1. For each example shown below, circle the electrophile that would react more rapidly in an S_n2 reaction: (4 pts, 3 minutes)

 ![Chemical Structures]

2. For each example shown below, circle the electrophile that would react more rapidly in an S_n1 reaction: (4 pts, 3 minutes)

 ![Chemical Structures]

3. For each example shown below, circle the nucleophile that would react more rapidly in an S_n2 reaction: (4 pts, 3 minutes)

 ![Chemical Structures]

4. (4 pts, 3 minutes)
 a. Which of the carbocations shown below is the most stable?

 ![Chemical Structures]
 A

 b. Which is the least stable?

 ![Chemical Structures]
 C

5. Which mechanism (S_n1, S_n2, E1 or E2) is favored in each of the following reactions? (10 pts, 5 minutes)

 a.

 ![Chemical Structures]

 E_2

 b.

 ![Chemical Structures]

 S_n1

 c.

 ![Chemical Structures]

 E_1
6. Show the **major** product or products in each of the following reactions. Do not show minor products. Be sure to show proper stereochemistry. (5 pts each, 4 minutes each)

a. ![Reaction a](image)

b. ![Reaction b](image)

c. ![Reaction c](image)

d. ![Reaction d](image)

e. ![Reaction e](image)

f. ![Reaction f](image)

one product; achiral

g. ![Reaction g](image)

h. ![Reaction h](image)

i. ![Reaction i](image)

j. ![Reaction j](image)
7. Show the mechanism (step by step with arrows) for the following reaction. (8 pts, 6 minutes)

8. Show the mechanism (step by step with arrows) for the following reaction. (8 pts, 6 minutes)

9. Show the mechanism (step by step with arrows) for the following reaction. (8 pts, 6 minutes)