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Introduction

The classical theorem that identifies Riemann surfaces of negative Euler char-
acteristic with surfaces carrying a hyperbolic structure is called uniformization. For
surfaces that have complex structure it gives simultaneously a common parametriza-
tion by a parameter varying in a simply connected domain. For topological reasons
the covering domain is connected and simply connected and, this being so, the uni-
formization theorem says that it must be conformal to either the Riemann sphere,
the complex plane or the unit disc.

Since this theorem was first proved more than a century ago by Koebe [16],
there have been many accounts, nearly all of them relying on some form of potential
theory and the classification of open surfaces into those that have and those that
do not have Green’s functions. The exposition given here differs in that it avoids
potential theory replacing it by the notion of extremal length. The proof involves
finding moduli of curve families and the existence of conformal mappings from
abstract doubly connected Riemann surfaces to planar annuli, that is, regions in
the plane of the form {z : 1/r < |z| < r}.

Our proof starts out the same way as it does in most classical expositions.
It is assumed there is given a simply connected Riemann surface X with a local
parameter z vanishing at a point p0 ∈ X and mapping a neighborhood of p0 onto
the unit disc in the z-plane. Then one forms the disc Dε(p0) = {p ∈ X : |z(p)| ≤ ε}
and tries to uniformize the annular surface Xε = X − Dε(p0). In our approach
we consider moduli M(An) of annuli An contained in Xεn with one boundary
component equal to the boundary of Dεn(p0), where εn is a sequence of positive
numbers that decrease to 0. Then we let M(An) be the extremal length of the family
curves contained in An and homotopic to the boundary of An. We first establish
that for such annuli with non-zero modulus there exists conformal maps zn that
map An onto a ring domains in the z-plane lying between |z| = 1 and |z| = Rn
where M(An) = 2π/ logRn.

There are two cases:
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Case 1. There exists a sequence of annuli An such that M(An) decreases to 0
as εn → 0. In this case we show X is conformal either to the complex plane or to
the Riemann sphere.

Case 2. For any such sequence of annuli An the moduli M(An) are bounded
below by a positive number independently of n. In this case we show X is conformal
to the unit disc.

In both cases we find uniformizing annuli or uniformizing punctured discs for
Xεn . We repeat the same constructions for the surfaces Xεn and obtain conformal
maps from Xεn onto annuli in the complex plane. Then we take the limit as εn
approaches 0 and the crux of the argument is to show that these limits exist.
The underlying entity that controls the limiting process is a quadratic differential,
holomorphic on X − {p0} and with a double pole at p0 whose regular trajectories
are closed and fill X − {p0} except for possibly one additional point.

Our proof could be given in one or two pages but we take the opportunity to
prove results with other applications and to develop the following ideas.

(1) weak measured foliations and their Dirichlet integrals,
(2) conjugate differentials and conformal metrics,
(3) pulling back measured foliations,
(4) intersection number and the Cauchy-Schwarz inequality,
(5) comparison of moduli of annuli to moduli of curve families,
(6) generalized locally L2 derivatives and Weyl’s lemma,
(7) integrable holomorphic quadratic differentials,
(8) Strebel’s variational technique,
(9) extremal lengths as moduli for Teichmüller space,

(10) Rado’s theorem on the separability of all Riemann surfaces.

We use a technique that involves an alternative expression for absolute intersec-
tion numbers of simple closed curves and prove several results that we believe have
not been previously noticed. In particular, we introduce the idea of intersection
number of weak measured foliations 1 and show how this kind of intersection ap-
plies to homotopy intersection of simple closed curves. For two closed curves α and
β the intersection i(α, β) is the total minimal number of intersections, all counted
positively, of the unoriented curves α′ and β′ where α′ and β′ are closed curves
freely homotopic in X to α and β, respectively. If we let A and B be arbitrary
annuli in X in the homotopy classes of α and β, we can define functions uA and
uB that are harmonic on A and B and that are equal to 0 and 1 on the two sides
of A and B, respectively. Then it turns out that

i(α, β) = inf

{∫ ∫
A∩B
|duA ∧ duB |

}
where the infimum is taken over all such annuli A and B. This inequality combined
with the Cauchy-Schwarz inequality(∫ ∫

A∩B
|duA ∧ duB |

)2

≤ Dir(|duA|)Dir(|duB |)

gives a way to estimate extremal lengths of measured foliations in terms of Dirichlet
integrals. It also brings in Riemann’s idea for showing the existence of harmonic

1In earlier papers I have used the terminology partial measured foliation instead of weak
measured foliation. The improved terminology was suggested by Dylan Thurston.
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functions, which is to minimize the Dirichlet integral with side conditions. In our
set-up we minimize the Dirichlet integral of a weak measured foliation subject to
the side conditions on its heights. The significance of intersection numbers in Teich-
müller theory was first developed in Thurston’s theory of measured foliations, [10]
[27]. See also [21].

The paper is organized into ten sections. In the first and second we define Rie-
mann surfaces, weak measured foliations, differentials, the Dirichlet integral, con-
jugate differentials and conformal metrics. In section 3 we show that the Dirichlet
integral of the pull back by a K-quasiconformal map of a weak measured foliation
is K-invariant. In section 4 we give a method for computing intersection number
and show how it can be estimated from above by Dirichlet integrals. In section 5
we define modulus of an annulus, observe that it is a conformal invariant and show
that the modulus M(A) of the closed curve family ΓA in A = {z : 1 < |z| < R} that
separates its two boundary contours is 2π/ logR. Section 6 presents several equiva-
lent ways to define the modulus of a free homotopy class of simple closed curves on
a Riemann surface. This is a key result that not only permits an elementary proof
of Koebe’s uniformization theorem but also provides a family of invariants that per-
mit the construction the extremal length embedding of any Teichmüller space [13].
In section 7 we present Strebel’s variational method which together with Weyl’s
lemma presented in section 9 provides the holomorphic quadratic differential whose
unique existence is the key to the equivalence of the four different formulas for
extremal length given in Theorem 1. In section 8 we prove the Riemann mapping
theorem and the uniformization theorem by the same method. In section 9 we
prove Weyl’s lemma and finally, in section 10, we discuss the one-dimensional C∞

manifold structure on the long line and the corresponding 2-dimensional manifold
structure on the long cylinder and observe how our proof of uniformization shows
why this 2-dimensional smooth surface cannot have subordinate complex structure.
This example is featured to clarify a theorem of Rado that says any Riemann sur-
face is metrizable by a metric that has a countable basis for its topology. Once the
uniformization theorem is proved Rado’s theorem is an obvious corollary. In study-
ing classical proofs of uniformization it is often difficult to see why the existence of
a complex structure forces the underlying topological space to be separable.

In the last analysis it turns out that the uniformizing coordinate for a simply
connected Riemann surface X can be found by solving two differently stated ex-
tremal problems that apply to a given point on any Riemann surface X. These two
problems both lead to an underlying cylindrical quadratic differential that has a
double pole at one point with a quadratic residue equal to −1. One fixes a local
parameter w that vanishes at a point p0 ∈ X. The first extremal problem involves
the family F of univalent functions that map the unit disc into X and that map 0
to p0 and it is to find a function f ∈ F that realizes the infimum

U = inf

{
1

|(w ◦ f)′(0)|
: f ∈ F

}
.

The second extremum problem involves something called the reduced extremal
length Q at the point p0 in X. One first finds the extremal distance in Xε from the
perimeter of a small disc of radius ε centered at p0 to the ideal boundary of Xε. The
reduced extremal lengthQ is obtained by correcting this constant by subtracting the
number (1/2π) log(1/ε) and taking the limit as ε decreases to 0. By using Koebe’s
distortion theorem for univalent functions holomorphic in the unit disc [3] one can
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show that U and Q are related by the formula U = exp(−2πQ), [20]. Case 1 occurs
when U = 0 and Q =∞, and in this case X is conformal to the Riemann sphere or
the complex plane. Case 2 occurs when U > 0 and Q < ∞, and in this case X is
conformal to the unit disc. One sees that for a simply connected Riemann surface
X finding the function inverse to the uniformizing function z amounts to finding a
univalent function holomorphic in the unit disc that realizes the extremal value U.
These ideas are developed in [20].

The uniformization theorem, a form of which is also known as Hilbert’s 22nd
problem [6], was developed over a period of time that starts with Riemann in the
mid nineteenth century and goes to the present. A summary of contributions up
to 1913 is given in Herman Weyl’s book, Die Idee der Riemannschen Fläche and
translated into English The Concept of a Riemann Surface, [29]. Koebe’s original
proof appears in three papers, the last one published in 1914, [16].

Most textbooks written for first semester courses in complex analysis contain
the Riemann mapping theorem which is preliminary to uniformization, but few
prove uniformization. Several of these are nicely summarized in Henry Kwan’s
Ph.D. 2004 thesis [17] written under the supervision of Yum-Tong Siu at Harvard
University. There is also a book written in French and edited by de Saint-Gervais
with chapters by fifteen mathemematicians published in 2010 [7].

Few expositions of Koebe’s theorem address the possibility that the Riemann
surface might be non-separable and none of them take advantage of the possibility
of proving uniformization using extremal length as the main tool. The extremal
length proof which can be described as a proof by exhaustion with annuli has at
least two advantages. First, the core of the argument is brief. Second, the extremal
length approach demonstrates a fundamental observation of Rado [23] that says if
a surface is connected and if it has a complex structure it must necessarily have
a countable basis for its topology. Essentally any piece-by-piece introduction of a
complex coordinates on a surface with a non-countable basis for its topology forces
the accumulation of nested annuli with moduli that increase to infinity. If the
surface is non-separable and connected this forces the existence of nodal points. By
definition nodal points do not admit local parameters.

The following authors are among those that include a statement of the theorem
and sometimes a proof in notes or books: Abikoff [1], Bers [5], Ahlfors and Sario
[4], Donaldson [8], Farkas and Kra [9], Imayoshi and Taniguchi [15], Kwan [17],
Pommerenke [22], G. Springer [25], Schiffer and Spencer [24], Strebel [26], and
Tsuji [28].

1. Riemann surfaces, weak measured foliations and the Dirichlet
integral

Definition 1. A Riemann surface is a connected topological Hausdorff space
X together with a system of local homeomorphisms (called local parameters) zj
defined on neighborhoods Nj contained in X and mapping into C such that

(1) the union of the neighborhoods Nj over j covers X,
(2) in any non-empty overlap Nj ∩Nk the composition zk ◦ (zj)

−1 is holomor-
phic.

Definition 2. A chart on a Riemann surface X is a homeomorphism w from
an open set in X onto an open subset of C for which w ◦ z−1

j is holomorphic for
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every local parameter zj for which points in the domain of zj overlap with points
in the domain of w.

Note that with these definitions local parameters are also charts.

Definition 3. A continuous function u defined on a set Ω ⊂ C has generalized
first partial derivatives ux and uy if for every C∞ function φ with compact support∫ ∫

uφxdxdy = −
∫ ∫

uxφdxdy

and ∫ ∫
uφydxdy = −

∫ ∫
uyφdxdy.

Definition 4. Let zj be a set of charts defined on open subsets Nj of a
Riemann surface X. A weak measured foliation |du| is a system of continuous, real
valued functions uj defined on open sets zj(Nj) in C such that

(i) for any two of the sets Nj and Nk with Nj ∩Nk non-empty,

uj(zj(p)) = ±uk(zk(p)) + constant

for all p ∈ Nj ∩Nk,
(ii) in each open setNj , uj has generalized first partial derivatives with respect

to x and y, (uj)x and (uj)y, where z = x+ iy, and
(iii) these generalized first partial derivatives are locally square integrable, that

is, for each j, ∫ ∫
z(Nj)

(
(uj)

2
x + (uj)

2
y

)
dxdy <∞.

Note that in this definition we do not assume N =
⋃
j Nj is equal to X.

Definition 5. The Dirichlet integral of a weak measured foliation |du| on a
Riemann surface X is equal to

Dir(|du|) =

∫ ∫ (
u2
x + u2

y

)
dxdy.

Here, one considers the domain of integration to be either N =
⋃
kNj or to be X,

bearing in mind that by definition the integrand is identically zero in X −N.

Let γ(t) be a continuous curve in X defined for t ∈ [0, 1] and pk = γ(tk) where
0 = t0 < t1 < · · · tn = 1. Let mesh({pk}) = max1≤k≤n tk − tk−1.

Definition 6. The height of γ with respect to |du| is given by

ht(γ, |du|) = lim sup
mesh({pk})→0

n∑
j=1

|uk(pj)− uk(pj−1)| =
∫
γ

|du|

where we put |uk(pj)− uk(pj−1)| = 0 if either pj or pj−1 is not in N and where we
assume that if both successive points pj−1 and pj lie N then for sufficiently small
value of mesh({pk}) there is a value of k for which they both lie in the same set
Nk.
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2. Conformal metrics and conjugate differentials

Definition 7. A conformal metric on a Riemann surface X is a system of
non-negative measurable functions ρj defined on open sets zj(Nj) in C such that
in each overlapping set Nj ∩Nk,

ρj(zj) = ρk(zk)

∣∣∣∣dzkdzj

∣∣∣∣ a.e.

We note that in the definition of a Riemann surface we require that the domains
of local parameters be defined on a family of open sets Nj that cover all of the
Riemann surface X, but we do not make this requirement in the definitions of a
weak measured foliation |du| or of a metric ρ(z)|dz|.At any points where a conformal
metric ρ(z)|dz| or the weak measured foliation |du| are not defined by convention
we put ρ and |du| equal to zero.

Given a conformal metric ρ(z)|dz|, where ρ is either upper semicontinuous or
lower semicontinuous, we define the length of a piecewise differentiable arc γ(t), t0 ≤
t ≤ t1 to be the line integral

L(ρ, γ) =

∫ t1

t0

ρ(γ(t))|γ′(t))|dt

and we define the area of ρ to be the double integral

area(ρ) =

∫ ∫
X

ρ2(z)dxdy.

Definition 8. Assume z = x+iy is a local coordinate on a Riemann surface X.
For any differential form Pdx+Qdy, where P and Q are locally square integrable,
the conjugate differential form is

∗(Pdx+Qdy) = −Qdx+ Pdy.

Definition 9. A quadratic differential q(z)(dz)2 on X is an assignment of a
continuous function qj on sets zj(Nj) on each open set Nj forming a covering of X
such that for any p ∈ Nj ∩Nk,

qj(zj(p)) = qk(zk(p))

(
dzk(p)

dzj(p)

)2

.

q is holomorphic if each of the functions qj is holomorphic.

Lemma 1. A weak measured foliation |du| with finite Dirichlet integral on a
Riemann surface X determines a conformal metric ρ by putting

(1) ρ(z)|dz| = |du+ i ∗ du|

and a quadratic differential ψ by putting

ψ = (du+ i ∗ du)2,

where we put both ρ and ψ identically equal to 0 in X −N. Moreover,

(2) area(ρ) =

∫ ∫
X

ρ2dxdy = Dir(|du|).
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Proof. Since

ρ2|dz|2 = (du+ i ∗ du)(du− i ∗ du)

= u2
xdx

2 + 2uxuydxdy + u2
ydy

2 + u2
ydx

2 − 2uxuydxdy + u2
xdy

2

= (u2
x + u2

y)(dx2 + dy2),

ρ|dz| = (u2
x + u2

y)1/2|dz| is an infinitesimal conformal metric. For such a metric we
define its area to be

area(ρ) =

∫ ∫
X

ρ(z)2dx ∧ dy.

Then for ρ(z)|dz| = |ψ(z)|1/2|dz| defined by (1),

area(|ψ|1/2) =

∫ ∫
X

|ψ(z)|dx ∧ dy.

Note that dx ∧ dy = (1/2)|dz ∧ dz|. Finally, we have∫ ∫
|ψ|dx ∧ dy = (1/2)

∫ ∫
X

|(du+ i ∗ du) ∧ (du− i ∗ du)| =
∫ ∫

X

du ∧ ∗du

=

∫ ∫
X

(uxdx+ uydy) ∧ (−uydx+ uxdy) =

∫ ∫
X

(u2
x + u2

y)dx ∧ dy = Dir(|du|).

�

The quadratic differential ψ is not necessarily holomorphic and by definition
both ψ and ρ are identically equal to zero in the complement of N =

⋃
j Nj .

Lemma 2. Any holomorphic quadradic differential q on X determines a one-
parameter family of weak measured foliations by the formula

(3) v = the imaginary part of

(∫
(eiθq(zj))

1/2dzj

)
where v is defined only on the complement of the set of zeros of q in X.

Proof. Since we only consider points where q is nonzero, the only ambiguity
in equation (3) involves the choice of a plus or minus sign in taking a square root
and the choice of an additive constant in taking the antiderivative. Thus |dv| is
well defined on the complement in X of the set of zeros of q. �

When θ = 0, |dv| is called the vertical foliation of q and when θ = π, |dv| is
called the horizontal foliation of q. We note that a parameterized differentiable arc
γ(t) ∈ X for which

q(γ(t))γ′(t)2 > 0

is an arc contained in a horizontal leaf of the vertical foliation of q. Similarly if

q(γ(t))γ′(t)2 < 0

then the image of γ is contained in a vertical leaf of the horizontal foliation. Seg-
ments of these types are called regular horizontal or regular vertical trajectories of
q. Points where q is equal to zero are called critical points and at these points |dv|
is undefined. The trajectory structure in a neighborhood of a critical point p where
q = 0 has a zero of order k is conformally equivalent to the trajectory structure
of zk(dz)2. At these points q has k + 2 trajectories that meet at p and the angle
between any two neighboring trajectories is 2π/(k + 2) radians. These are called
k + 2-pronged singularities.
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3. Pulling back a weak measured foliaton

In this section we show how the Dirichlet integral of a weak measured foliation
is changed when changing coordinates by a K-quasiconformal map.

Definition 10. Let w = f(z) = u(z)+ iv(z) be a homeomorphism from a Rie-
mann surface X onto a Riemann surface Y and assume u and v have locally square
integrable first partial distributional derivatives. Then f is called quasiconformal
if there is a constant k < 1 such that

|fz(z)| ≤ k|fz(z)|, a.e.,

where

∂

∂z
= (1/2)

(
∂

∂x
− i ∂

∂y

)
and

∂

∂z
= (1/2)

(
∂

∂x
+ i

∂

∂y

)
.

Lemma 3. Let f : X → Y be quasiconformal and |du| be a weak measured
foliation on Y with finite Dirichlet integral. Then |d(u ◦ f)| is a weak measured
foliation on X with finite Dirichlet integral and

DirX(|d(u ◦ f |)| ≤ KDirY (|du|),

where K = 1+k
1−k .

Proof. We put w = f(z) and note that

(u ◦ f)z = (uw ◦ f)fz + (uw ◦ f)fz.

Since |fz| = |fz|, u is real-valued and defined up to plus or minus sign and an
additive constant, |uw| = |uw|. Thus we can imitate the calculation given at the
end of Chapter 1 in [3]. Putting w = f(z) we have

|(u ◦ f)z| = |(uw ◦ f)fz + (uw ◦ f)fz|

≤ (|uw| ◦ f)(|fz|+ |fz|) = (|uw| ◦ f)(|fz|+ |fz|), and

DirX(|d(u ◦ f)|) = 4

∫ ∫
X

|(u ◦ f)z|2
∣∣∣∣dz ∧ dz2

∣∣∣∣
≤ 2

∫ ∫
X

(|uw| ◦ f)2(|fz|+ |fz|)2 |dz ∧ dz|

= 2

∫ ∫
X

(|uw| ◦ f)2(|fz|2 − |fz|2) · (|fz|+ |fz|)2

|fz|2 − |fz|2
|dw ∧ dw|

≤ 4K

∫ ∫
Y

|uw|2
|dw ∧ dw|

2
= K DirY (|du|).

�
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4. Intersection number and the Cauchy-Schwarz inequality

If two curves on a surface intersect transversally at several points, their inter-
section number is the total number of essential intersections. This differs from the
homology notion of intersection where the curves are oriented and where you count
an intersection positively or negatively according to its orientation. The intersec-
tion i(α, β) of the homotopy classes of two closed curves α and β is the minimum
number of intersections of α′ and β′ where α′ and β′ are freely homotopic to α and
β.

There is a more devious way to view homotopical intersection of simple closed
curves on oriented surfaces. For a closed curve α, first slightly fatten it so it becomes
a ribbon (or annulus) Aα and then form a harmonic function uα on Aα that is equal
to zero on one side of Aα and equal to one on the other side. Then it turns out
that the intersection number is equal to the infimum of the double integrals

(4)

∫ ∫
|duα ∧ duβ |,

where the domain of integration is the common intersection of the two ribbons for
α and β and the infimum is taken over all curves in the same free homotopy class
and all possible ribbons. The absolute value is placed under the integral sign in (4)
to ensure that all intersections are counted positively.

Here we show how this notion of intersection is related to Dirichlet integrals.
First we note an application of the Cauchy-Schwarz inequality to the wedge product
of two weak measured foliations.

Lemma 4. Let |du| and |dv| be weak measured foliations on a Riemann surface
X. Then

(5)

(∫ ∫
X

|du ∧ dv|
)2

≤ Dir(|du|)Dir(|dv|).

Proof. The following inequality for real numbers is elementary:(
det

(
a b
c d

))2

≤ (a2 + b2)(c2 + d2).

For every point p ∈ X it leads to

|du(p) ∧ dv(p)| ≤ (ux(p)2 + uy(p)2)1/2(vx(p)2 + vy(p)2)1/2.

We obrtain (5) by applying Schwarz’s inequality,(∫
fgdm

)2

≤
(∫

f2dm

)(∫
g2dm

)
.

�

Definition 11. A closed curve in a surface X is a continuous map γ from
the unit circle into X. It is called simple if γ is injective. A simple closed curve
contained in an annulus is called an essential curve or a core curve if it separates
the two boundary components of the annulus.

Definition 12. For any two simple closed curves α and β on a Riemann surface
X, i(α, β) is the number of essential intersections of α with β. That is, i(α, β) is
the minimum number of intersections α′ with β′ where α′ and β′ are closed curves
freely homotopic in X to α and β, respectively.
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Lemma 5. (The intersection inequality) Let Aα be an annulus with smooth
boundary containing an essential simple closed curve α and uα be a function har-
monic in Aα with one-sided limiting values equal to 0 and 1 on the two sides of Aα.
Let uβ have the same corresponding properties for an annulus Aβ corresponding to
a simple closed curve β. Finally, let i(α, β) be the number of essential intersections
α and β. Then

(6) i(α, β) ≤
∫ ∫

|duα ∧ duβ |.

Proof. Note that we can assume any simple closed curve α is an essential
closed curve contained in some annulus Aα ⊂ X. The fattening can be trimmed
in such a way as to have a differentiable boundary; because X is orientable the
boundary will have two components that are homotopic simple closed curves and
there will be a function uα that is equal to 0 on one of these boundary curves and
equal to 1 on the other.

The integrand |duα ∧ duβ | is nonnegative where the annulus Aα intersects the
annulus Aβ and zero elswhere. To estimate the integral in (6) note that since the
level curves of uα are homotopic to α and similarly those of uβ are homotopic to
β, they necessarily intersect at least i(α, β) times. Thus the double integral can be
estimated by integrating by parts and we obtain∫ ∫

X

|duα ∧ duβ | ≥
∣∣∣∣i(α, β)

∫ 1

0

[uα ∧ duβ ]
uα=1
uα=0

∣∣∣∣ = i(α, β)

∣∣∣∣∫ 1

0

duβ

∣∣∣∣ = i(α, β).

�

5. Extremal length of annuli

In this section we assume A is an annulus in a given homotopy class on a
Riemann surface X. Also, except for Lemma 8, we assume X contains only one free
homotopy class of simple closed curve. We let γ be one of the closed curves in this
class and Γ be the set of all such curves in this class.

Definition 13. The extremal length of a curve family Γ is given by

(7) M(Γ) = sup
ρ

L(ρ,Γ)2

area(ρ)
,

where ρ(z)|dz| is a continuous conformal metric on X and where L(ρ,Γ) is the
infimum of lengths of closed curves γ in Γ and area(ρ) =

∫ ∫
X
ρ2.

The Riemann surface X is called annular if it has only one such class Γ. In
this case we usually write A instead of X and since there is only one such class we
write M(A) instead of M(Γ). If A is an annular Riemann surface we also define
the conjugate curve family Γ∗ and the conjugate modulus M∗(A). Γ∗ is the family
of arcs in A that join its two boundary components and M∗(A) = M(Γ∗). This
number is often called the modulus of A and is given by the following definition.

Definition 14.

(8) M∗(A) = sup
ρ

L(ρ,Γ∗)2

area(ρ)
.

In both (7) and (8) the supremum is over all conformal metrics ρ defined on X.
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Lemma 6. If A = {z : 1 < |z| < R} then M(A) = 2π/ logR and M∗(A) =
(logR)/2π.

Proof. Any closed curve γ in A that winds once around the origin satisfies

±1 =
1

2πi

∫
γ

dz

z

and so any closed curve γ ∈ Γ(A) satisfies

1 ≤
∫
γ

1

2πr
|dz| =

∫
γ

ρ0(z)|dz|,

where ρ0(z)|dz| = 1/(2πr)|dz|. This inequality is an equality for any of the concen-
tric closed curves reit, 0 ≤ t ≤ 2π so L(ρ0) = 1. On the other hand,

area(ρ0) = (1/2π)2

∫ ∫
A

(1/r2)rdrdθ = (logR)/2π

and so M(A) ≥ 2π/ logR.
For the reverse inequality, observe that for any allowable metric ρ|dz|,

L(ρ) ≤
∫ 2π

0

ρ(reit)rdt,

L(ρ)/r ≤
∫ 2π

0

ρ(reit)dt.

Integrating both sides from r = 1 to r = R gives

L(ρ) logR ≤
∫ ∫

A

ρdrdt =

∫ ∫
A

ρr1/2 · 1

r1/2
drdt

and applying Schwarz’s inequality we get

L(ρ)2(logR)2 ≤
∫ ∫

A

ρ2rdrdt

∫ ∫
A

1

r
drdt,

L(ρ)2/area(ρ) ≤ 2π/(logR) for every allowable ρ.

We conclude ρ0 realizes the value M(A) which is equal to 2π/(logR).
For the second equality, the same metric ρ0 is extremal, in the sense that it

realizes the value M∗(A). To see this note that for the radial arcs γ∗0 (t) = teiθ, 1 ≤
t ≤ R, ∫

γ∗
0

ρ0|dz| = (1/2π)

∫ R

1

(1/t)dt =
1

2π
logR

and for any arc γ∗ in A joining its inner to outer boundary,

(1/2π)

∫
γ∗

(1/t)dt ≥ 1

2π
logR

so L(ρ0,Γ
∗) = 1

2π logR. Also area(ρ0) =
(

1
2π

)
logR so

L(ρ0,Γ
∗)2/area(ρ0) = (logR)/(2π) and

(9) M∗(A) ≥ (logR)/(2π).
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To see that ρ0 realizes the maximal value for this curve family note that any arc
γ∗(t) joining |z| = 1 to |z| = R, the definition of L(ρ) implies

L(ρ) ≤
∫
γ∗
ρ(z)|dz|.

Integrating along the arc teiθ, 1 ≤ t ≤ R for each θ and then integrating with
respect to θ from 0 to 2π gives

2πL(ρ) ≤
∫ θ=2π

θ=0

∫ |z|=R
|z|=1

ρ(z)drdθ.

Thus,

2πL(ρ) ≤
∫ ∫

A

ρ(z)r1/2 · 1

r1/2
drdθ, and by Schwarz′s inequality,

(2πL(ρ))
2 ≤

∫ ∫
A

ρ(z)2rdrdθ ·
∫ ∫

A

1

r
drdθ,

(2πL(ρ))
2 ≤ area(ρ)2π logR and so

L(ρ)2

area(ρ)
≤ logR

2π
.

we conclude that M∗(A) ≤ logR/2π and so from (9) M∗(A) = logR/2π. �

There are several observations we wish to make about the result of this lemma:

(1) the same metric ρ0 is extremal for the supremum problems involving both
Γ and Γ∗, and ρ0 = |q|1/2 where

q(z)(dz)2 = −
(

1

2π
· dz
z

)2

is a holomorphic quadratic differential on A,
(2) the curve families Γ and Γ∗ contain subfamilies Γ0 and Γ∗0, which are the

horizontal and vertical trajectories of q,
(3) Γ0 and Γ∗0 are minimally extremal for ρ0 in the sense that ρ0 is extremal

for the extremal problems M(Γ0) and M(Γ∗0). This observation is called
Beurling’s lemma, (see [2], chapter 4, section 7).

(4) from Lemma 3 and a change of variable it follows that M(A) is a conformal
invariant,

(5) q1/2dz = ±(i/2π)(d log z) = ±(i/2π)(d log |z|+ idθ) = i(du+ idv),
where u = log |z| is a harmonic function in A equal to 0 on |z| = 1 and
equal to logR on |z| = R,

(6) the level lines defined by u = a constant and v = a constant comprise the
curve families Γ0 and Γ∗0,

(7) similar observations hold for the vertical and horizontal foliations of any
integrable holomorphic quadratic differential on any Riemann surface,

(8) for the extremal problem M(Γ) on any Riemann surface X if M(Γ) > 0
then the quadratic differential q is integrable and holomorphic on X and
q expresses the first variation of logM(Γ) when the complex structure on
X is allowed to vary.

Since it is not necessary for the proof of the uniformization theorem we do not
include justification of statement (8) in this article. It can be found in the last
pages of [12].
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Lemma 7. For any annular Riemann surface A conformal to {z : 1 < |z| < R},
M(A) = 2π/ logR and there is a unique harmonic function u defined on A with the
property that u = 0 on one boundary component of A and is equal to (1/2π) logR
on the other boundary component.

Proof. u is unique by the maximum principle. If z : A→ {z : 1 < |z| < logR}
is conformal, then u = (1/2π) log |z| is harmonic and has the prescribed boundary
values. �

Lemma 8. Suppose there is a homeomorphism h from {z : 1 ≤ |z| ≤ 2} onto a
domain A in a Riemann surface X and

γ0 = h({z : |z| = 1}) and γ1 = h({z : |z| = 2})

are its two boundary contours. Then there exists a unique harmonic function u
defined on A which is equal to 0 on γ0 and equal to 1 on γ1. Moreover, u determines
a conformal map z = exp

(
2π
∫

(du+ i ∗ du)
)

from A to a region of the form {z :
1 < |z| < R} and a quadratic differential

(10) qA = −
(

1

2π
· dz
z

)2

defined on A whose horizontal and vertical trajectories are, respectively, the con-
centric circles |z| = a constant and the rays arg z = a constant.

Proof. One considers the family of all C1 functions defined on A with the
given boundary values on the two simple closed curves that form the boundary
of A and minimizes the Dirichlet integral. One uses L2 estimates on first partial
derivatives and Lemma 12, Weyl’s lemma, to show that the minimum is realized
for some function u and this minimum is harmonic. Moreover, if pn is a convergent
sequence of points in A and if u(pn) → 1, then pn must converge to a point γ1.
Also, u(pn) converging to 0 implies pn converges to a point in γ0. This is because
otherwise the harmonic function u would take its minimum or maximum value
at an interior point of A, which contradicts the maximum principle for harmonic
functions.

After constructing u we form U = (logR)u where R is chosen so that M(A) =
2π/ logR. Then U is harmonic in A with boundary value 0 on γ0 and logR on γ1

and ζ = U + i∗U maps A to a rectangle in the ζ-plane with width logR and height
2π and z = exp(iζ) maps A to the region between two concentric circles in the
z-plane with inner radius 1 and outer radius R. �

The essence of Lemma 8 is the statement that every topological annulus embed-
ded in a Riemann surface is conformal to a round annulus and the horizontal and
vertical trajectories of the quadratic differential q in (10) are realized by concentric
circles and radial lines emanating from the origin in the z-plane.

6. Moduli of curve families on a Riemann surface

This section concerns moduli of homotopy classes of simple closed curves on
an arbitrary Riemann surface X. Although it has several equivalent definitions, we
choose to define the modulus of the homotopy class of Γ in X in the following way.
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Definition 15. The modulus of the curve family Γ in X is equal to

(11) M(Γ) = sup
ρ

{
L(Γ, ρ)2∫ ∫
A
ρ2dxdy

}
,

where the supremum is taken over all conformal metrics ρ(z)|dz| on X and

L(ρ,Γ) = inf
γ∈Γ

∫
γ

ρ(z)|dz|.

In this definition of M(Γ) there is no particular annulus on which to apply the
Grötzsch length-area argument given in Lemma 6. However, because of the next
theorem, one can single out a unique annulus on which the argument can be applied.
It is the annulus embedded in X in the same homotopy class for which M(Γ) is as
small as possible. Moreover, when 0 < M(Γ) this annulus is uniquely associated
to a particular integrable quadratic differential q defined and holomorphic on X.
Even when M(Γ) = 0, there is also a corresponding domain A and a corresponding
holomorphic quadratic differential but which fails to be integrable. In the non-
integrable case the domain A is conformal either to a punctured disc or a doubly
punctured Riemann sphere. All of the regular horizontal trajectories of q are closed
and in the homotopy class of Γ. Moreover, except for the critical trajectories of q
which comprise a union of analytic arcs of zero area, these regular closed horizontal
trajectories fill X.

We make the following definitions:

(i) M1 = infA {M(A)} , where the infimum is over all annuli A homotopic to
γ.

(ii) M2 = inf |du| {Dir(|du|)} , where the infimum is over all C1 functions u
defined on an arbitrary annulus A homotopic to γ in X and equal to 1 on
one of its boundary contours and equal to 0 on the other.

(iii) M3 = sup|dv|

{
1

Dir(|dv|)

}
, where the supremum is over all weak measured

foliations |dv| for which
∫
γ
|dv| ≥ 1 for all γ ∈ Γ.

Theorem 1. Suppose γ ∈ Γ and there is a closed curve β contained in X such
that i(γ, β) > 0. Then

M(Γ) = M1 = M2 = M3.

Moreover, there is a unique annulus A in X that realizes the infimum for M1. A
has the following properties:

(i) It is the characteristic annulus of a quadratic differential

qA(z)(dz)2 = −
(
dz

z

)2

on A.
(ii) qA is defined and holomorphic on X and A is equal to the union of the

closed horizontal trajectores of qA(z)(dz)2.
(iii) The square root qA(z)1/2dz is equal to ±(du+ iM(Γ)dv), where |du| and

|dv| are the two unique foliations that realize the extremal values M2 and
M3.

(iv) Up to scalar multiple the metric ρ that uniquely realizes the supremum for
M(Γ) is given by ρ = |qA|1/2.
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(v) Finally, if A = X then z is a univalent map the maps A to a round
annulus {z : 1/R < |z| < 1} where M(Γ) = 2π/ logR.

Remark. For a family Γ of closed curves on a surface the quantities M2 and
M3 give effective ways to estimate from below and from above the extremal length
M(Γ) defined in Definition 15. This observation was pointed out to me by Dylan
Thurston.

Proof. For a given annulus A in X with core curves in the homotopy class of Γ
we choose the harmonic function uA given by Lemma 8. For this uA the Dirichlet
integral Dir(|duA|) is equal to 2π/ logR which is equal to M(A) so M1 ≤ M2.
On the other hand, every such harmonic function is by definition supported on an
annulus A and so M2 ≤M1.

From Lemmas 4 and 5 and the definitions of |du| and |dv| in M2 and M3 we
get

(12)
1

Dir(|dv|)
≤ Dir(|du|),

which shows that M3 ≤ M2. More generally, let A be an annulus with core curve
in the homotopy class of Γ and u a harmonic function of the type described in the
definition of M2. If there is a curve β that intersects γ, then i(β, γ) > 0 and

(13) 0 <
i(γ, β)2

Dir(|dv|)
≤ Dir(|du|),

where v is any C1 function on an annulus B in the homotopy class of β which is
equal to 0 and 1 on the two sides of B. Thus by (13) the infimum taken in the
definition of M1 is the infimum of a set which is bounded below. Given an annulus
in the set we know by Lemma 8 there is a univalent function 1/zA from A onto
{z : 1/R < |z| < 1}. If we let cA be the univalent function which is inverse to
zA then as M(A) decreases to the infimum M1 the functions cA have increasing
domains of definition. The functions zA determine quadratic differentials

(14) qA = −
(

1

2π

)2

·
(
dzA
zA

)2

,

which have L1-norm bounded by 1/M1. Since the L1-norms of qA are bounded we
can select a sequence An such that qAn converge uniformly on compact subsets. The
limit of such a sequence determines an annulus A that realizes the extremal value
M1. By Strebel’s variational technique, Lemma 9, and Weyl’s Lemma, Lemma 12,
for this A the quadratic differential qA given by formula (14) is holomorphic on X
and its L1-norm is equal to 1/M1.

The closed trajectories for this qA sweep out a unique extremal annulus in X.
Any closed curve γ ∈ Γ, even if while staying in X it veers outside of A, measured
in the metric |qA|1/2 it is at least as long as any of the closed trajectories of qA.
This is because q is holomorphic and closed horizontal trajectories of a holomorphic
quadratic differential minimize length in the metric |q|1/2 among all closed curves
in the same homotopy class. For this reason, one can apply Grötzsch’s argument
on the annulus A to show that M(Γ) = M1.

But then from Lemma 1 the supremum in M3 is realized by a measured foliation
equal to a constant times the conjugate measured foliation | ∗ du|. That is, the |dv|



16 FREDERICK P. GARDINER

that realizes this supremum is given by (1/M(Γ))|∗du|. The holomorphic quadratic
differential

qA = (du+ i ∗ du)2 = (du+ iM(Γ)dv)2

where |du| realizes M2 and |dv| realizes M3 gives the metric |qA|1/2 extremal metric
for M(Γ). �

7. Strebel’s variational technique

Lemma 9. Suppose M(Γ) > 0. Then there is a unique annulus A in X homo-
topic to Γ for which M(A) is minimum. This annulus is is filled by closed horizontal
trajectories of a quadratic differential qγ holomorphic on X and the complement of
A in X consists of the critical trajectories of q and∫ ∫

X

|qγ | = (2π)2/M(Γ).

Finally, for this particular annulus A, M(A) = M(Γ).

Proof. Let z be a local parameter that vanishes at p and assume

{p ∈ X : |z(p)| < 1}
is a simply connected neighborhood N of p. Put

w =

{
z + εh(z) in N
z outside of N,

where h(z) is continuous, is identically equal to zero outside of {p : |z(p)| < 1/2}
and has continuous first partial derivatives. Then the Beltrami coefficient ν(z) of
w is given by

(15) ν(z) =
wz(z)

wz(z)
=

εhz(z)

1 + εhz(z)
.

Provided ε is small enough, for values of z in the support of h(z) the sum z+ εh(z)
will lie in N. By taking ε even smaller if necessary the bounds on the derivatives
hz and hz imply that ν in equation (15) satisfies ||ν||∞ < 1. This bound implies
z 7→ w is a quasiconformal self mapping of X which is homotopic to the identity.

From Lemma 8 we can assume ζ = ξ + iη maps A to a rectangle

R = {0 ≤ ξ ≤ a, 0 ≤ η ≤ b}.
This map carries any horizontal segment α in R defined by η equal to a constant
to closed curve in the class Γ. Also, let A′ = w(A) and assume ζ ′ is a conformal
parameter. Note that if ζ ′ = ξ′+iη′ is a conformal parameter then for any non-zero
constant λ the product λ · ζ ′ is also a conformal parameter. Thus by choosing λ
appropriately we may assume the height of R′ is b. That is, the conformal parameter
ζ ′ takes A′ to the rectangle with height b,

R′ = {0 ≤ ξ′ ≤ a′, 0 ≤ η′ ≤ b}.
Then

a′ ≤
∫
w(α)

|dζ ′| =
∫
α

|wζdζ + wζdζ| =
∫
α

|wζ ||1 + ν(ζ)|dξ.

Thus,

a′b ≤
∫ ∫

R

|wζ ||1 + ν|dξdη, and
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by introducing factor of (1−|ν|2)1/2 in the numerator and denominator and applying
Schwarz’s inequality we obtain

(a′b)2 ≤
∫ ∫

R

|wζ |2(1− |ν|2)dξdη

∫ ∫
R

|1 + ν|2

1− |ν|2
dξdη.

Noting that by the Jacobian change of variable formula the first integral is equal
to the area of R′, which is equal to a′b. So we get

(16) a′b ≤
∫ ∫

R

|1 + ν|2

1− |ν|2
dξdη.

We put q = (dζ)2 in R and identically equal to zero on X − R and similarly
we put q′ = (dζ ′)2 in R′ and identically equal to zero on X −R′. Also, we view ν, q
and q′ as invariant differential forms. Then equation (16) becomes

(17)

∫ ∫
X

|q′|dxdy ≤
∫ ∫

X

|1 + νq/|q||2

1− |ν|2
|q|dxdy.

Since M(A) realizes the smallest possible value of moduli of annuli in the homo-
topy class Γ, q has the smallest norm in this class and we have

∫ ∫
X
|q|dxdy ≤∫ ∫

X
|q′|dxdy, from (17) we obtain

(18)

∫ ∫
X

|q|dxdy ≤
∫ ∫

X

|1 + νq/|q||2

1− |ν|2
|q|dxdy.

Squaring the numerator on the right hand side of (18) and dividing by 2 yields

(19) 0 ≤ Re

∫ ∫
X

νq

1− |ν|2
dxdy +

∫ ∫
X

|ν|2|q|
1− |ν|2

dxdy.

The first order consequence of (15) and (19) is that for every C1 function h with
compact support in N ⊂ X,

Re
∫ ∫

N

hz(z)q(z) dxdy ≥ 0.

Since the same argument also applies when h is replaced by −h we conclude that

(20) Re
∫ ∫

N

hz(z)q(z) dxdy = 0.

Similarly, by replacing h by ih and −ih, the same reasoning implies

(21) Im
∫ ∫

N

hz(z)q(z) dxdy = 0

and putting (20) and (21) together we get∫ ∫
N

hz(z)q(z) dxdy = 0.

By Weyl’s lemma, Lemma 12 in section 9, this implies q is holomorphic at every
point p ∈ X up to the addition of a function that is almost everywhere equal to
zero. And Grötszch’s argument [14] implies that the quadratic differential with
these properties is unique.

In summary, there is a global holomorphic quadratic differential q defined on X
and an extremal annulus A contained in X and a univalent holomorphic function
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z mapping A to the region between two concentric circles |z| = R1 and |z| = R2 in
the complex plane such that the restriction of q to A satisfies

q(z)(dz)2 = −(1/2π)2(dz/z)2.

�

From the minimum norm principle in [11], [12] and [18] we know that up to a
multiplicative constant with absolute value equal to one q is unique among holomor-
phic quadratic differentials q′ that minimize

∫ ∫
X
|q′|dxdy and satisfy

∫
γ
|q′|1/2 ≥ 1

for all γ ∈ Γ. This important consequence is not necessary for the proof of Theorem
1.

8. Uniformization

We need a topological lemma that applies to a doubly connected Riemann
surface X that has at least one boundary contour.

Lemma 10. Suppose X is a doubly connected Hausdorff space that has a Rie-
mann surface structure and suppose it is bounded on one side by an analytic closed
curve C. Suppose also that β is a simple piecewise analytic arc in X that joins two
points p1 and p2 in X and also that p1 can be joined to C by a simple arc γ̃. Then
there exists a simple piecewise analytic arc γ in X with both endpoints on C such
that i(β, γ) ≥ 1.

Proof. First note that by a simple piecewise analytic arc joining p1 to p2 we
mean a piecewise real analytic function γ(t) that maps the interval [0, 1] into X,
that is one-to-one and such that γ(0) = p1 and γ(1) = p2. If p1 and p2 are in the
same compact subset of X, then one can find a finite number of local parameters
that cover any arc that joins p1 to p2. Also, one can use these local parameters to
join p1 to p2 by a curve that consists of successive horizontal and vertical intervals
in the successive coordinate charts.

By hypothesis there is a simple arc γ̃ that joins C to p1. To find γ one first
constructs the tubular domain of points that have distance less than δ from γ̃ for
sufficiently small δ > 0. Then one lets γ be the part of the boundary of the tube
excluding that part which lies on C. For sufficiently small δ this provides the curve
γ for which i(β, γ) ≥ 1. �

In the next lemma we assume X is any simply connected Riemann surface, z
is a local parameter vanishing at p0 ∈ X, Dε(p0) = {p ∈ X : |z(p)| ≤ ε} and

Xε = X −Dε(p0) and

Cε = {p : |z(p)| = ε}.
Finally, we let Γε be the family of simple closed curves in Xε that are homotopic
to Cε. We also let An be any annular domain contained in Xε with one boundary
component coinciding with Cε and the other boundary component a piecewise real
analytic closed curve in Xε homotopic to Cε.

Lemma 11. Assume the extremal length M(Γε) = 0. Then there exists a se-
quence of annuli An ⊂ Xε in the homotopy class of Cε with the following properties:

1) each An is bounded by Cε on one of its sides and a piecewise real analytic
closed curve on its other side,

2) An is ascending in the sense that Ak ⊂ Ak+1 for each integer k, and
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3) the sequence M(An) decreases to 0 as n→∞.
Moreover, for any such sequence of annuli Ak, Xε \

⋃
k Ak contains at most one

point.

Proof. Consider the family F of simple closed curves α contained in Ak∪Ak+1

that are homotopic to Cε in Xε. Note that every simple closed curve α ∈ F separates
Xε into two components. We refer to the component adjacent to the perimeter
of Dε(p0) as the inside and to the other component as the outside. Form the
function vα equal 0 on {p : |z(p) − z(p0)| = ε} and equal to 1 on α. Then let
Aα = {p : v(p) < 1} and

Ãk+1 = {p : there exists γ ∈ F such that p ∈ Aγ}.

Inductively we construct the new sequence Ãn of annuli with property 2). Since

An ⊂ Ãn, the sequence Ãn also has property 1). By induction we can assume that
the sequence An has property 2). The set A =

⋃
nAn is open and doubly connected

and also the hypothesis M(Γε) = 0 implies M(A) = 0.
Now let β be an arc joining p1 to p2 and γ be the arc given by Lemma 10.

Fatten γ to a narrow strip B both ends of which are situated on the circle Cε. Make
the strip B so narrow that every arc in B that connects its two ends separates p1

from p2. Since p1 and p2 are in Xε but not in A, any core curve α in A must satisfy

i(α, γ) ≥ 2.

Now let uAn a function harmonic in An, equal to 1 on Cε and equal to 0 on the
other boundary of An. Also let vB be the function with minimum Dirichlet integral
which is equal to 1 on one side of the strip B and zero on its other side.

So from Lemmas 4 and 5

(22) 4/Dir(|dvB |) ≤ Dir(|duAn |).
Then by (22) and Theorem 1 it is impossible for M(A) to be equal to 0.

From this we conclude there cannot be more than one point of Xε − A that
can be joined to Cε by an arc. Since A is conformal to a once punctured disc, the
complement of A in Xε is either empty or consists of just one point. If there is such
a point, there is a unique way the complex structure of A extends to this point and
that way must coincide with the complex structure of Xε. �

The next theorem is the uniformization theorem and its corollary is the Rie-
mann mapping theorem.

Theorem 2. (Uniformization) Any simply connected Riemann surface X is
conformal either to the Riemann sphere C or to the complex plane C or to the unit
disc D = {z : |z| < 1}.

Proof. Take a point p0 ∈ X and a local parameter z defined in an ε0 neigh-
borhood of p0 and a value of ε0 small enough so that Dε0(p0) = {p : |z(p)−z(p0)| ≤
ε0} ⊂ X. Then consider the doubly connected Riemann surface Xε = X −Dε(p0)
where 0 < ε ≤ ε0. Put Γε equal to the family of closed curves in Xε homotopic to
the boundary of Dε(p0) and divide the proof into two cases,

Case 1: M(Γε) = 0, and

Case 2: M(Γε) > 0.

In Case 1 we construct the squence of annuli An with the properties of Lemma
11 and consider the subset

⋃
nAn of Xε. It can omit at most one point of Xε because
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otherwise the extremal length of the family of the family Γε would be positive. If
it has exactly one element then Xε is a conformal to the exterior of Dε(p0) in C by
a mapping zε. As ε converges to 0 the conformal mappings zε converge uniformly
to a limit that is defined on a doubly connected domain A for which M(A) = 0. In
this case the complement of A in Xε can contain at most one point. If it contains
no points then X is conformal to C and if it contains one point then X is conformal
to C.

In Case 2 by Theorem 1 there is an annulus Aε with M(Aε) > 0 with the
property that Dε0(p0) ∪Aε fills X. Letting ε→ 0, one can obtain a subsequence of
these uniformizing parameters for these Aε that converges to a conformal mapping
from X onto a disc of finite radius. �

Corollary 1. (The Riemann mapping theorem) Any simply connected
domain X contained in C is conformal either to the Riemann sphere C or to the
complex plane C or to the unit disc D = {z : |z| < 1}.

Proof. The conclusion of the corollary is exactly the same as the conclusion
of Theorem 2 but the corollary has stronger hypotheses. �

Many presentations of this corollary start with an arbitrary simply connected
domain in X ⊂ C omitting two or more points. The further assumption that it is
simply connected implies that one can apply a branch of a square root to obtain
a conformal image of X that lies inside the complement of an open set in C. By
applying a Möbius transformation that has a simple pole inside that open set,
one obtains conformal image of X that is a bounded domain in C. After this step
the extremal length method of Theorem 1 yields the Riemann mapping theorem
immediately and one does not need the intersection inequality. The square root
trick is not available for Theorem 2 because one cannot assume in advance that X
is realizable conformally as a subset of C.

9. Weyl’s lemma

The following result is called Weyl’s lemma,

Lemma 12. Suppose q is a complex valued function defined on a plane domain
D and q is in L1(D). Suppose further that for every C1 function h with compact
support in D

(23)

∫ ∫
hzq(z)dxdy = 0.

Then there is an analytic function q̃ defined on D such that

q(z) = q̃(z)

for almost all z ∈ D.

Proof. In the z = x+ iy-chart, let m be the Lebesgue measure, so that

m(S) =

∫ ∫
S

|dx ∧ dy|,

for every measurable set S. Put Jε(z) = 1/(2πε2) in {|z| < ε} and equal to 0 else-
where. Jε is called an approximate identity because for every continuous function
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f defined on a domain in D, the convolution

(Jε ∗ f)(z) =

∫ ∫
Jε(w − z)f(w)dm(w)

approaches f(z) as ε→ 0.
Note that Jε(z) is not continuous, but the convolution jε = Jε ∗ Jε is and for

any function q in L1(D), jε ∗ q has continuous first partial derivatives. Thus,

(jε ∗ q)z(z) =

∫ ∫
D

q(w)(jε(w − z))zdm(w) =

∫ ∫
D

q(w)(jε(w − z))wdm(w).

Substituting h(w) = jε(w− z) into the hypothesis (23) we see that (jε ∗ q)z(z) = 0
and so jε ∗ q is holomorphic.

Note that ||jε∗q||1 ≤ ||q||1 and ||q||1 = Dir(|du|), which is bounded. By normal
families and the next lemma we know that there is a normal limit q̃ holomorphic in
D such that jε ∗ q → q̃ uniformly on compact subsets of D and also jε ∗ q converges
to q in L1. This implies that q = q̃ almost everywhere. �

Lemma 13. Suppose un is a sequence of harmonic functions defined in a
bounded plane domain U and ∫ ∫

U

|un|dxdy ≤ B.

Then un has a uniformly convergent subsequence and the limit of any such conver-
gent subsequence is harmonic.

Proof. Because of the mean value property for any disc Dr0(p0) of radius r0

centered at p0 and contained in U,

(24) |un(p0)| ≤ 1

πr2
0

∫ ∫
D

|un|dxdy ≤ B/(πr2
0).

Since the circumference of any disc with center p and radius r contained in U can be
covered by a finite number of discs contained in U, there is a constant M such that
|un(z)| ≤ M for all z with |z − p| = r. By (24) the sequence un is equicontinuous
on this circle and must have a subsequence that converges uniformly. Since each of
the functions un satisfies the mean value property,

un(p) =
1

2π

∫ 2π

0

un(p+ reiθ)dθ,

the uniform limit u also satisfies this property and is therefore harmonic. �

10. The long ray, the long line and the long cylinder

An immediate consequence of uniformization is Rado’s theorem which says that
any Riemann surface X is separable, that is, it has countable basis for its topology.
The proof is simple: X must be conformal to either the Riemann sphere or the
complex plane or the unit disc or a quotient space of one of the two latter mentioned
surfaces by the action of a fixed point free, discontinuous group. Consequently, in
the middle of any proof of uniformization there should appear a reason why any
attempt to put a complex structure on any nonseparable surface will necessarily
fail. In this section we construct a long cylinder which is a connected surface with
differentiable structure and show how our proof of uniformization eliminates the
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possibility that it could have a subordinate complex structure and at the same
time be “long.”

Consider an uncountable well-ordered set ω1 with the order topology and the
half closed unit interval [0, 1) and form the long ray

L = ω1 × [0, 1).

The long line is obtained by patching together two copies of the long ray but since
we are concerned only with what at first appears to be a paradox concerning Rado’s
theorem we only need the long ray.

From the long ray we can construct the long cylinder by putting

X = L× S1.

Points of X have coordinates (β, x, θ) where β ∈ ω1, x ∈ [0, 1) and θ ∈ S1. The
standard Euclidean structure on the product of the unit circle S1 with the open
unit interval (0, 1) induces a complex structure at all points of X except those with
coordinates (β, 0, θ) in X.

We may attempt to extend this to a complex structure on all of the long cylinder
X, that is, including those points with coordinates (β, 0, θ) in the following way.
Any element β of the well-ordered set ω1 has an immediate successor, namely, the
smallest element of the set of elements of ω1 strictly larger than β. We denote this
element by β+ 1. Now we join together the two half-open annuli β× [0, 1)×S1 and
(β + 1)× [0, 1)× S1 by putting the first cylinder on the left and the second on the
right and by identifying the point (β, 1, θ) on the left with the point (β+ 1, 0, θ) on
the right.

If β0 is the smallest element of ω1 we can delete from X its initial circular
boundary, namely, the copy of the unit circle which consists of the points with
coordinates (β0, 0, θ) to obtain a surface Y. At the interior points of the cyclindrical
components

β × [0, 1)× S1

of Y there is the standard complex structure. Moreover, at the points (β, 1) × S1

attached to the points (β + 1, 0)× S1 there is also a standard complex structure.
Since there must be some points α ∈ ω1 for which there is no β with the

property that β + 1 = α, the definitions given so far do not introduce a complex
coordinate structure at every point of Y. In fact, because of Rado’s theorem there
cannot be an extension of this complex structure or in fact any complex structure
to all of Y.

Definition 16. We say that two points P and Q in X are joined by a chain of
parametric discs D1, . . . , Dn if P ∈ D1 and Q ∈ Dn and each successive intersection
Dj ∩Dj+1, 1 ≤ j ≤ n− 1 is non-empty.

Proposition 1. No matter what complex structure is introduced on the com-
ponent cylinders of the long ray, there are points α and β in ω1 with α < β such the
cylinder joining α× S1 × [0, 1] and β × S1 × [0, 1] in Y cannot have finite modulus.

Proof. Let F = F(α, β) be the family of elements of the long ray that lie
between α and β. The union of the component cylinders starting at α and coming
before β form a long component. For each γ in F let M(γ) be the modulus of the
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component cylinder which has coordinate γ in this component must have positive
modulus. From the comparison inequality

1

M(A)
≥
∑
γ∈F

1

M(γ)
,

this implies M(A) = 0 where A is the cylinder starting at α, and so it cannot be
attached to the component cylinder corresponding to β. �
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