (15 points, 12 minutes)

CH₃
HO

F

$$7.28$$
 CH_3
 CH_3

5b. Using the data below, calculate the energy difference between the two chair conformers. Show your Work,
Benefit of Equatorial over Axial in ki/mol

Granija.	-AG (K.Winot)	Ginup	-AGO
CEN	0.8	Neg	5.9
F	LA	CODE	5.3
CECH		CH=CH2	Marie Control
ž.	1.4	CH3	7.23
C)	2.2	CH ₂ CH ₃	7.3
Br	2.4	CH(CH ₃) ₂	9.0
OH	3.9	C(CH ₃) ₃	21.0

5c. Circle the lower energy chair conformer.

6. Draw one reasonable resonance structure for the following molecule. The resonance structure you draw should be a major contributor, a stable resonance structure.

(6 points, 4 minutes)

Ch.1

arrows are not required

7. Give a step by step mechanism for each of the following reaction. (12 points, 9 minutes)

(h. (

HBr

>

- 8. Give the product or products of each of the following reactions.

 Be sure to include stereochemistry and to show all products that form. (7
 - (7 pts each, 5 min each)

