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Abstract. We show that every uniformly asymptotically affine circle en-

domorphism has a uniformly asymptotically conformal (UAC) extension

to the complex plane. Then we use the UAC extension to construct the

dual dynamical system, the dual annulus, and the dual circle expanding

map.

Introduction

We recapitulate basic properties of uniformly asymptotically affine circle
degree d > 1 endomorphisms. Then we show how to use the Beurling-Ahlfors
extension to realize any uniformly asymptotically affine system as the restric-
tion to the circle of a uniformly asymptotically conformal system. (Most of
this exposition is a recapitulation of work of Guizhen Cui.) Then we introduce
dual dynamical systems, dual Cantor sets, and show that Thompson’s F -group
acts naturally as a group of isometries of the degree 2 UAC Teichmüller space.
Finally, we show that the dual Cantor set completes projects a natural way
to a dual circle with a given symmetric structure depending on the dynamical
system. Also, the scaling function is continuous in this circle.

1. Circle endomorphisms

Let S1 = {z ∈ C : |z| = 1} be the unit circle. The map π : R → S1 defined
by

π(x) = e2πix

realizes R as the universal covering of S1 with covering π and covering group
Z. π induces an isomorphism from R/Z onto S1.

Let d be the degree of an orientation preserving covering f from S1 onto itself
and assume 1 < d < ∞. f is an endomorphism of S1 and it necessarily has one
fixed point p. By selecting an orientation preserving Möbius transformation A

that preserves the unit disk with A(p) = 1, we may shift consideration of the
map f to the map f̃ = A ◦ f ◦A−1. f̃ has the same dynamical properties as f
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and it fixes the point 1. Therefore, without loss of generality, we may assume
to begin with that f fixes the point p = 1. We denote the homeomorphic lift
of f by F. F is uniquely determined by f if we assume it has the following
properties:

i) F is a homeomorphism of R,

ii) π ◦ F = f ◦ π,

iii) F (0) = 0.

Note that F (x + 1) = F (x) + d. In this paper we refer either to f or to its
unique corresponding lift F as a circle endomorphism. We denote the n−fold
composition of f with itself by fn. Similarly, Fn is the n−fold composition of
F.

Definition 1. A circle homeomorphism h is called quasisymmetric if there is
a constant M ≥ 1 such that for all real numbers x and t

(1)
1
M

≤ H(x + y)−H(x)
H(x)−H(x− y)

≤ M, ∀x ∈ R, ∀t > 0.

The expression

ρ(x, y) =
H(x + y)−H(x)
H(x)−H(x− y)

is called the distortion function for H.

Definition 2. A circle homeomorphism h is called symmetric (or asymptoti-
cally affine) if it is quasisymmetric and if there exists a function ε(y) → 0+ as
y → 0+ such that

(2)
1

1 + ε(t)
≤ H(x + y)−H(x)

H(x)−H(x− y)
≤ 1 + ε(y).

A positive function ε(y) defined for positive values of t is called vanishing if
ε(y) → 0 as y → 0+.

We say asymptotically affine in this definition since the ratio in the middle
expression in (2) is identically equal to one if and only if H is affine, that is,
if H(x) = ax + b, for some a 6= 0.

Definition 3. A circle endomorphism f of degree d is called uniformly sym-
metric or uniformly asymptotically affine (UAA) if all of the inverse branches
of fn, n = 1, 2, . . . , are symmetric uniformly. More precisely, fn is UAA if
there is a bounded positive function ε(y) with ε(t) → 0+ as y → 0+ such that
for all positive integers n and all real numbers x,

(3)
1

1 + ε(y)
≤ F−n(x + y)− F−n(x)

F−n(x)− F−n(x− y)
≤ 1 + ε(y).

We say uniformly since the ratio in the middle expression in (3) approaches
1 when y approaches 0 independently of the number n of compositions of F.
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2. Beurling-Ahlfors Extensions of symmetric mappings

Consider all possible extensions of H to self-mappings H̃ of the upper half
plane H and let

K(H) = inf{K(H̃) : H̃ extends H}.

Note that if K(H) = 1, then H is affine, that is, H(x) = ax + b, a 6= 0.

Similarly, H is also affine if M = M(H) = 1 in the M-condition (1). Thus, we
may take both M(H) and K(H) as measurements of the extent to which H

fails to be affine. A well-known result of Beurling and Ahlfors [2] shows that
M(H) and K(H) are simultaneously finite and there are estimates for M(H)
in terms of K(H) and vice-versa. Moreover, M(H) and K(H) simultaneously
approach 1.

The Beurling-Ahlfors extension procedure provides a canonical extension H̃

of any quasisymmetric homeomorphism H such that the Beltrami coefficient
µ of H̃ has the following property. There is a vanishing function η(y) such
that |µ(x + iy)| ≤ η(y) if, and only if, there is a vanishing function ε(y) such
that |ρ(x, y)| ≤ 1 + η(y).

In this paper we require a more intricate estimate that involves comparing
the distortion functions two quasisymmetric homeomorphisms of the real axis
H0 and H1 fixing 0, 1 and ∞.

Suppose the distortion functions ρ0(x, y) and ρ1(x, y) of H0 and H1 satisfy
the inequality

|ρ0(x, y)− ρ1(x, y)| ≤ ε(y),

where ε(y) approaches 0 as y approaches 0. Suppose furthermore that µ1 and
µ2 are the Beltrami coefficients of the Beurling Ahlfors extensions H̃0 and H̃1.

That is,

µ0(z) =
H̃0z

H̃1z

and µ1(z) =
H̃1z

H̃1z

.

Then there is a vanishing function η(y) depending on ε(y) such that

|µ0(x + iy)− µ1(x + iy)| ≤ η(y).

We take the following formulas as the definition of the Beurling-Ahlfors
extension:

H̃ = U + iV,

where

(4) U(x, y) =
1
2y

∫ x+y

x−y
H(s)ds =

1
2

∫ 1

−1
H(x + ky)dk

and

(5) V (x, y) =
1
y

∫ x+y

x
H(s)ds− 1

y

∫ x

x−y
H(s)ds.
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In (4) and (5) we have chosen a normalization slightly different from the one
given in [1] so that the extension of the identity is the identity and so that
this extension is affinely natural in the sense the extension is natural for affine
maps, by which we mean that for affine maps A and B,

˜A ◦H ◦B = A ◦ H̃ ◦B

and
ĩdR = idC.

Except for minor modifications all of the following calculations are taken
from [3] . In addition to the distortion function

ρ(x, y) =
H(x + y)−H(x)
H(x)−H(x− y)

,

we will need the weighted distortion function

ρ(x, y, k) =
H(x + ky)−H(x)
H(x)−H(x− y)

.

Note that

(6)
∫ 1

0
ρ(x, y, k)dk =

1
H(x)−H(x− y)

(
1
y

∫ x+y

x
H(s)ds−H(x)

)
and

(7)
∫ 1

0
ρ(x,−y, k)dk =

1
H(x + y)−H(x)

(
H(x)− 1

y

∫ x

x−y
H(s)ds

)
.

Let

(8)

L = H(x)−H(x− y)
R = H(x + y)−H(x)
L′ = H(x)− 1

y

∫ x
x−y H(t)dt,

R′ = 1
y

∫ x+y
x H(t)dt−H(x).

and let ρ+ =
∫ 1
0 ρ(x, y, k)dk and ρ− =

∫ 1
0 ρ(x,−y, k)dk. Then

(9)
ρ(x, y) = R/L

ρ+(x, y) = R′/L

ρ−(x, y) = L′/R.

Notice that for symmetric homeomorphisms all three of the quantities ρ, ρ+

and ρ− approach +1 as y approaches zero. The complex dilatation of H̃ is
given by

µ(z) =
K(z)− 1
K(z) + 1
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where

K(z) =
H̃z + H̃z

H̃z − H̃z

=
(U + iV )z + (U + iV )z

(U + iV )z − (U + iV )z
=

(U + iV )x − i(U + iV )y + (U + iV )x + i(U + iV )y

(U + iV )x − i(U + iV )y − (U + iV )x − i(U + iV )y
=

Ux + iVx

Vy − iUy
.

Thus

K(z) =
1 + ia

b− ic
,

where a = Vx/Ux, b = Vy/Ux and c = Uy/Ux.

To find estimates for these three ratios we must find expressions for the four
partial derivatives of U and V in (4) and (5). In the notation of (8)

Ux = 1
2y (R + L),

Vx = 1
y (R− L) ,

Vy = 1
y (R + L)− 1

y (R′ + L′) ,

Uy = 1
2y (R− L)− 1

2y (R′ − L′) .

Thus
a(1 + ρ) = 2R−L

R+L · R+L
L ,

b(1 + ρ) = 2R+L−R′−L′

R+L · R+L
L = 2 (R/L + 1−R′/L− (R/L)(L′/R)) ,

c(1 + ρ) = R−L−R′+L′

R+L · R+L
L = R/L− 1−R′/L + (R/L)(L′/R).

Finally, we obtain

(10)
a = 2(ρ−1)

ρ+1 ,

b = 2(ρ+1−ρ+−ρρ−)
ρ+1 ,

c = ρ−1+ρ+−ρρ−
ρ+1 .

Theorem 1. [Cui [3]] Let H1 and H0 be two quasisymmetric homeomor-
phisms of R normalized to fix 0 and 1. Let ρ1 and ρ0 be the symmetric distor-
tions of H1 and H0, and let µ1 and µ0 be the Beltrami coefficients of H̃1 and H̃0.

Then if there is a vanishing function η(y) such that |ρ1(x, y)−ρ0(x, y)| < ε(y),
then there is a vanishing function η(y) such that

|µ1(z)− µ0(z)| < η(y).

Proof. Since K(z) = (1 + ia)/(b− ic), K(z) + 1 = (1 + ia + b− ic)/(b− ic), we
have

µ1(z)− µ0(z) =
K1(z)− 1
K1(z) + 1

− K0(z)− 1
K0(z) + 1

= 2
K1(z)−K0(z)

(K1(z) + 1)(K0(z) + 1)
=

2
(1 + ia1)(b0 − ic0)− (1 + ia0)(b1 − ic1)
(1 + ia1 + b1 − ic1)(1 + ia0 + b2 − ic0)

=
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(11) 2
(a1 − a0)(ib1 + c1) + (b0 − b1)(1 + ia1) + (c1 − c0)(i− a1)

(1 + ia1 + b1 − ic1)(1 + ia0 + b2 − ic0)
.

From the first equation in (10), a1 lies between −2 and 2. Also note that since
H̃ is quasiconformal,

|K(z)| = |1 + ia|
|b− ic|

=

∣∣∣∣∣H̃z + H̃z

H̃z − H̃z

∣∣∣∣∣ ≤ |H̃z|+ |H̃z|
|H̃z| − |H̃z|

≤ K,

and, therefore,
|ib + c| = |b− ic| ≥ 1/K.

From the equations (10)

1 + b =
ρ + 1 + 2(ρ + 1− ρ+ − ρρ−)

ρ + 1
and

2(a− c) = 2
(

ρ + 1− ρ+ + ρρ− − 2
ρ + 1

)
.

Therefore,

|1+b|+2|a−c| ≥ |1+b+2(a−c)| ≥ 5(ρ + 1)− 2ρ+ − 2ρρ− − 2ρ+ + 2ρρ− − 4
ρ + 1

=

5(ρ + 1)− 4ρ+ − 4
ρ + 1

>
ρ + 1
ρ + 1

= 1,

because ρ+ < ρ. Since |1+b|+2|a−c| ≥ 1, either |1+b| ≥ 1/2 or |a−c| ≥ 1/4.

Of course, the same inequalities are true for a1, b1, c1 and for a0, b0, c0 as are
true for a, b, c. Thus, (1/4) is a lower bound for each factor in the denominator
of (11).

On the other hand the coefficients (ib1 + c1), (1 + ia1) and (i− a1), in the
numerator of (11) are bounded above because of the equations in (10). These
equations also show that if ρ0 → ρ1, then a0, b0 and c0 approach a1, b1 and c1,

respectively. Consequently, |µ1(z)− µ0(z)| → 0 as y → 0 uniformly in x. �

For the previous argument we have needed the following two lemmas.

Lemma 1. Suppose ρ0(x, y) and ρ1(x, y) are the distortion functions for nor-
malized quasisymmetric mappings H0 and H1 of the real axis. Suppose also
that there is a vanishing function η(y) such that |ρ0(x, y) − ρ1(x, y)| ≤ η(y).
Then there is a vanishing function η̃(y) such that

|ρ0(x, y, k)− ρ1(x, y, k)| ≤ η̃(y)

independently of 0 < k ≤ 1 and of x ∈ R.

Proof. For 0 ≤ k ≤ 1, put kR equal to the interval from H(x) to H(x + ky),
and as before, L is the interval from H(x − y) to H(x). Then, by an affine
change of coordinates, L and kR transform to the interval [−1, 0] and [0, k].
So the extremal length Λ(k) of the family of curves joining [−∞,H(x− y)] to
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[H(x),H(x + ky)] is equal to the extremal length of the curve family joining
[−∞,−1] to [0, k.] From the Beurling-Ahlfors extension theorem, the Beltrami
coefficients µ0 and µ1 of the Beurling-Ahlfors extension satisfies

|µ0(z)− µ1(z)| ≤ ε(y),

where ε(y) is a positive function which approaches zero as |y| approaches 0.

Thus, ∣∣∣∣log
Λ(k1)
Λ(k0)

∣∣∣∣ ≤ ε(y).

Let Λ′(k) be the derivative with respect to k of Λ(k). By relabelling if
necessary, we may assume that k0 < k1 and by the mean value theorem applied
to log Λ(k), there is a number k between k0 and k1 such that

log Λ(k1)− log Λ(k0) = (k1 − k0)
Λ′(k)
Λ(k)

.

Thus, we obtain the estimate

(12) |k1 − k0| ≤
Λ(k)
Λ′(k)

ε(s).

To calculate Λ′(k) we make a quasiconformal deformation fk(z) that keeps
−1, 0 and ∞ fixed and moves k0 to k1. It is given by

(13) fk(z) =

{
z + k−k0

k0
z if x ≥ 0

0 if x < 0.

Note that fk0(k0) = k0, f
k(k0) = k, and fk1(k0) = k1. The Beltrami coefficient

of fk is k−k0
k0

if x > 0 and 0 if x < 0, and the derivative of this Beltrami
coefficient with respect to k is 1

k0
for x > 0 and 0 for x < 0. From the formula

for the derivative of the extremal length of an annulus with respect to a variable
Beltrami coefficient in the direction of increasing k, ([?],[?],[?] [?]), we obtain

Λ′(k) =
1
k0

2
π

∫ ∫
x>0

∣∣∣∣ k(k + 1)
z(z + 1)(z − k)

∣∣∣∣ dxdy.

Moreover, for some number c > 0 and some number β > 0,∫ ∫
x>0

∣∣∣∣ k(k + 1)
z(z + 1)(z − k)

∣∣∣∣ dxdy ≥ ck log
1
k

for all k with 0 < k < β. To see this put

g(k) =
∫ ∫

x>0,

∣∣∣∣ k(k + 1)
z(z + 1)(z − k)

∣∣∣∣ dxdy,

and note that g(k) = g1(k) + g2(k) where

g1(k) =
∫ ∫

x>0,|z|<1

∣∣∣∣ k(k + 1)
z(z + 1)(z − k)

∣∣∣∣ dxdy
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and

g2(k) =
∫ ∫

x>0,|z|>1

∣∣∣∣ k(k + 1)
z(z + 1)(z − k)

∣∣∣∣ dxdy.

Obviously 0 ≤ g2(k) ≤ (constant)k and

(14) g1(k) ≥ k

∫ ∫
x>0,|z|<1

∣∣∣∣ 1
z(z − k)

∣∣∣∣ dxdy.

Substituting kz for z in the integrand of (14), we obtain

g1(k) ≥ k

∫ ∫
x>0,|z|<1/k

∣∣∣∣ 1
z(z − 1)

∣∣∣∣ dxdy.

The last integral is greater than or equal to a constant times log(1/k) and,
in summary, we conclude that there is a constant c such that for sufficiently
small k > 0,

g(k) ≥ ck log(1/k).

Putting these inequalities together with the obvious estimate

Λ(k) ≤ C log
1
k
,

we obtain
Λ(k)
Λ′(k)

≤
cCk0 log 1

k

k log 1
k

.

Since k0 < k we conclude that

k1 − k0 ≤ cCε(y),

which implies that

ρ1(x, y, k)− ρ0(x, y, k) ≤ cCε(y).

A similar argument shows the parallel statement for ρ(x,−y, k). �

Lemma 2. Suppose ρ1(x, y) and ρ2(x, y) are the distortion functions for nor-
malized quasisymmetric mappings of the real axis H1 and H0. Suppose also that
there is a vanishing function η(y) such that |ρ1(x, y)− ρ0(x, y)| ≤ η(y)|. Then
|ρ1+(x, y)− ρ0+(x, y)| ≤ η(y) and |ρ1−(x, y)− ρ0−(x, y)| ≤ η(y) independently
of x ∈ R.

Proof. The hypothesis implies there is a vanishing function η̃(y) such that
|ρ1(x, y, k)−ρ0(x, y, k)| ≤ η̃(y) uniformly for 0 < k ≤ 1. Therefore, |ρ1+(x, y)−
ρ0+(x, y)| ≤

∫ 1
0 |ρ1(x, y, k)− ρ0(x, y, k)|dk ≤ η̃(s). The same type of argument

works for ρ− because ρ−(x, y) =
∫ 1
0 ρ(x,−y, k)dk. �



DUAL SYSTEMS 9

3. The UAA Teichmüller space

The endomorphism p(z) = zm of S1 is a degree m circle endomorphism and
its lift via the covering mapping π is P (x) = m x. That is, P (0) = 0 and
π ◦ P = p ◦ π. Obviously, pn is UAA with constant M = 1. We will ultimately
learn that the restriction to the unit circle of the ratio of Blaschke products,

f(z) =

∏k+m
j=1

z−αj

1−αjz∏k
j=1

z−βj

1−βjz

,

for sufficiently small |αj | and |βj |, is also a degree m UAA circle endomorphism.

Theorem 2. Given any degree m UAA circle endomorphism f, there is exists
a unique quasisymmetric map h such that h ◦ p ◦ h−1 = f, where p(z) = zm.

Proof. We begin by using the dynamics of the iterations of p and f to construct
a self map H of R satisfying

i) H(0) = 0,

ii) H ◦ T = T ◦H and
iii) H ◦M = F ◦H.

From H(0) = 0 and H ◦ T k(0) = T k ◦ H(0), we conclude that H(k) = k.

Note that F ◦ T (0) = Tm ◦ F (0) and F (0) = 0 implies that F (1) = m. Also,
F ◦ T = Tm ◦ F implies

Fn ◦ T = Tmn

and so Fn(1) = mn. Since F is an increasing homeomorphism, F (0) = 0
and Fn(1) = mn, we may select numbers aj,n between 0 and 1 such that
Fn(aj,n) = j for integers j and n with 0 < j < mn. Then, by definition, if we
put H(j/mn) = aj,n, we obtain

H ◦ Pn(j/mn) = H(j) = j and Fn ◦H(j/mn) = Fn(aj.n) = j.

This defines H on a dense set of the unit interval with the property that for
points x in the dense set H ◦P (x) = F ◦H(x). We extend H to a dense subset
of the interval [k − 1, k] by requiring that H ◦ T k = T k ◦H.

In the definition of a UAA system put x = j/mn and t = 1/mn. Then we
obtain

1
M

≤ aj+1,n − aj,n

aj,n − aj−1,n
≤ M.

This is what is required to construct a quasiconformal homeomorphism H̃ of
C with restriction to the real axis equal to H and with a Beltrami coefficient
µ such that ||µ||∞ < 1. �

Definition 4. The Teichmüller space T (m) consists of all UAA circle endo-
morphisms of degree m > 1 factored by an equivalence relation. Two endomor-
pisms f0 and f1 representing elements of T (m) are equivalent if, and only if,
there is a symmetric homeomorphism h of S1 such that h◦f0 ◦h−1 = f1. Since
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the dynamics of the mappings T , M and F uniquely determine the points aj,n

the mapping H is unique.

4. UAC Systems

If fn is a UAA circle endomorphism, it is possible that f has a reflection
invariant extension f̃ defined in a small annulus r < |z| < 1/r such that

f̃(1/z) = 1/f̃(z),

and such that for every ε > 0 there exists a possibly smaller annulus U = {z :
r′ < |z| < 1/r′} such that

(15) Kz(f̃−n) < 1 + ε

for all z in U. Here Kz(g) is the dilatation of g at z and inequality (15) is
meant to hold for almost every z in U and for all positive integers n. If such
an extension exists, then f̃n is called a uniformly asymptotically conformal
dynamical (UAC) system.

Lemma 3. If f̃n is a UAC system acting a neighborhood of S1, then fn = the
restriction of f̃n to S1 is a UAA system.

Lemma 4. For any UAC system f̃n acting on a neighborhood of S1 with
f̃(1) = 1, there is a unique lift F̃ to an infinite strip containing R and bounded
by lines parallel to R such that

(1) π ◦ F̃ = f̃ ◦ π,

(2) F̃ (0) = 0
(3) F̃ ◦ T = Tm ◦ F̃ , and
(4) F̃ preserves the real axis, in fact, F̃ (z) = F̃ (z).

Lemma 5. In the notation of the previous lemma, if f̃n is UAC then F̃n is
UAC in the sense that for every ε > 0, there is a δ > 0 such that if the absolute
value of y = Im z is less than δ, then

Kz(F̃−n) < 1 + ε.

Theorem 3. If f is a UAA system acting on the unit circle, then there exists
a UAC system f̃ acting in a neighborhood of the circle such that the restriction
of f̃ to the circle is equal to f.

Proof. Let (F, T ) be the lift to the real axis of the system f such that F (0) = 0,

F ◦ T = Tm ◦ F and such that π ◦ F = f ◦ π. By Theorem 2 there is a
quasisymmetric homeomorphism H of R fixing 0 and 1 such that

i) H ◦M ◦H−1 = F where M(x) = m x, and
ii) H ◦ T ◦H−1 = T where T (x) = x + 1.

By Lemma 5 it will suffice to find an extension F̃ of F such that
i) F̃ ◦ T (z) = Tm ◦ F̃ (z)
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and
ii) the Beltrami coefficients µF̃−n of F̃−n satisfy

|F̃−n(x + iy)| ≤ ε(y)

where ε(y) is independent of n and x.

We define F̃ to be H̃ ◦M ◦ H̃−1. Since H̃ extends H, clearly F̃ extends F.

Since have F−n◦H and H have quasisymmetric distortions ρ1 and ρ2 satisfying

|ρ1(x, y)− ρ2(x, y)| ≤ ε(y),

by Theorem 1 the Beltrami coefficients µ ˜F−n◦H
and µH̃ satisfy

|µ ˜F−n◦H
(z)− µH̃(z)| ≤ η(y),

where η(y) is independent of n > 0. Since

˜F−n ◦H = ˜H ◦M−n = H̃ ◦M−n,

we conclude that
|µH̃(m−nz)− µ(z)| ≤ η(y).

Also, since the Beurling-Ahlfors extension is affinely natural, µ(z + 1) = µ(z)
and H̃ ◦ T ◦ H̃−1(z) = T (z). We conclude that F̃ = H̃ ◦M ◦ H̃−1 and T form
a uniformly asymptotically conformal circle endomorphism of degree m. �

5. Dual UAC systems, scaling functions and solenoid functions
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