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Abstract

In this paper, we first present a self-contained but slightly different
introduction on a finite version of the so-called Thurston earthquake the-
orem given in [8]. Then by using finite earthquakes, we show there exists
a homeomorphism Φ between the real analytic Teichmüller space Tn of a
set of n + 3 variable labelled points cyclically arranged on the unit cir-
cle and the interior of the n-dimensional associahedron Kn+2. We also
show how to obtain the faces of a compactification T n of Tn by letting
certain finite earthquake parameters approach ∞. The homeomorphism
Φ naturally extends to these faces so that they themselves are realized as
products of lower dimensional Teichmüller spaces. Without using Teich-
müller’s theorem, we show that Tn is isomorphic to an n-dimensional open
ball. Furthermore, the relationships among the faces of the associahedron
Kn+2 provide a combinatorial view of how pieces of Tn are sewn together
to form the interior of Kn+2.

1 Introduction

The associahedron Kn+2 is a complex of dimension n with a combinatorial
structure determined by the different associations of n + 2 letters. It consists
of a large number of cubes of dimension n sewn together in a certain way.
The exact number is the number of all of the different ways of associating a
multiplication on n + 2 ordered factors. Each cube is labelled by the maximal
associations of the n + 2 letters and the faces of the cubes are labelled by the
partial associations. The cubes are sewn together along faces according to their
labels. The associahedrons on three, four and five letters, K3, K4, and K5, can
be easily constructed as follows.

In the case n = 1 we have three factors a, b and c with two associations a(bc)
and (ab)c. K3 is a union of two closed line segments labelled a(bc) and (ab)c
which are joined together at a central point which is labelled abc.. Clearly, K3

can be embedded in R. It is a one-dimensional complex.
In the case n = 2 we have 4 factors a, b, c and d with five associations,

((ab)c)d, (ab)(cd), a((bc)d), (a(bc))d, a(b(cd)).

The maximal and partial associations of abcd are arranged in a partially ordered
set in Figure 1. We view the diagram as a picture of the ordering and regard the
association abcd with no parentheses as its smallest element. Any association
that can be obtained from another by adding matching pairs of parentheses is
considered larger.

K4 is a pentagon; its interior is labelled abcd, its five sides are labelled with
the five partial associations of four letters, and its five vertices are labelled with
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abcd

(ab)cd (abc)d a(bc)d a(bcd) ab(cd)

((ab)c)d (a(bc))d a((bc)d) a(b(cd))

(ab)(cd)

Figure 1: Partial ordering for the partial associations for K4.

the five maximal associations. Each vertex is adjacent to a side if the label on
the vertex can be obtained by adding one pair of parentheses to the label on the
adjoining side. We see that each edge of K4 is a one-dimensional associahedron,
the edges form a simple closed curve in R2 and K4 is represented by the 2-
dimensional complex shown in Figure 2.

For K5 we have 5 factors a, b, c, d and e with 14 maximal associations:

((ab)(cd))e, a((bc)(de)), two stars
a((b(cd))e), ((a(bc))d)e, (ab)(c(de)), three left accordions
a(b((cd)e)), (a((bc)d))e, a(b((cd)e)), three right accordions
(((ab)c)d)e, a(((bc)d)e), (ab)((cd)e),
(a(bc))(de), a(b(c(de))), (a(b(cd)))e.

}
six fans

The explanation for why these associations are called stars, accordions and fans
is given in the fourth paragraph of section 2 and in the caption to Figure 4.
K5 is represented by the three dimensional convex polyhedron shown in Figure
3. Its vertices are labelled by the fourteen maximal associations on five letters
a, b, c, d and e listed above.

The number of faces of different dimension of K5 breaks down as follows:
i) one three-dimensional cell,
ii) six pentagonal faces and three rectangular faces,
iii) twenty-one edges, and
iv) fourteen vertices.

In general, Kn+2 is a simple convex polytope of dimension n (see [3]), whose
faces are lower dimensional associahedra or products of lower dimensional as-
sociahedra. In the last section of this paper we will review the algorithm for
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abcd

(ab)cd

(abc)d

a(bc)da(bcd)

ab(cd)

(ab)(cd) ((ab)c)d

(a(bc))d

a((bc)d)

a(b(cd))

Figure 2: The associahedron K4.

constructing Kn+2, n ≥ 2 that appears in Devadoss [3]. It is obtained by trun-
cating an n-dimensional simplex by codimension one hyperplanes.

Now we consider the real analytic Teichmüller space Tn of dimension n.
Tn is a certain set of equivalence classes of n + 3 variable points cyclically
arranged on the unit circle. Two such labelled sets S = {p1, . . . , pn+3} and S′ =
{p′1, . . . , p′n+3} are considered equivalent if there exists an orientation preserving
Möbius transformation A preserving the circle such that A(pj) = p′j for 1 ≤ j ≤
n+3. Another way to view Tn is as equivalence classes of orientation preserving
homeomorphisms from the circle into the circle restricted to a fixed subset S of
the circle consisting of n+ 3 points. Two such maps h0 and h1 are equivalent if
there is a Möbius transformation A such that A ◦ h0(p) = h1(p) for every p in
S.

In this paper we show there exists a homeomorphism Φ between Tn and
the interior of the associahedron Kn+2. The tool for us to construct such a
homeomorphism is a finite version of the so-called Thurston earthquake theorem,
introduced in [8]. For the convenience of the reader, we give in the next section
a self-contained but sightly different introduction on this result. Furthermore,
by letting certain of the earthquake parameters approach∞, a compactification
Tn of Tn is realized in such a way that Φ extends to an isomorphism between
Tn and Kn+2. Thus, we obtain a natural cell structure for Tn without using
quadratic differentials or Teichmüller’s theorem. The relationship between the
faces of Kn+2 provides a combinatorial arrangement that shows how the pieces
of Tn and Tn are sewn together to form the interior of Kn+2 and Kn+2.

There are interesting relationships between this cell structure and other im-
portant theorems from the Teichmüller theory of a finite set of variable points
on a circle. In particular, Teichmüller’s theorem, [15], [2], [6], the theorem on
the existence of Jenkins-Strebel differentials with given heights, [14], [12], [9],
and the infinitesimal earthquake theorem, [5]. These are topics that should be
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a(bc)de

a(bcd)e
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(ab)((cd)e)
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a((b(cd))e)

(a((bc)d))e

a(((bc)d)e)
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((ab)c)(de)

Figure 3: The associahedron K5.

investigated further.
The theory of the associahedron was first developed by Stasheff [13] as a

topic in topology and is also related to problems in homological algebra [11]
and category theory [18]. In this paper we approach the subject from a different
viewpoint, namely, the viewpoint of Teichmüller geometry.

We are grateful to Reza Chamanara, Bill Harvey, Dennis Sullivan and Noson
Yanofsky for their help and encouragement.

2 The finite earthquake theorem.

In this section we revisit a finite version of the well-known earthquake theorem
of Thurston in [16], which tells us that any orientation-preserving homeomor-
phism of the unit circle is realized as the extension to the boundary of an
earthquake map on the interior unit disk. An earthquake map on the unit disk
is a piecewise Möbius transformation on domains separated by non-intersecting
hyperbolic geodesics such that the comparisons of the Möbius transformations
on different domains are hyperbolic, have their axes separating the domains, and
shift in the same direction. The union of these non-intersecting lines is called
the lamination for the earthquake and the amount of shifting is quantified by a
transverse measure. Provided the amount of shifting is controlled, the restric-
tion of the earthquake to the boundary of the unit circle is a homeomorphism.
In [16] Thurston gave a construction that shows that any homeomorphism of
the circle is realized in this manner by an earthquake and that its measure
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Figure 4: Different topological types of allowable laminations on six points. The
upper left figure is a star corresponding to the association ((ab)(cd))e. The upper
right is a fan corresponding to (a(b(cd)))e. The lower left is a left accordion
corresponding to (ab)(c(de)). The lower right is a right accordion corresponding
to a(b((cd)e)). By rotating these figures one sees that there are two stars, six
fans, three left accordions, and three right accordions, making a total of fourteen
allowable laminations corresponding to the fourteen possible associations.

and lamination are uniquely determined. Moreover, up to post composition by
a Möbius transformation, the homeomorphism can be reconstructed from its
lamination and measure.

In [8] Gardiner and Lakic gave a version of this theorem that applies to
the case that the homeomorphism is replaced by a cyclic order preserving map
h defined only on a finite subset S of the circle and mapping S bijectively to
another subset h(S). In their formulation a lamination L is allowable if it consists
of a finite number of non-intersecting geodesics joining points of S and if it has
the property that no line of L joins points adjacent in S. Using their finite
earthquake theorem and a limiting process, they deduce Thurston’s theorem for
arbitrary homeomorphisms, ([7] and [8]).

In this paper, consideration of only the allowable finite laminations is essen-
tial for two reasons:
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i) The different topological types of allowable laminations for a finite set
S with n + 3 elements correspond in an obvious way to the different possible
associations for the multiplication of n+ 2 letters.

ii) Without this property a finite earthquake is not uniquely determined
up to post composition with a Möbius transformation by its lamination and
measure.

To see how allowable finite laminations correspond to associations consider
the pictures shown in Figure 4. Six points are marked on the unit circle and the
intervals between them are labelled in counter-clockwise order with the symbols
a, b, c, d, e, and∞. Each line of the lamination divides the symbols into two sets.
Because the finite lamination is allowable, each of these sets contains at least two
symbols. To obtain the association corresponding to the lamination, we insert
a pair of matching parentheses that contains the set which does not include
the symbol ∞. We insert such a pair of matching parentheses for every line of
the lamination. In general, this procedure yields a one-to-one correspondence
between the maximal allowable finite laminations on subsets of n+3 points and
the full associations of n+ 2 letters.

A non-negative atomic measure σ associated to an allowable finite lamination
L is a collection of non-negative numbers λj associated to lines lj in L. We write
σ({lj}) = λj . Now we explain how the measure σ together with its lamination L
induces a left earthquake that yields a one-to-one order-preserving map h from
S onto another set S ′ = h(S) of n + 3 points in the unit circle. Note that L
consists of at most m ≤ n lines. These lines cut the disk into m + 1 pieces,
which we call the strata of the lamination. We choose any line lj0 of L, stand on
one side of that line and look across to the hyperbolic half-plane on the other
side. We shift every point of that half plane to the left by an isometry with
translation axis equal to the line lj0 and translation length equal to λj0 . All the
lines of the lamination lying in that half plane together with their endpoints
on the circle are also shifted to the left. Having done this, denote by sj0 the
stratum adjacent to lj0 in that shifted half plane. Now we move to each other
geodesic boundary line lk0 of sj0 and repeat the same process on the other side
of lk0 as we have done along the line lj0 . We repeat this process indefinitely
until we have used every line of L lying in this half-plane. Then we turn around
1800 and do the same thing in the half plane lying on the other side of lj0 . In
the end, we obtain a map Eσ,j0 which is discontinuous along the lines lj0 but
which extends to a homeomorphism of the boundary of the unit disc ∂D. Eσ,j0
maps the finite set S one-to-one and onto a set S ′ and it depends on σ and the
choice of the line lj0 in L. However, up to post composition by an orientation
preserving isometry, it is independent of this choice. That is, if we had started
at a different line lj1 of L and followed the same procedure, then there would
be an isometry A0,1 of D, such that

A0,1 ◦ Eσ,j0 = Eσ,j1 .

Since up to post-composition by Möbius transformations the maps Eσ,j do not
depend on j, we denote the coset class PSL(2,R) ◦ Eσ,j by Eσ.
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Given this notation we can now state the finite earthquake theorem given
by Gardiner and Lakic in [8].

Theorem 1. (The finite earthquake theorem). Suppose

S = {p1, . . . , pn+3} and S ′ = {p′1, . . . , p′n+3}

are two finite subsets of the same cardinality, both arranged in counterclockwise
cyclic order on the circle and assume h(pj) = p′j . Then there exists a unique
allowable lamination L for S and a unique measure σ supported on L such
that, up to post composition by an orientation preserving isometry of D, the
left earthquake map Eσ maps pj to p′j . The measure σ and its corresponding
lamination are uniquely determined by the locations of the points of S and S ′.

The key to the proof of this theorem is the following lemma.

Lemma 1. ([8]) Let h be the map from S onto S′ with h(pi) = p′i, where
1 ≤ i ≤ n+ 3. There exists an orientation preserving Möbius transformation A
preserving the unit disk such that the post composition A ◦ h of h by A fixes at
least three points in S and moves all other points counter-clockwise.

In [8] Gardiner and Lakic show inductively how to find the isometry A and
the three fixed points of A ◦ h. They also give a recurrence process that finds
the lamination and the weights that are assigned to its lines. On his website,
http://comet.lehman.cuny.edu/lakic, Lakic uses this recurrence to give a Maple
program which finds the lamination and the measure.

In the following, we present another proof in which the isometry A is directly
constructed as a composition of three isometries of different types, that is,

A = (hyperbolic translation) ◦ (parabolic translation) ◦ (rotation).

Proof. The proof is comprised of the following steps:

1. Select a rotation A1 around the Euclidean center of the unit disk such
that h1 = A1 ◦ h has at least one fixed point pj in S.

2. We show that there exists a parabolic translation A2 fixing pj and pre-
serving the unit circle and such that h2 = A2 ◦ h1 has at least two fixed points
pk and pj and all other points pl are either fixed or moved counter-clockwise by
h2.

For the convenience of the proof, we change coordinates so that the hyper-
bolic plane is realized by the upper half plane H and the point pj is placed at
∞. Then all of the points pk and p′k = h1(pk) are located on the real axis. Put
b equal to the minimum value of p′k − pk over all values of k not equal to j and
let this minimum be realized by k. Then by putting A2(z) = z− b, h2 = A2 ◦h1

fixes pk and pj and for every other point pl, p′l = h2(pl) ≥ pl.

3. We show that there exists a hyperbolic translation A3 with translation
axis joining pk to pj and such that h3 = A3◦h2 has at least three fixed points pj ,
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pk and pl and all other points in S are either fixed or moved counter-clockwise
by h3.

Now we change coordinates so that pj = ∞ and pk = 0. If there are points
pl, l 6= j, k, of S on the both sides of the origin, one can use the points on either
side to construct A3, in another word, there are two candidates for A3 in this
situation. Otherwise, there is only one candidate for A3.

If we assume there are points pl on the negative real axis, then pl ≤ p′l =
h2(pl) < 0 and we let λ− be the largest possible value of p′l/pl among those values
of l for which pl is negative. Clearly, 0 < λ− ≤ 1. By letting A3(z) = z/λ−,
h3 = A3 ◦ h2 will fix pj , pk and pl and, for every other point pm in S either on
the positive or negative real axis, h3(pm) ≥ pm.

Similarly, if there are points pl on the positive real axis, then we let λ+

be the smallest possible value of p′l/pl among those values of l for which pl is
positive. Clearly, λ+ ≥ 1. By taking A3 of the same form A3(z) = z/λ+, we
obtain the same conclusion on h3 = A3 ◦ h2.

The desired isometry A is equal to A3 ◦A2 ◦A1.

To prove the finite earthquake we start with the lemma which guarantees
there is an orientation preserving, non-Euclidean isometry A, such that A ◦ h
fixes a finite subset of S consisting of three or more points and moves all other
points of S to the left. Since there are three such points in S, at least two
of them must be non-adjacent. Let l the hyperbolic line that joins these two
non-adjacent points and Hl the half-plane lying on one side of l that contains a
third point of S. Since all points of S that lie on the boundary of Hl are moved
to the left, there is one such point which is moved the least to the left. If Bl is
a hyperbolic transformation Bl with axis l that moves pl to p′l, then B−1

l ◦A ◦h
still moves to the left all points of S that are on the boundary of the half-plane
Hl. Then we put weight σ({l}) equal to the translation length of Bl, and repeat
the same procedure for the restriction of B−1

l ◦A ◦ h on the two half-planes on
both sides of l.

To prove the uniqueness assume there are two finite earthquake representa-
tions (Eσ,L) and (E′σ′ ,L′). We first show no line l of L can cross any line l′

in L′. If l in L crosses l′ in L′, let a and c be the endpoints of l and b and d
be the endpoints of l′, where a, b, c, d are in counter-clockwise order. Let B be
the isometry that maps a, b, c to h(a), h(b), h(c) respectively. Then B−1 ◦h fixes
a, b, c and moves d counter-clockwise. Now let B′ be the hyperbolic isometry
with translation axis connecting a to c and moving B−1 ◦ h(d) back to d. Then
B′ ◦ B−1 ◦ h fixes a, c, d and moves b clockwise. Since l′ belongs to L′ and
B ◦ (B′)−1 is the isometry uniquely determined by the values of h at a, c and d,
B ◦ (B′)−1 ◦ h must move b counter-clockwise. This is a contradiction. Thus no
line in L can cross any line in L′.

After obtaining the non-crossing property between the lines in L and L′,
in order to prove L = L′ and the uniqueness of the weight of each line in the
lamination, we first add each line of L′ but not in L to L with 0 weight and vice
versa. Thus both expanded L and L′ are equal to L∪L′ with possible 0 weights.

8



Now we only need to prove the weight of each line l in L under E is equal to
the weight of l under E′. By following the step 3 in the proof of the previous
lemma, if we assume this line connects 0 to ∞, then the weight of this line is
equal to lnλ+ + ln 1

λ−
. (If the negative or positive real axis contains no points,

then the corresponding summand is zero.) According to the construction, this
value is uniquely determined by h. Therefore, L and L′ have same lines with
non-zero weights. Thus L = L′ and the weights also unique.

3 The combinatorial structure of Tn

In this section we use finite earthquakes to study the combinatorial structure of
Tn. We first introduce an embedding of the associahedron Kn+2 into a much
higher dimensional vector space. Then we show Tn is homeomorphic to the
interior of the embedded image of Kn+2.

Let Pn+3 be a convex polygon in the Euclidean plane with n+3 sides. Label
the sides of the polygon in the counterclockwise direction with the symbols,

a1, a2, . . . , an+2,∞.

Consider the set Λn of all diagonals, that is, straight line segments joining non-
adjacent vertices of Pn+3. Notice that Λn has N elements where

N =
(
n+ 3

2

)
− (n+ 3). (1)

Let I = [0,∞), the positive real axis together with 0, and let I = [0,∞], the
compactification of I.

Definition. We define An+2 (resp. An+2) to be the closed subset of the product
space IN (resp. I

n
) consisting of vectors v = (v1, . . . , vN ) such that each vj ∈ I

(resp. I
N

) and such that any two non-zero entries vi and vj of v correspond to
diagonals di and dj of Pn+3 that do not intersect.

Corollary of the definition. An+2 and An+2 are contractible Hausdorff spaces
and An+2 is compact.

Proof. An+2 is compact because it is a closed subset of the compact product
I
N
. An+2 and An+2 are contractible because any contraction of I or of I can

be extended to a contraction of An+2 or An+2 since the condition that v be a
vector in An+2 or in An+2 is preserved throughout the contraction.

There is a partition of An+2 into cells of dimensions k ≤ n. By a finite
lamination L of Pn+3, we shall mean a set of n or fewer, non-intersecting
diagonals. Then we let F (L) be the set of all vectors v in An+2 for which the
entries vj corresponding to diagonals dj in L are equal to ∞ and the other
entries are not equal to infinity. Combinatorial formulas for the numbers of the
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laminations L consisting of fixed numbers of the lines in Λn are well-known,
[17]. For example the number of L’s of maximal size n is equal to the Catalan
number

1
n+ 2

(
2n+ 2
n+ 1

)
. (2)

For different laminations L of Pn+3, the sets F (L) comprise the interiors of the
faces of the associahedron of dimension n.

To introduce Teichmüller coordinates to An+2, we choose Pn+3 to be the
regular polygon circumscribed by the unit circle. Thus the set S of the vertices
of Pn+3 consists of n+3 equally spaced points on the unit circle. We also replace
the diagonals by hyperbolic lines joining pairs of non-adjacent points of S. The
Teichmüller space T (S) consists of deformations of S to variable sets of n + 3
cyclically ordered points also lying on the unit circle, factored by PSL(2,R).
By the finite earthquake theorem the points of T (S) are parameterized by the
vectors v in An+2. In fact, this parametrization introduces a continuous isomor-
phism between T (S) (with the Teichmüller metric) and An+2 (with the topology
inherited from the product topology of IN .)

The next theorem is justification for these statements. Before proceeding
to it, we recall the definition of the Teichmüller’s metric and the Teichmül-
ler topology. The Teichmüller distance between two ordered (n + 3)-tuples
p1, . . . , pn+3 and p′1, . . . , p

′
n+3 is logK(h) where K(h) is the smallest possible

dilatation of a quasiconformal map h preserving the unit disk such that h(pj) =
p′j , 1 ≤ j ≤ n+ 3.

Lemma 2. Let p = (p1, . . . , pn+3) be an ordered set of n+ 3 points on the unit
circle. Let Uε be the set of variable points p′ = (p′1, . . . , p

′
n+3) with that property

that there is a Möbius transformation A preserving the unit disk for which

|pj −A(p′j)| < ε for 1 ≤ j ≤ n+ 3.

Then Uε(p), ε > 0 forms a neighborhood basis in the the Teichmüller topology
at the point represented by p in Tn.

Proof. First assume p′ is close to p in the Teichmüller topology, that is, for a
given α > 0, there is a quasiconformal map h preserving the unit disk such that
h(pj) = p′j and such that K(h) < 1 + α. Then every extremal length problem
for topological quadrilaterals in the unit disk with sides on the unit circle and
vertices taken from the points of S must be K−quasi-preserved by h. Since
these extremal lengths are strictly monotone functions of cross-ratios, the same
is true about the cross ratios. That is, there exists a β > 0 depending on α and
the spacing between the points of S, such that

| log
cr(a′, b′, c′, d′)
cr(a, b, c, d)

| < β. (3)

Here, a, b, c, d and a′, b′, c′, d′ are arbitrary quadruples taken from the sets S and
S′ with h(a) = a′, h(b) = b′, h(c) = c′, h(d) = d′ and

cr(a, b, c, d) =
b− a
c− b

· d− c
d− a

.
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We shall denote the quantity inside the absolute value on the left side of (3) by
crhd (Q) and call it the cross ratio distortion of h on the quadruple Q = {a, b, c, d}.
For an explanation of the functional relationship between cross ratio distortion
and extremal length see [1] or [10].

To complete the proof we must show that if p is in Uε for arbitrarily small ε
then there is a qquasiconformal map h preserving the unit disk and carrying pj
to p′j such that logK(h) = δ for arbitrarily small δ. Since K(h) = K(A ◦ h ◦B)
for any Möbius transformations A and B, we may assume the points pj and
p′j lie on the real axis. We may also assume p1 = p′1 = ∞, p2 = p′2, p3 = p′3
and |pj − p′j | < ε for 4 ≤ j ≤ n + 3. Now choose δ equal to the minimum
distance |pj+2 − pj+3| for 1 ≤ j ≤ n. For each such pj construct a square Rj
centered at pj with side length equal to δ and with top and bottom parallel
to the x-axis. Notice that the rectangles Rj are disjoint for different values of
j. Also, the two diagonals of Rj intersect at pj and cut Rj into four triangles.
If |p′j − pj | < δ/2 then p′j lies in the interior of Rj and the piecewise affine
map h that is the identity on the exterior of the union of the rectangles Rj and
moves pj to p′j = pj + ε is a quasiconformal. Moreover, it is easy to see that
K(h) ≤ 1 + C|ε|.

Theorem 2. The earthquake parametrization is a homeomorphism from Tn
onto An+2.

Proof. Let S = {p1, . . . , pn+3} be a fixed set of n+ 3 cyclically ordered, equally
spaced points on the unit circle. A point in Tn is represented by another set
of n + 3 cyclically ordered points S′ = {p′1, . . . , p′n+3}. Two such sets S′ and
S′′ represent the same point if and only if there is a Möbius transformation
preserving the unit disc such that A(pj) = p′j for 1 ≤ j ≤ n+ 3.

The finite left earthquake parametrization yields a map Φ : An+2 → Tn. By
definition a vector v ∈ An+2 has a finite number of positive entries v1, . . . , vm
with m ≤ n while all other entries are equal to zero. Each nonzero entry
corresponds to a hyperbolic line lj to which we assign the weight vj . The totality
of these lines comprise a finite lamination L, and also by definition no two of
these lines intersect and none of them join adjacent points of S. We have seen
in the Introduction how the data consisting of these lines together with their
weights produce a homeomorphism f of the unit circle, well-defined up to post
composition by a Möbius transformation. We define Φ(v) to be the map f
which takes S to S′ = f(S). By the finite earthquake theorem, Φ is a well-
defined bijection from An+2 onto Tn.

We claim that Φ is a homeomorphism. To show that Φ is continuous suppose
that v is a vector in An+2 and v′ is another vector close to v. That means that
every entry v′j of v′ is close to the corresponding entry of vj of v in the sense
that |v′j − vj | < ε. Reorder the entries of v so that v1, . . . , vm are positive and
the rest of its entries are equal to zero. Note that by hypothesis the lines lj
corresponding to vj for 1 ≤ j ≤ m form the lines of a finite lamination L and
if 0 < ε < min1≤j≤m vj , then v′j is also positive and, therefore, the lines of the
lamination L′ for Φ(v′) include all of the lines of L. There may be other lines of
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L′, but since |v′k − vk| < ε for all k, the values of v′k for k > m must lie between
0 and ε. If we start the construction of the earthquake for v and for v′ on the
same stratum of L, it is now clear that the two constructed maps h and h′ will
be nearly equal on S, and this shows that Φ is continuous.

We must show that Φ−1 is continuous, that is, that the earthquake parametriza-
tion maps Tn to An+2 continuously. Let [f ] and [g] be two points in Tn, and
(σf ,Lf ) and (σg,Lg) be the corresponding earthquake measures and lamina-
tions for f and g. By Lemma 2 if [f ] and [g] are close in the Teichmüller metric
then the cross-ratio distortions of f and g on any quadruple of points contained
in S are close. So we assume that the difference of cross-ratio distortions of f
and g on every quadruple in S is less than ε.

Claim 1: If a geodesic lf in Lf crosses a geodesic lg in Lg, then both the
weights λf of lf in σf and λg of lg in σg are less than ε.

Denote the endpoints of lf by a and c and the endpoints of lg by b and d and
label these endpoints so that the quadruple Q = {a, b, c, d} is arranged counter-
clockwise on the unit circle. Let crfd (Q) and crgd(Q) be the cross-ratio distortions
on the quadruple Q under f and g respectively. Under the earthquake map for
f , the weights on all other geodesics in Lf may move b or d further to the left
before the movement corresponding to λf . Therefore the cross-ratio distortion
crfd (Q) is greater than or equal to the cross-ratio distortion of Q under the earth-
quake map Efl with only one geodesic ll and weight λf . But that the cross-ratio
distortion of Q under Efl is equal to λf . Therefore crfd (Q) ≥ λf . Similarly,
crgd({b, c, d, a}) ≥ λg and so crgd(Q) = −crgd({b, c, d, a}) ≤ −λg. Therefore,

ε > |crfd (Q)− crgd(Q)| ≥ λf + λg.

Hence λf < ε and Lg < ε.

Claim 2: If a geodesic lf is in Lf but not in Lg and Lg has no geodesic crossing
lf , then λf < ε; vice versa, it is also true.

Denote the endpoints of lf by a and c. Then in S, there must be a point
b on one side of lf and another point d on the other side of lf such that the
four points a, b, c, d lie in the Euclidean closure of a single stratum of Lg. Now
let Q be the quadruple consisting of a, b, c, d labelled counterclockwise on the
unit circle (exchange the labels of b and d if necessary.) Then crfd (Q) ≥ λf and
crgd(Q) = 0. Therefore

ε > |crfd (Q)− crgd(Q)| ≥ λf .

Claim 3: If a geodesic l is contained in both Lf and Lg, then |λf − λg| < ε.

The proof of this claim is similar to claim 2 except that now crgd(Q) = λg.
Thus

ε > |crfd (Q)− crgd(Q)| ≥ |λf − λg|.

12



Claims 1, 2 and 3 together imply that σf and σg have distance at most 2nε
in the metric on An+2. Thus the earthquake parametrization maps Tn to An+2

continuously.

4 The structures of the faces of the associahe-
dron

In this section we study the Teichmüller structures of the interiors of the faces
of the asociahedron. More precisely, we show:

Theorem 3. For every lamination L of Pn+3, the interior of the face F (L) is
isomorphic to a Teichmüller space or a geometric product of Teichmüller spaces.
In particular, F (∅) is isomorphic to Tn+3 and for any maximal lamination L
consisting of n lines in Λn, F (L) is a single point.

Proof. Let Uj be the closure of j-th component of the complement of L in D.
Each Uj contains a subset Sj of 3 or more points of S on its boundary, where
1 ≤ j ≤ m. Let P (j) be the Euclidean convex hull of Sj . Let A(S,L, λ) be
the set of the elements of An+2 that the coordinates of the diagonals in L are
equal to the entries of a fixed vector λ = (λ1, . . . , λk) consisting of non-zero
weights. Now let A(Sj) be the set of the elements in An+2 that the coordinates
of only those diagonals of P (j) are allowed to be non-zero. Then A(S,L, λ) is
isomorphic to the direction sum of A(Sj)’s, that is,

A(S,L, λ) ∼= A(S1)⊕A(S2)⊕ · · · ⊕A(Sm).

By the finite earthquake theorem and changing hyperbolic geodesics to the
Euclidean segments connecting the same endpoints, the points of each T (Sj) is
parameterized by those vectors v in A(Sj). Therefore, A(S,L, λ) is isomorphic
to the product space of T (Sj)’s, that is,

A(S,L, λ) ∼= T (S1)× T (S2)× · · · × T (Sm).

Note that when L is empty, A(S,L, λ) ∼= T (S) and when L is maximal, that is,
when it contains n lines, then T (L, λ) reduces to a single point. By letting all
of the weights λ1, . . . , λk simultaneously approach ∞ we obtain

F (L) ∼= T (S1)× T (S2)× · · · × T (Sm).

5 The realization of An+2 as a polytope

We choose an increasing homeomorphism from I = [0,∞] onto J = [0, 1]. Then
there is an induced homeomorphism H from I

N
onto JN and we let Bn+2 =

H(An+2). We will show that there is a homeomorphism from Bn+2 onto a
closed unit ball in Rn. More precisely, we obtain
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Theorem 4. There is a a piecewise affine homeomorphism h from Bn+2 onto an
n-dimensional simple convex polytope Kn+2 (commonly called the associahedron
of dimension n). The homeomorphism h carries H ◦ F (∅) onto the interior of
Kn+2 and for any lamination L of Pn+3, it carries H ◦ F (L) onto the interior
of a face of Kn+2 of codimension k, where k is the number of the diagonals in
L.

Proof. To proceed with the prooof we must first summarize the algorithm pre-
sented by Devadoss in [3] and [4] used to construct Kn+2. Kn+2 is obtained
by truncating an n-dimensional simplex by codimension-1 half-planes. We will
see the above theorem follows as a natural consequence by cutting Kn+2 into a
union of cubes and labelling the faces of Kn+2 with the finite subsets of non-
intersecting diagonals of Pn+3. These subsets correspond to the full and partial
associations of n+ 2 factors written in order.

Let there be given a set of congruent regular (n+ 3)-gons with sides labelled
with the symbols {x1, . . . , xn+2,∞} in cyclic counterclockwise order and each
with different diagonal marked in. Also let Gn be the set of these polygons. We
will say that two elements G1 and G2 in Gn satisfy the nonintersecting condition
if the superposition of G1 onto G2 by a congruence respecting the labeling of
the sides does not have intersecting diagonals.

The diagonal of an element G of Gn divides the (n+ 3)-gon into two parts.
The part that does not contain the side marked with∞ is called the free part of
G. Let Gin be the collection of the elements in Gn that have i sides on their free
parts. It is easy to see that the order of Gin is n+ 3− i, where 1 < i < n+ 2. In
particular, the order of G2

n is n+ 1, which is the number of sides (codimension
one faces) of an n-dimensional simplex Wn. Arbitrarily label each face of Wn

by an element of G2
n.

Notice that the label on some adjacent faces of Wn do not satisfy the non-
intersecting condition. This is an obstruction to the simplex satisfying the
assciahedron condition. In order to overcome this obstruction, it is natural to
truncate the vertices, bring in more faces and introduce new labels. In fact, this
is how it is carried out in [3], and it is organized in an inductive way as follows.

Step I: Truncating two vertices.
Check all vertices (codimension n faces) of Wn and find the two vertices that

satisfy the following condition. For each of these two there exists an element
G in Gn+3−2

n such that G satisfies the nonintersecting condition with the labels
of all faces adjacent to that vertex. Now truncate those two vertices off Wn

by two codimension 1 half-planes and label the two new faces (two simplices of
dimenson n− 1) by the corresponding two elements in Gn+3−2.

n Then the labels
of the new faces and their adjacent ones satisfy the nonintersecting condition.
We continue to call the resulting simple convex polytope Wn. Figure 4 shows
how K4 is constructed.

Step II: Truncating some edges if n ≥ 3.
Check the edges (codimension n− 1 faces) of Wn and find those edges that

satisfy the following condition. For each of them there exists an element G in
Gn+3−3
n such that G satisfies the nonintersecting condition with the labels of all
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Figure 5: The construction of C4 through truncation.

Figure 6: The construction of C5 through truncation.

faces adjacent to that edge. Now truncate those edgesWn by codimension 1 half-
planes and label the new faces by the corresponding elements of Gn+3−3. Then
the labels of the new faces and their adjacent faces satisfy the nonintersecting
condition. We continue to call the resulting simple convex polytope Wn. Figure
5 shows how K5 is constructed.

Step III: If n ≥ 4, inductively find the codimension i faces that the labels of
their adjacent codimension 1 faces do not satisfy the nonintersecting condition,
truncate them by codimension 1 half-planes, and finally label the new codimen-
sion 1 faces by the corresponding elements in Gn+3−i

n for i = 4, 5, · · · , n. The
resulting simple convex polytope is Kn+2.

In the course of truncating Wn to construct Kn+2, the truncations of the
faces of dimension i add i + 2 new faces to the polytope and each is labelled
by an element in Gi+2

n , where i = 0, 1, · · · , n − 2. Therefore, Kn+2 has the
number of its codimension 1 faces equal to

∑n−2
i=0 |Gn+1−i

n |, which matches with
the number of codimension 1 faces of Kn+2.

Now we are ready to begin the proof of Theorem 4. Identify each diagonal
of Λn with the regular (n+ 3)-gon with that diagonal, that is an element of Gn.
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Then each maximal lamination L corresponds to the regular (n + 3)-gon with
n non-intersecting diagonals, which labels a vertex of the associahedron Kn+2

and is equal to the union of the labels of its adjacent codimension-1 faces. Now
we view all vertices of Kn+2 as the centers of the faces dimension 0 and for each
1-dimensional face take any interior point as its center. Then we inductively
select the centers for the faces of Kn+2 of higher and higher dimension. For each
2-dimensional face of Kn+2, we take as its center an interior point in the convex
hull of the centers of the edges of that face; for each 3-dimensional face of Kn+2,
we take as its center an interior point of the convex hull of the centers of all
2-dimensional faces of those 3-dimensional faces. We continue inductively until
we obtain a center for Kn+2 itself. In fact, we also use the regular (n+ 3)-gon
with nonintersecting diagonals to label these centers as we have labelled the
vertices and codimension-1 faces. See Figure 2 for the labels of the centers of
K4 by the associations on four factors and Figure 3 for the labels of the centers
of some faces of K5.

Now given the label V of a vertex of Kn+2, denote by 2V the collection
of the labels of the faces of Kn+2 whose diagonals form a sub-collection of
the diagonals of the label of V , and denote by L the corresponding maximal
lamination for V . Let ∆ be the convex hull of the set consisting of the centers of
the faces with labels in 2V and let Γ be the image under H of the closure of the
cube generated by the vectors with non-negative coordinates for the diagonals
in L and zero coordinates for the diagonals not in L. Then there exists an
affine homeomorphism from Γ onto ∆, which maps the vertices of Γ to the
vertices of ∆ respectively according to their labels and have linear extensions
among the corresponding simplices. All these affine homeomorphisms are pasted
together to provide a piecewise affine homeomorphism between Bn+2 and Kn+2.
Furthermore, this piecewise affine homeomorphism maps the faces of Bn+2 onto
the respective faces of Kn+2, according to their labels. This completes the proof
of the theorem.
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