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PREFACE

A Riemann surface is an oriented topological surface together with a system of
local parameters whose domains of definition cover the surface. The local
parameters have the property that if any two of them have overlapping domains
of definition, the transition mapping expressing the first parameter in terms of
the second is holomorphic. Another system of local parameters is compatible
with the first system if the union of the local parameters for the first system
together with the local parameters for the second still satisfies the condition that
in overlapping domains of definition transition mappings are holomorphic. The
union of all systems compatible with a given system is a Riemann surface
structure. Two such Riemann surface structures are equivalent if there is a
biholomorphic homeomorphism taking one surface structure onto the other.

In general, there are many inequivalent Riemann surface structures on a
given topological surface. The set of such structures is called the moduli space.
The moduli space can be very complicated, although if you begin with a -
© compact surface it will be a finite dimensional complex variety but not in general
a manifold.

Teichmiiller’s approach to the problem of moduli was to change the
equivalence relation to a relation on the space of orientation preserving
topological mappings from a fixed base surface onto a variable Riemann surface:
Two such topological mappings f; and f, are equivalent if their images are
conformal by a mapping which makes f; and f; homotopic. Teichmiiller was
able to show that this space of equivalence classes is homeomorphic to a cell, of
real dimension 6g — 6 when the genus g of the original surface is more than 1
and of real dimension 2 when the genus is 1. The space of these equivalence
classes is called Teichmiiller space. The group of homotopy classes of orienta-
tion preserving homeomorphisms of the base surface is called the modular
group. It has a natural action on Teichmiiller space which identifies points
corresponding to conformally equivalent Riemann surfaces. Factoring Teich-
miiller space by the modular group yields moduli space. :

vii




viii PREFACE
The most essential tool in Teichmiiller’s approach to the problem of moduli
was quasiconformal mapping. Although it is not necessary for quasiconformal
mappings to be differentiable in the classical sense, it is easiest to describe the
quasiconformality condition when they are. Any C'-mapping from a plane
domain into a plane domain maps, on the infinitesimal level, a small circle into a
small ellipse. The local dilatation K, at a point x is the ratio of the length of the
major axis of this ellipse to the length of its minor axis. The global dilatation, or
. simply the dilatation, of the mapping is the supremum K of the values K, for.all
x in the domain. An orientation-preserving mapping for which the dilatation K
is finite is called quasicanformaI. In order to make this definition apply to
mappings which are not of class C !, one needs a considerable amount of analysis
and the theory of derivatives in the sense of distributions.

Although this theory was in its early stages during Teichmiiller’s life, he
developed it sufficiently to apply it to the problem of moduli. He showed that
any homotopy equivalence class of quasiconformal mappings from a compact
Riemann surface Rto a compact Riemann surface R’ contains a unique mapping
whose maximal dilatation K is minimum, Moreover, this unique mapping can
be described geometrically in terms of a holomorphic quadratic differential on
R. Such a differential gives a way of cutting up the surface R into Euclidean
rectangles, and the unique extremal quasiconformal mapping corresponds to
stretching by an amount K*/2 along the horizontal lines in these rectangles and
shrinking by an amount K —1!/2 along the vertical lines in these rectangles.

Teichmiiller’s metric is defined by letting the distance from R to R’ betlog K.
~—— The motion determined by stretching.along the horizontal trajectories by the

amount (¢K)"? and shrinking along the vertical trajectories by the amount
(tK)™'2,(0 < t < 1) determines a geodesic in the Teichmiiller metric,

Later, Ahlfors and Bers showed that the Teichmiiller space has a natural
complex structure and that it can be realized as a bounded domain in C”
Moreover, the modular group acts as a group of biholomorphic mappings on
this domain, and the usual complex invariants associated with a Riemann
surface, such as entries in the period matrix; are complex holomorphic functions
with’respect to this complex structure. Then Earle, Eells, and O’Bryne showed
that Teichmiiller’s metric is equal to the integral of its infinitesimal form, for
finite as well as infinite dimensional Teichmiiller spaces. Finally, Royden showed
that Teichmiiller’s metric is determined by the complex structure on Teichmiiller
space. In fact, he showed that for finite dimensional Teichmiiller spaces
Teichmiiller’s metric coincides with the Kobayashi metric, which is defined in a
way which depends only on the noneuclidean metric for the unit disk and the
family of holomorphic mappings from the disk into Teichmiiller space.

Royden also showed that when the genus is more than 2 the modular group is
the full group of biholomorphic self-mappings of Teichmiiller space.

While these results were developing, Reich and Strebel found an ingenious
way to express the extremal property for extremal quasiconformal mappings
relative to quadratic differentials. This is through what we call the Reich—
Strebel inequality. Among their many applications of this inequality, they were
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able to show that the Hamilton—Krushkal necessary condition for a quasi-
conformal mapping to be extremal is also sufficient. Using the length—area
principle, Strebel added to the work of Jenkins by proving many theorems about
the existence of quadratic differentials with closed trajectories.

Independently, Thurston developed a deformation theory for Riemann
surfaces from a topological point of view. Essential for his theory was a theory of
measured foliations on topological surfaces. Briefly, a measured foliation is a
foliation of a surface with singularities of a certain type and with a vertical
measure which measures the amount which an arbitrary curve crosses the
foliation. The types of jsingularities permitted are those which have the same
topological structure as the singularities in the horizontal trajectory structure of
a holomorphic quadratic differential. The vertical measure is nonnegative; it
measures the total amount a curve crosses the leaves of the foliation without
regard to the direction of the crossing. An example of a measured foliation is
obtained by letting the leaves of the foliation be the horizontal trajectories of a
holomorphic quadratic differential ¢(z) dz? which has at most simple poles and
letting the vertical measure be |Im(./¢(z) dz)|.

A measured foliation gives a height function on the space of homotopy
classes of simple closed curves on the surface. The height of a closed curve is the .
line integral over the curve with respect to the vertical measure for the foliation.
The height of a homotopy class is the minimum of the heights of every closed
curve in the homotopy class. Two measured foliations are said to be in the same
measure class if they induce the same height function on homotopy classes of
simple closed curves. Hubbard and Masur showed that every measure class of
measured foliations on a compact Riemann surface is represented uniquely by a
holomorphic quadratic differential.

The purpose of this book is to give an exposition of all of these results,
including, where possible, the part of the theory which remains true for infinite
dimensional spaces and for surfaces with elliptic and parabolic punctures. There
are two currents which run through the whole subject. The first consists of the
various uniqueness theorems which follow, in general, from the length—area
principle of Grotzsch. A powerful version of this principle was given by Marden
and Strebel. They call it the minimum norm principle for holomorphic quadratic
differentials. Marden and Strebel stated the principle by way of comparison with
harmonic quadratic differentials. We find it useful to give two improvements of
this principle. In the first version, one takes a minimum over all L,-measurable
quadratic differentials. These differentials satisfy an inequality of line integrals
taken over arcs which are segments of regular vertical trajectories of a given
holomorphic quadratic differential. In the second version, the minimum is taken
over all continuous quadratic differentials satisfying an inequality of line
integrals over all homotopy classes of simple closed curves. These principles lead
to the following results: the inequality of Reich and Strebel, the uniqueness part
of Teichmiiller’s theorem, the sufficiency of the Hamilton—Krushkal condition
for extremality, and the uniqueness of a quadratic differential with given heights.

The second current is the basis for the various existence theorems. Many of
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these theorems can be seen as issuing from the theorem on the existence of
curves of trivial Beltrami coefficients tangent to a given infinitesimally trivial
Beltrami differential. Among these are the existence part of Teichmiiller’s
theorem and the necessity of the Hamilton—Krushkal condition. The existence
of a quadratic differential with heights equal to the heights of a given measured
foliation can be seen as coming from the existence theorem for Jenkins—Strebel
differentials (differentials with closed trajectories). That theorem comes more
directly from normal families arguments and Weyl’s lemma.

Along the way, we present two additional subjects. The first is the surjectivity
of the Poincaré theta serieg operator for quadratic differentials, and the second is
the Ahlfors—Bers density theorem for quadratic differentials with simple poles.
These results are used to generalize the Reich—Strebel inequality to Riemann
surfaces of ifinite type. They also provide background for generalizing to
arbitrary surfaces the theorem on the necessity and sufficiency of the Hamilton—
Krushkal condition for extremality and the theorem on the equality of
Teichmiiller’s and Kobayashi’s metrics.

Another subject we cover is the discontinuous action of the modular group
on Teichmiiller space. This is one of several components of Royden’s proof that
when the genus is bigger than or equal to 3, the modular group is identical to the -
full group of biholomorphic self-mappings of Teichmiiller space.

A great deal of helpful introductory material can be found in the books by
Abikoff [Ab], Ahlfors [Ah4, Ah6], Farkas and Kra [FarK], Kra [Kr5], and
Lehto and Virtanen [LehtV]. The most important background material is
presented in the first chapter. In particular, the following results are presented
without proof.

1. The uniformization theorem. For much of the book this theorem is
unnecessary if one takes the viewpoint that the surfaces under consideration can
all be obtained by factoring the complex plane or the hyperbolic plane by a
discontinuous group. The fact that all Riemann surfaces with complex structure
except the complex sphere can be so obtamed merely shows that the theory is as
general as possible.

-~ 2. The Ahlfors—Bers theorem giving the solution of the Beltrami equation as a
holomorphic function of the Beltrami coefficient. It is hoped that the summary of

this material given in Chapter 1 will give the reader sufficient background to

proceed without going into a detailed study of quasiconformal mappings.

3. The formula for the dimension of the vector space of holomorphic quadratic
differentials on a Riemann surface of finite type. This dimension can be calculated
from topological considerations, as will be seen in the last chapter on measured
foliations. It also can be deduced easily from the Riemann—Roch theorem. Thé
calculation can be found in Farkas and Kra [FarK].

Apart from these results and the results normally contained in a first-year
graduate course in complex analysis, the development of Teichmiiller theory
presented here is for the most part self-contained. Two exceptions to this rule
stand out. Chapters 8 and 9 contain several references to the Riemann—Roch
theorem. Also, in Chapter 11 we assume some topological results about
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foliations with closed leaves and transverse foliations. We postpone discussion
of these topics until later. Complete details of the topological theorems are
contained in the book Travaux de Thurston sur les Surfaces, by A. Fathi,
F. Laudenbach and V. Poénaru [FatLP].

In a number of places material is included which already appears in other
books. Tt is included for the sake of completeness of exposition. This remark
applies to nearly all of what appears in Chapter 1. In Chapter 4 the part which
concerns Bers’s density theorem, Bergman kernel functions, and the surjectivity
of Poincaré theta series is a condensation of more general results from the book
by L Kra, Automorphic Forms and Kleinian Groups [Kr5]. The material on
trajectory structure of quadratic dgifferentials in Chapter 2 and on Jenkins-
Strebel differentials in' Chapter 10 appears in much more detail in the book by
K. Strebel, Quadratic Differentials [St4]. ‘

Much of that part of Chapter 5 which concerns Teichmiiller space of a
Riemann surface appears in Ahlfors’s book, Lectures on Quasiconformal Map-
pings [Ah4].

Material on Teichmiiller’s theorem and Fenchel-Nielsen coordinates for-
Fuchsian groups is given in Abikoff’s book, The Real Analytic Theory of
Teichmiiller Space [Ab]. He does not consider infinite dimensional spaces. His
approach has fairly little intersection with the approach given in this book.

There is also a book by S. L. Krushkal on Teichmiiller theory [Kru2]. It also
does not cover much of the same material as is covered here.

At the end of each chapter there are bibliographical notes that give references
to books and articles used as background. It is regrettable and unavoidable that
these references are incomplete. The bibliographical notes also indicate some of
the directions of new research in the field. These directions do not make a
complete list and are selected merely because of their appeal to this author.

Also, at the end of each chapter (except ‘Chapter 3) there are illustrative
exercises. Exercises for Chapter 3 were-omitted because, except for unsolved
problems, nothing I' could devise seemed appropriate. In many cases, an
understanding of the exercises is essential. This will become apparent as the
reader proceeds through the book and encounters references to the exercises in

the subsequent text.

Brooklyn, New York FREDERICK P. GARDINER

January 1987




ACKNOWLEDGMENTS

I owe much to many colleagues and friends with whom I have studied over the
years and I owe the most to my teacher, Lipman Bers. A number of people have
read preliminary versions of the manuscript. I particularly want to thank
Professors William Abikoff, Daniel M. Gallo, Fred W. Gehring, Andrew Haas,
Linda Keen, Ravi Kulkarni, Irwin Kra, and Patricia Sipe. They have made
helpful suggestions and corrected many errors. The errors that remain are mine.

1 have also benefited from lectures of Lars V. Ahlfors, Lipman Bers, Clifford J.
Earle, and Irwin Kra. Of particular help has been a set of handwritten notes on

Royden’s theorems by C. J. Earle.
Outside the world of mathematics, I am most indebted to my wife and to my

mother. They have supported me in many essential ways. Also, the Research
Foundation of the City University of New York has paid for typing and
duplicating preliminary versions of the manuscript.

<113



CONTENTS

1. Results from Riemann Surface Theory and Quasiconformal
Mapping

1.1. Definition of a Riemann Surface, 2

1.2. The Uniformization Theorem, 3

1.3. Metrics of Constant Curvature, 4

1.4. Fuchsian Groups,

1.5. Classification of Elements of PSL(2, R), 14

1.6. Fundamental Domains for Fuchsian Groups 15

1.7. Quasiconformal Mappings: Geometric and Analytic
A Definitions, 18

1.8. The Beltrami Equation, 19

19. Extremal Length,

1.10. Grotzsch’s Problem for an Annulus, 26

1.11. The Dimension of the Space of Quadratic Differentials,

2. Minimal Norm Properties for Holomorphic Quadratic
Differentials 33

2.1. Trajectories. of Quadratic Differentials, 34
2.2. Invariants for Quadratic Differentials,

3. The First Minimal Norm Property,

2.4. The Reich»Strebel Inequality, 41

2.5. Trajectory Structure, :
2.6. The Second Minimal Norm Property, 54

3. The Reich—Strebel Inequality for Fuchsian Groups 61
3.1. Integrable Cusp Forms, 62

32, Trivial Mappings for Fuchsian Groups of the First Kind, 64
3.3. The Reich—Strebel Inequality for Finitely Generated Fuchsian

Groups of the First Kind, 66

27

XV



Xvi

CONTENTS

3.4. Trivial Mappings for Groups of the Second Kind, 67
3.5. Finitely Generated Groups of the Second Kind, 68

- Density Theorems for Quadratic Differentials 71

4.1. Bers’s Approximation Theorem, 71

4.2. A Density Theorem for Fuchsian Groups, 78

4.3. Poincaré Theta Series, 80

44. Kernel F unctions for Plane Domains, 80

4.5. The Inequality of Reich and Strebel for Arbitrary Fuchsian
Groups, 85

. Teichmiiller Theory 91

5.1. Teichmiiller Space ona Riemann Surface, 92

5.2. Teichmiiller Space of a Fuchsian Group, 94

5.3. Teichmiiller’s Metric, 97

5.4. The Bers Embedding of Teichmiiller Space, 97

5.5. Translation Mappings between Teichmiiller Spaces, 102

5.6. The Manifold Structure of Teichmiiller Space, 103

5.7. The Infinitesimal Theory, 105

5.8. Infinitesimally Trivial Beltrami Differentials, 106

5.9. Teichmiiller Spaces of F uchsian Groups with Boundary, 108

. Teichmiiller’s Theorem 117

6.1. The Hamilton-Krushkal Condition: Necessity, 117
6.2. Teichmiiller’s Theorem: Existence, 119
6.3. Teichmiiller’s Theorem: Uniqueness, 120 _
6.4. Inequalities for F unctionals of Beltrami Coefficients, 121
6.5. The Hamilton-Krushkal Condition: Sufficiency, 123
6.6. Variation of the Extremal Value, 125
6.7. Finite Dimensional Teichmiiller Spaces_are

‘Cells, 125
6.8. Strebel’s Frame Mapping Condition, 126

. Teichmiiller’s and Kobayashi’s Metrics 133

7.1. The Infinitesimal Metric on the Tangent Bundle to I, C), 134
7.2. Integration of the Infinitesimal Metric, 137

7.3. The Kobayashi Metric, 138

7.4. The Finite Dimensional Case, 139

7.5. The Infinite Dimensional Case, 144

Appendix: A Lemma of Ahlfors, 146

. Discontinuity of the Modular Group 149

8.1. Definition of the Modular Group of a Surface, 149
8.2. The Action of the Modular Group on Teichmiiller Space, 150




xvii

CONTENTS

10.

11.

8.3. Moduli Sets, 153

8.4, The Length Spectrum, 156

8.5. The Discontinuity of the Modular Group, 158
8.6. Automorphism Groups, 160

. Holomorphic Self-Mappings of Teichmiiller Space 165

9.1. Signature and Type of Fuchsian Groups: A Theorem of Bers and
Greenberg, 166

9.2. Royden’s Theorem on Isometries, 169

9.3. The Smoothness of Teichmiiller’s Metric, 169

9.4. The Nonsmoothness of Teichmuller’s Metric, 177

9.5. Weierstrass Points, 180

9.6. Isometries of T(), 184

Quadratii: Differentials with Closed Trajectories 191

10.1. Admissible Systems, 192
10.2. An Extremal Problem for Admissible Systems, 193

10.3. Weyl’'s Lemma, 195 .
10.4. Existence of Jenkins—Strebel Differentials with Prescribed

Heights, 196
10.5. Uniqueness of Jenkins—Strebel Differentials, 199

Measured Foliations 203

11.1. Definition of a Measured Foliation, 205

11.2. Injectivity of the Heights Mapping, 207

11.3. Continuity of the Heights Mapping, 208

11.4. Convergence of Heights Implies Convergence of Quadratic
A Differentials, 209 '

11.5. Intersection Numbers, 210

11.6. Projectivizations, 214
11.7. The Heights Mapping Between Quadratic Differentials on Different

Riemann Surfaces in the Same Teichmiiller Space, 213
11.8. Variation in the Dirichlet Norm, 217

Bibliography 225
Index 233



|

RESULTS FROM
RIEMANN SURFACE
THEORY AND
QUASICONFORMAL
MAPPING

Most of the material of this chapter is summarized without proof. Proofs
are included when they are elementary or when they can be presented in a
simplified form. The topics are selected to provide the necessary background for
Teichmiiller theory. :

After the definition of a Riemann surface, the first topic considered is the
uniformization theorem. It says that, except for the case of the Riemann sphere,
the study of Riemann surfaces can be regarded as part of the study of discrete
groups acting on the upper half plane or on the whole complex plane. The most
important case is that of discrete groups acting on the upper half plane, the so-
called Fuchsian groups. Whereas the uniformization theorem is not proved,
those parts of the chapter which concern elementary properties of Fuchsian
groups are treated in detail with proofs included.

We first present an account of the elementary properties of the Poincaré
metric. Then a few general theorems from metric space theory are used to show
how the upper half plane factored by a Fuchsian group (a discrete group of
isometries in the Poincaré metric) yields a metric space which is a Riemann
surface. These metric space theorems also are of use in a later chapter which
concerns the action of the modular group on Teichmiiller space.

A section on the classification of Mobius transformations into elliptic,
parabolic, and hyperbolic elements is included because it provides terminology
used repeatedly throughout the book. There is also a section on fundamental

domains included for the same reason.



2 RESULTS FROM RIEMANN SURFACE THEORY

Probably the deepest topics discussed are from quasiconformal mapping. In
particular, we need the holomorphic dependence of a normalized solution of the
Beltrami equation on the Beltrami coefficient. This result provides a way to
introduce a natural-complex structure on Teichmiiller space. It is also important
to know that the Beltrami equation can be solved for L -Beltrami coefficients.
In this generality, the existence theorem for the Beltrami equation is sometimes
called the measurable Riemann mapping theorem. Other essential parts of the
theory of quasiconformal mapping which are summarized without proof are
various convergence criteria for sequences of quasiconformal mappings.

There are also sections on extremal length and Grotzsch’s problem for an
annulus. These sections provide a way of viewing extremal length as a functional
on the Teichmiiller space of an annulus and show how the length—area principle
yields a formula for the infinitesimal variation of extremal length. Moreover, the
section on Grétzsch’s problem contains the proof of Teichmiiller’s theorem for
an annulus. The method of proof is analogous to the method used in Chapter 6
to prove that theorem in a general setting.

The final section of the chapter gives the formula for the dimension of the
vector space of holomorphic quadratic differentials on a Riemann surface of

finite type.

1.1. DEFINITION OF A RIEMANN SURFACE

Definition. A Riemann surface R is a connected one dimensional complex analytic
manifold. This means R is a connected Hausdorff topological space and there is a
covering of R by open sets U, and there are homeomorphisms z, from U, into C
spich that the transition mappings fuy = z,°z; ' from zg(U, " Up) to 2, (U, Up)
are holomorphic.

Remark. We use the words holomorphic and analytic synonymously.

The pairs (U,, z,) are called charts. Two systems of charts (U, z,) and ( Vg, wp)
are called compatible if whenever U, N ¥} is nonempty, wyez; * is an analytic
mapping from z,(U, N V}) to wy(U, N V). It is obvious that compatibility is an
equivalence relation between systems of charts because the composition of
analytic mappings is analytic.

The equivalence class of compatible systems of charts on R is the complex
analytic structure of R. We also call it the Riemann surface structure of R.

Any system of charts for R determines an orientation of R. The mapping
z,: U, — C puts an orientation on U, by taking the preimage of the usual
orientation for C. (A counterclockwise rotation is considered positive.) On
U, n Uy, the orientation is consistently determined because the Jacobian of Japis
gl > 0. |

In the classical terminology, a compact Riemann surface is called closed while
a noncompact Riemann surface is called open.
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A continuous mapping / from a Riemann surface R, to a Riemann surface
R, is called analytic if for any chart z, on R, and any chart w; on R, the
mapping wge f oz, ! is analytic.

R, and R, are analytically equivalent if there is an analytic homeomorphism
from R; onto R,.

1.2. THE UNIFORMIZATION THEOREM

The uniformization theorem can be stated in many differer:t forms. The deepest
part of it is called Koebe’s planarity theorem, which says that a noncompact
planar Riemann surface is analytically equivalent to a domain in the plane. A
surface R is planar if any simple closed curve on R divides R into two
components. ‘
This result can be combined with the topological theory of covering surfaces.
In particular, R is analytically equivalent to its universal covering R factored by
a group of deck transformations I' which is isomorphic to the fundamental
group of R. One is led to the following result, which also is sometimes called the

uniformization theorem.

Theorem 1. Let R be a Riemann surface. Then R is analytically equivalent to one
of the following:

(1) The Riemann sphere € =Cu{o} =CP.

(2) The complex plane C.

(3) The punctured plane C — {0} =Clz—z+1).

(4) The plane modulo a lattice C/L, where L is isomorphic to 7 x 7 and is
spanned by two vectors in C, linearly independent over R.

(5) The upper half plane H={z:Imz> 0} modulo a properly discontinuous,
torsion free group T of holomorphic homeomorphisms of H.

In the last case we mean to include the possibility that T is the identity, in which
case the quotient space is H itself. Proofs of this theorem can be found in Ahlfors
[Ah6], Ahlfors and Sario [AhS], Farkas and Kra [FarK], Springer [Sp], as well
as numerous other books.

None of the five types of surfaces listed in this theorem can be analytically
equivalent. It is left to the reader to verify this, but we point out that in most
instances the inequivalence is topological. For example, C is inequivalent to C
because C is compact and C is not. C/L, which is a torus and has Euler
characteristic 0, is inequivalent to €, which has Euler characteristic 2. Although
C is topologically equivalent to H, it cannot be analytically equivalent since any
analytic mapping f: C — H composed with the mapping from H to the unit disk
given by z—(z — )/(z + 1) would be a bounded entire function. From Liouville’s

theorem it would therefore have to be constant.



4 RESULTS FROM RIEMANN SURFACE THEORY
1.3. METRICS OF CONSTANT CURVATURE

A consequence of Theorem 1 is that every Riemann surface carries a complete
Riemannian metric which induces the conformal structure and which has
constant curvature. Moreover, the metric is conformal in the sense that its
fundamental form is given by the simple expression

ds* = pHdx?* + dy?)

or ds = p|dz|, where p > 0.
For a metric p|dz| of class C2, the quantity

K(p)= —p~? Alogp, (1)

where A is the Laplacian (Au = 8%u/dx® + 0%u/dy?), is known as the Gaussian
curvature. We will not give a geometric definition of curvature, but point out
that curvature is an analytic invariant. To see this, let w = f(z) be an analytic
homeomorphism from a domain in the z-plane to a domain in the w-plane and
let p be the induced metric in the w-plane. That is,

pw)ldw| = p(z)dz|. @

Then K(p) = K(p), where the curvature for p is calculated with respect to the
Laplacian in the w-plane. Because p(z) = P(f(2)f"(2)] and because log|f'(z)| is
harmonic, it follows that Alog p(z) = Alog p(w), where both Laplacians are
computed with respect to z. Since the Laplacian obeys the change of variable
rule

A;log p=|f'(z)* A, log p,
V;'e find that |
K(p) = K(p).
A metric of constant curvature for the sphere is

|dz|

In order to calculate the curvature of this metric, it is convenient to use the
complex notations: \

o 1/0 0
oz 2\6x Z6y’

e

R

i

: %
R
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o 1 _@Ha
0z 2\ox  0y)’
o%u

Au=al2
W= ooz

Applying these notations‘to (1) and (3), one sees easily that the curvature of the
spherical metric is +4. Although it will not be needed in the sequel, we make
note of the fact that the global chordal metric for the sphere 1s

lz — wl
1 H 1P /T+ WP

for z and win € = C U {co}. The formula is assumed to take its limiting value if
2 or wis co. It is an easy exercise to show that this metric makes the extended
complex plane € a complete metric space. Moreover, substituting w = z + dz
into this formula yields the infinitesimal form (3). However, integration of the
infinitesimal metric (3) yields the spherical metric, which is larger than the
chordal metrie. '

In the case of the complex plane, the Euclidean metric |dz| is complete and has
curvature 0. For the punctured plane, C — {0}, || ~1|dz} is complete and has zero
curvature. For the plane modulo a lattice, the Euclidean metric |dz| gives an
infinitesimal form on C/L which obviously has curvature zero and is complete
because the quotient torus is compact.

We turn now to the most interesting case, the case of the hyperbolic plane
H = {z: Im z > 0}. Here, the infinitesimal metric is

d(z, w) =

d
p(2)ldz| = | Zl_ : @)

|z —Z|

Of course, formula (4) gives an infinitesimal metric on any of the orbit spaces
H/T as long as " acts as a group of isometries. The metric (4) is often called the
Poincaré metric. Equally often it is called the hyperbolic or the noneuclidean

metric.
It is useful to be able to pass back and forth between the upper half plane and

the unit disk. In general, if Q is an arbitrary simply connected domain and fa
biholomorphic mapping from Q onto H, we define

pal2) = p(fE)If' ()] )

where p is given in formula (4). If f, is another biholomorphic mapping from Q
onto M, formula (5) yields the same metric pg. The reader should postpone
verification of this until reading formula (10), below. By letting Q be the unit disk
and f(z) = w, where z=(w — i)/(w + i), we find from (4) and (5) that the
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Poincaré metric for the unit disk A is

d
Pz = ©

An application of formula (1) shows that the Poincaré metrics (4) and (6) have
curvature equal to —4.

The standard procedure for obtaining a global metric from an infinitesimal
form is to first define the length of a path. If «(t) is a smooth path lying in the unit
disk A parameterized by ¢, < t < ¢,, the length of « is defined by

£(0) = f palo®)lo 1) .

The length of a piecewise smooth path is the sum of the lengths of each of its
smooth parts. Then the distance function is defined by -

d(a,b) = inf{/(a): « is a piecewise smooth path joining a to b}. 7

This function is obviously symmetric and satisfies the triangle inequality. For
the unit disk, let « be a path which joins a=0to b=x, 0 <x < 1. We can
estimate the length of « in the following way: For oft) = oy (t) + ioy(t),

)= ftl loc'(t)] dt o J‘n o () i fx do, i =%10g1 + x ®)

wl =10 " Jol =@~ Jol-o 1—x

On letting o(t) = tx, 0 < t < 1, we get equality in (8) and we see that the infimum
in (7) is achieved by this curve and

1 1+x
d(0, x) = 7 log 1 ®

Moreover, for equality to hold in (8), one must have «(t) real and «/(¢) > 0. Thus
the segment [0, x] is the unique geodesic joining 0 to x. In order to find the
formula for the distance between an arbitrary pair of points, first observe that
bianalytic self-mappings of the unit disk leave the infinitesimal form (6)
invariant. This statement hinges on the identity

a1
[ AGE 1= 10

where A is a general transformation of the unit disk of the form

Az) = - ZTw , (11)

1 —wz
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with [w] < 1 and 0 real. Therefore, the lengths of piecewise smooth paths are
left invariant by the transformations A4 and so is the distance function (7). Since,
for an arbitrary pair of points z and w in the unit disk, there is a transformation
A of the form (11) which takes w onto 0 and z onto a point on the line segment
between 0 and 1, from (9) one can deduce

zZ—Ww
1 I+ 1 —wz
d(z,w)=§log — (12)
1—
1‘1"WZ

The foregoing considefations lead to the following proposition.

Proposition 1. The Poincaré metric on the unit disk has infinitesimal form given in
formula (6) and global form given in (12). It is a Riemannian metric with curvature
constantly equal to —4 and it is complete for the unit disk and induces the usual
topology there. Any two points in the unit disk are joined by a unique geodesic
which lies on a circle orthogonal to the unit circle {z: |z = 1}.

Any other simply connected domain conformally equivalent to the unit disk has a
Poincaré metric with all of the same properties except that geodesics may not lie on

circles.

Proof. We have already ‘derived the global form of the metric from its
infinitesimal form and we have calculated the curvature. The fact that the
topology coming from the metric d is the usual Euclidean topology follows from
(12). Completeness of the metric follows from the formula

1 14z
d(0,z) ==1 . 3
0,2 = 5log 7 (13)

A sequence z, which is Cauchy for the metric d must be bounded in that metric.
Thus from (13) there is a number k < 1, with |z,| < k. One obtains a subsequence
which converges to a point in the interior of the unit disk and therefore the
original Cauchy sequence z, converges in the unit disk.

Since transformations A in (11) preserve circles which are orthogonal to the
unit circle and since they are isometries in the metric (12), the geodesic segment
[0, x], lying on the x-axis, is taken by 4 onto a segment of a circle orthogonal to
the unit circle. Since the segment [0, x] is a unique geodesic, so are all of its
images under the isometries A. ‘

The rest of the proposition ‘is self-evident.

1.4. FUCHSIAN GROUPS

A group G is said to acton a topological space X if every element A of G can be
viewed as 2 homeomorphism of X and if the group operation in G is compatible
with composition of functions in the sense that AB(x) = A(B(x)) for every A and
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Bin G and every x in X. The group is called torsion free if the identity I in G is
not equal to a power of any element of G except for the identity itself.

Definition. A group G of homeomorphisms of a topological space X is said to act
properly discontinuously on X if, for every compact set K in X, the set of A in G for
which A(K) intersects K is finite.

Because of the uniformization theorem, groups of holomorphic homeomor-
phisms of the upper half plane H which are torsion free and act properly
discontinuously on H play a central role in Riemann surface theory. It is useful
to drop the condition that these groups be torsion free. Accordingly we make the
following definition.

Definition. A group of holomorphic homeomorphisms of the upper half plane H
which acts properly discontinuously on H is called a Fuchsian group.

Lemma 1. Suppose A:H — H is a bijective, holomorphic mapping. Then there
exists real numbers a, b, c,d and ad — bc = 1 such that

__az+b_ (14)

The numbers a, b, c and d are determined uniquely up to simultaneous multiplica-
tion of all of them by + 1 or — 1. Thus a Fuchsian group is actually a subgroup of

PSL(2, R) = SL(2, R)/{+1}.

Proof. We consider the transformation T(z) = (z — i)/(z + i). It is a bijective
holomorphic mapping from H to the interior of the unit disk. The hypotheses on
A imply that Te A~ T ™! is a bijective holomorphic self-mapping of the unit disk.

If the mapping To A>T~ ! takes 0 into a, we can postcompose it with the
mapping C(z) = (z — «)/(1 — &z), which preserves the unit disk and takes o to 0.
Thus CoTo A~ T~ !is a holomorphic bijection of the unit disk which keeps the
origin fixed. By the uniqueness part of Schwarz’s lemma, it must be a rotation
z — ez,

On solving the matrix equation

CoToAoT Y(z) = €%,

it is clear that 4 has a matrix representation (14) for some complex numbers
a, b, ¢, and d with ad — bc # 0, which, after suitable scaling, we may assume to
satisfy ad — bc = 1. Since A4 extends to a mapping which preserves R U {c0}, we
see that A(o0) = a/c and A(0) = b/d must be real. Since A'(x) = (cx + d)” % must
be real for all real x, this shows that g, b, ¢, and d are either all real or all
imaginary. If they were all imaginary, then 4 would map the upper half plane to
the lower half plane. However, we assume A(H) = H, so the case where a, b, c,
and d are imaginary is ruled out.
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Assuming ad — bc = 1, the transformation completely determines the num-
pers a, b, ¢, d except for one possible ambiguity: a, b, ¢, d will give the same
transformation as —a, —b, —c,and —d. Thus a Fuchsian group is a subgroup
of PSL(2, R), the projective special linear group of 2 x 2 matrices with entries in

R (see Exercise 4).

Since a Fuchsian group is a properly discontinuous group of isometries of a
metric space, the following lemma from metric space theory is useful. For a
group G acting on a set X, define the isotropy group of a point to be the
subgroup of G which fixes the point. Define the orbit of a point p to be the set of

points A(p) for Ain G.

Lemma 2. Let G be a group of isometries of a metric space X with metric d. Then
G acts properly discontinuously on X if the isotropy groups are finite and the orbits
are discrete. Conversely, if G acts properly discontinuously and X is locally
compact, then the isotropy groups are finite and the orbits are discrete.

Proof. Suppose K is a compact subset of X and that 4,(K) intersects K for an
infinite sequence of distinct elements A,. Without changing notation for
subsequences, we obtain an infinite sequence of distinct elements 4, in G and
points p, in K with r, = A,(p,) in K such that p, converges to p and r, converges

tor.
Using the fact that elements of G are isometries and the triangle inequality, it

is elementary to show that (see the next paragraph)
d(AmO An— 1(rk)> rk) < 2d(rk’ rn) + d(pm Pm) + d(rm: rn)' (15)

Now select n, so that for n and m=>no We have d(rn,1,) <¢/4 and
d(p,, pm) < €/4. Then for n,m, and k>n, one Sees from (15) that
d(A,;° A7 Y(ri), i) < & Taking the limit as k — oo, we obtain

d(An° A, (1), 1) <8

for infinitely many elements 4,,° A4, 1 But if orbits are discrete, we can select & s0
that no points in the orbit of 7 which are distinct from r have distance less thane
from r. The only possibility is that 4, ° A4, 1() = r. But that is also impossible
since A,, # A, and isotropy groups are finite.

To prove (15) observe that

d(Am ° An— 1(rk)s rk) < d(Am ° An— 1(rk)’ Am ° An—l(rn))
+ d(Am © An— 1(rn)a rn) + d(rns rk)'

Since A,,° A, * is an isometry, we get

d(AmO Ar: 1(rk)7 Tk} ‘{ Zd(rn: rk) + d(Am(pn)a rn)'
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But

AAn(Pa), 1) < A(An(Py), An(P)) + d(Ap(pn), 7)
= d(Pa> D) + d(Ts 7).

Putting these inequalities together, we obtain (15)

To obtain the converse part of the lemma, notice that since a single point set
{p} is compact the proper discontinuity implies that its isotropy group is finite.
Secondly, for an arbitrary point p, the local compactness of X implies there
exists & > 0 such that K = {q|d(p, q) < &} is compact. Let 4,,..., A4, be the

finite set of elements of G for which A ;(K) intersects K. Let &, be the minimum

value of d(p, A;(p)) for all the A jwith 1 <j < nfor which 4 i(p) # p. Then every
point which is in the orbit of p and not equal to p has distance greater than or
equal to ¢, from p. Thus the orbits are discrete.

From this lemma, we can now prove the following result which characterizes
Fuchsian groups.

Proposition 2. A subgroup T of PSL(2, R) is discrete if, and only if, it acts broperly
discontinuously on H.

Proof. Let S* be the set of complex numbers with absolute value 1 and let A
be the interior of the unit disk. The Mdbius transformation T ==z +1)
transforms the upper half plane into the open unit disk and the conjugation
mapping 4 - T° A>T~ is an isomorphism of PSL(2, R) into the holomorphic
bijections of the unit disk, which are uniquely expressible in the form

Clz)= 4 IZ — , where Ais in S* and « is in A.
z

It is easy to check that the mapping
a b
PSL(2, R) 9( d)v—»(/l, a)e St x A (16)
\c ,

is @ homeomorphism and the orbit of i in H under a group I' < PSL(2, R) is
transformed by T to the orbit of 0 under the group ToloT 71,

Suppose I is discrete and 4, is an enumeration of the elements of I". Then
clearly the set of corresponding numbers (4,, «,) under the mapping (16) is
discrete. Therefore, for any r < 1, the set of (44, o) for which |a,| < r is a finite
set. We conclude that the set of numbers — 4.0, which sweep out the orbit of
zero, is a discrete set. Moreover, the isotropy group of 0 cannot be infinite
because, if it were, then «, would be zero for infinitely many n and there would be
an infinite discrete set of numbers 4, in the compact set S

&

i

xv(gp
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On replacing T by the transformation (z — zo)/(z — Zo) this same argument
shows that orbits under I are discrete and isotropy groups are finite for all
points Zo in H.

Conversely, suppose I" acts discontinuously on H. Then the image of I" under
the mapping (16) must give a discrete set of values — A,a, since these values are
the orbit of 0. Thus there can be only finitely many values (4,, o,) lying inside the
compact set 1 x A,, where A, ={z:|z| < r} and 7 < 1. This shows that I' is a

discrete subset of PSL(2, R).

Remark 1. This proposition shows that any discrete subgroup I' of PSL(2, R)
is a Fuchsian group. If B is any element of PSL(2, C), we also call the group
BoToB™! a Fuchsian group. Instead of having H as invariant domain, the
group BeI'° B~ ! has B(H) as invariant domain. B(H) is either the interior or the
exterior of a circle or a half plane in the extended complex plane.

Remark 2. The same method used to prove the previous proposition can be
used to show that a subgroup of PSL(2, C) is discrete if, and only if, it acts
discontinuously on H?3, three dimensional hyperbolic space. However, discrete
subgroups of PSL(2, C) may fail to act discontinuously on any subdomain of .

Let 7 denote the orbit of the point p. Thus
p={A(p): A€G}.

Let X/G denote the pace of such orbits. When X is a metric space and G is a
group of isometries, the following lemma explains how X/G becomes a metric

space.

Lemma 3. Suppose G is a group of isometries of a metric space X with metric d.
Suppose further that G acts properly discontinuously on X. Moreover, assume X is
locally compact. Then X/G is metrized by the metric

d(p.7) = inf d(A(p),7) (17)
AinG

and the natural mapping m: X — X/G is open and continuous and is a local

homeomorphism except at points for which the isotropy group is nontrivial.

Proof. 1t is clear that formula (17) for d gives a nonnegative symmetric
function satisfying the triangle inequality. If d(p, ) = 0, we must show the orbit
of p-equals the orbit of r. But if d(p, 7) =0, then there exist elements 4, in G such
that d(A4,(p),r) — 0. We may assume infinitely many of the 4, are distinct,
because if they are not, then the set {4,(p): n an integer} is a finite set and,
therefore, for some value ny, A,,(p) = r. This would show p is in the orbit of .

Let r, = A,(p). Using the triangle inequality and the fact that elements of G
are isometries, in the same way that we arrived at (15), one can show that

d(‘émo An— 1(rk): rk) < Zd(?'n, rk) + d(f’m, r:x)' (18)
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Since X is assumed to be locally compact, we may choose ¢ > 0 so that every
point in the orbit of r which is distinct from r has distance larger than ¢ from r.
Then choose n, so that n > n, and m > n, imply d(r,,, r,) < /3. This can be
done because we know that r, converges to r. From (18) we obtain

d(An° A7 (rm) < (19)

for m, n, and k>n, Taking the limit in (19) as k— o0, we get
d(A,° A, (r),r) < e By choice of ¢ this implies d(4,,° A4, '(r),7) = 0. The
assumption that isotropy groups are finite is therefore contradicted
unless {4,,°A, '} is a finite set and thus 7 = p.

From the obv1ous inequality d(p, 7) < d(p, r), it follows that the natural-
mapping n: X —» X/G is continuous. Since the ball of radius ¢ about p is
contained in the image under = of the ball of radius ¢ about p, © is open.

Suppose p is a point whose isotropy group is trivial. Since the orbit of p is
discrete, ¢ > 0 can be chosen so that every point in the orbit of p and not equal to
p has distance more than 2¢ from p. If d(p, r) < ¢ and an element 4 of G fixes r,
then obviously d(p, A(p)) < d(p,r) + d(A(r), A(p)) < 2e. Hence, A must be the
identity and so r has trivial isotropy group. .

Let N = {r:d(p, r) < ¢}. We have just shown that every point of N has trivial
1sotropy group. It is also true that no two points of N can be identified by G. For
suppose r, and r, are distinct points of N and A(r,) = r, for some 4 in G. Then
d(p, A(p)) < d(p,r;) + d(A(r,), A(p)) < 2¢. But this contradicts our assumption
on p unless A4 is the identity. Thus, the projection n: X — X/G is one-to-one
when restricted to N and it is open and continuous. The lemma is proved.

Definition. 4 group G acting on a metric space X has the identity property if
whenever an element A in G fixes a set of points in X with an accumulation point in
X, then A is the identity.

Notice that PSL(2, R) acting on H has the identity property.

Definition. An elliptic point p for G acting on X is a point in X whose isotropy
group is nontrivial.

Remark. In the case where G is a Fuchsian group acting on H, the isotropy
group of any point in H is automatically finite. This is because such an isotropy
group is a discrete subgroup of the compact group of noneuclidean rotations
about the point. Of course, many points on the real axis have infinite isotropy
groups. However, the real axis is not part of the space where G acts as a group of

isometries.

Lemma 4. Let G be a group of isometries acting on a metric space X and suppose
orbits are discrete and isotropy groups are finite. Suppose further that G has the
identity property. Then every point p in X has an open neighborhood N such that

N — {p} consists of nonelliptic points.
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Proof. Where p is nonelliptic we already proved the existence of the
neighborhood N in the second to last paragraph of the proof of the preceding
lemma.

Suppose r is an elliptic point and p, is a sequence of distinct elliptic points
converging to r. It is obvious that there exists n, such that for n=n, the
isotropy group of p, is contained in the isotropy group of r. Since the isotropy
group of  is finite and the isotropy group of each p, is nontrivial, we can extract
a subsequence py, and a nontrivial element A which fixes each point p,, This
contradicts the identity property.

At the moment we are interested in applying Lemmas 2,3, and 4 to case
where the metric space X is the upper half plane H, the metric d is the Poincaré
metric, and the group G is a discrete subgroup of PSL(2, R). Later, we will apply
them to the case where X is Teichmiiller space, the metric d is Teichmiiller’s
metric, and G is the Teichmiiller modular group.

Theorem 2. Let T be a Fuchsian group acting on H. Then H/T is a complete
metric space with the quotient metric given by din (17). The set of elliptic points for
T in H is a discrete set. Moreover, there is a unique complex structure on H/T'
making H/T" into a Riemann surface and the mapping n:H — H/T into a
holomorphic mapping. At nonelliptic points is a local homeomorphism, and at
elliptic points  is locally an n-to-1 mapping where n is the order of the isotropy
group of the elliptic point.

Proof. In view of Lemmas 3 and 4 we only need to exhibit the complex
structure for H/T" and to show why the metric d is complete. Suppose P, is a
Cauchy sequence in H/T". Then for every ¢ > 0 there exists n, such that, for nand
m larger than or equal to ng, d(p,, p.) < & Because of the definition of d in
Lemma 3, if we take a representative p,, of p,,, then we may find a representative
p, of each p, such that d(p,,, p,) < & This means the sequence p, is a bounded
sequence in hyperbolic space H and .therefore it has a convergent subsequence
Pr,- Because 7 is continuous, p,, is then a convergent subsequence of the Cauchy
sequence p,, which therefore converges.

To show H/T" has a Riemann surface structure, first assume p in H/T is the -
image of a nonelliptic point. From Lemma 3, we may choose an open set U
containing p in H such that = restricted to U is a homeomorphism. Let V be the
open set n(U) and let the local coordinate z for V be (n]U)~ !. Here, the notation
7|U means the restriction of 7 to U. If p, is another point in p, and A is the
clement of " taking p to p,, then U, = A(U) will be a neighborhood of p, such
that 7 restricted to U, is a local homeomorphism. Let z; = (n|U,)~* be a local
coordinate for V; = n(U,). Clearly, z; oz~ = A, which is an analytic mapping
[it is even in PSL(2, R)]. These local coordinates determine a complex structure
on a system of neighborhoods which cover all nonelliptic points of H/T".

Now let p be an elliptic point (which we know by Lemma 4 must be isolated
from other elliptic points). By conjugating I with a Mobius transformation that
takes p to the origin and M to the unit disk, we may assume the isotropy group is
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a cyclic group of order n generated by a rotation ¢ — A¢, where 4 = exp(2mi/n).
(See Exercise 5) In a sufficiently small neighborhood U of 0, the only
identifications made by I" arise from this rotation. On letting z = (", z becomes a
local coordinate for the neighborhood n(U) in H/T". It is easy to check that the
transition functions to nearby nonelliptic points are holomorphic.

It is obvious that these local coordinates make 7 into a holomorphic
mapping and that they determine the Riemann surface structure.

1.5. CLASSIFICATION OF ELEMENTS OF PSL(2, R)
A transformation

az+b

, ad — bc = 1, a, b c,din R,
cz+d

Az) =

which is not the identity, obviously has at most two fixed points on C, since a
fixed point satisfies the quadratic equation A(z) = z. The trace of 4 is not well
defined since the matrix for A is only determined up to plus or minus sign. But
(tr A)? is well defined and we can classify any transformation 4 which is not the
identity according to its value:

A is hyperbolic if (tr A)* > 4.
A is parabolic if (tr A)? = 4.
A is elliptic if (tr 4)? < 4.

Since the roots of the equation A(z) = z are

when ¢ # 0,

a—d+  fla+d)? -4
2c '

a hyperbolic element has two fixed points z, and z, on the real axis. When ¢ = 0
one of the fixed points is at co. When ¢ # 0, on letting
zZ — 21

B(Z) = >
zZ — ZZ

the conjugate BeA°B~! has fixed points at 0 and oo and therefore
Be A° B™!(z) = Az for some positive real number 1. When ¢ = 0, the hyperbolic
element A4 has a fixed point at z; and co. If we let B(z) = z — z,, once gain we
obtain Be 4B~ '(z) = Az for some 4 > 0. The number A cannot be equal to 1
unless A is the identity. If 0 < A < 1 by interchanging the two points z, and z,,
we can make A > 1. The number A > 1 is called the multiplier of the trans-
formation 4. Because of the equation (412 + A7 12)2 = tr(4)?, the multiplier

depends only on the conjugacy class of A.
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From the formula for the fixed points, a parabolic transformation has just
one fixed point, z,. If z, is not already equal to oo, then by letting
B(z) =(z — z,) "', we sec that BAB -1 fixes oo and thus is an affine mapping of
the plane with no fixed points except at oo. Thus BAB™(z) =z + b in the

arabolic case.
In the elliptic case, there are two fixed points z; and z, which are complex

conjugates of each other. In this case, the transformation

z—2zy

B(z) =

Z"’Zz

takes the real axis onto the unit circle, z; into 0, and z, into o0. Thus BAB 'isa
rotation about the origin, that is, BAB™(z) = e'z.

1.6. FUNDAMENTAL DOMAINS FOR FUCHSIAN GROUPS

A fundamental domain for a Fuchsian group I acting on H is an open subset
of H such that:

(i) Every point of H is [-equivalent to at least one point of the closure
- ofw
(ii) No two points of w are identified by an element A of I'.
(iii) The boundary dw of w in H can be written as a countable union of
piecewise analytic arcs y; in such a way that:
(iv) For every arc y; there is an arc y and an element 4 of I' such that

A(?’j) = Vi-

In the sequel we will not need to use all of the properties of a fundamental
domain. For our purposes it will suffice to know the existence of a measurable
fundamental set. -

It is obvious that if B is a Mdbius transformation and @ is a fundamental
domain for T acting on H, then B(w) is a fundamental domain for BeFeB™*
acting on B(H). o '

Here we give without proof the methods for constructing the Dirichlet and
Ford fundamental domains. We also show that after conjugation by a suitable
Mébius transformation and restriction to the unit disk, the Ford fundamental
domain coincides with the Dirichlet domain. This observation together with an
explanation of its geometric meaning is given in Beardon’s book [Bea, pp. 176
and 234]. For the proof that these domains satisfy the properties listed in the
definition the reader is referred to Beardon [Bea], Bers [Berl], Ford [For], or

Lehner [Leh].
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Method I. The Dirichlet Fundamental Domain of a Fuchsian Group I’

Select a point z, in H which is not an elliptic fixed point. For each Ain T — {id}
construct the noneuclidean half plane

h(A) = {z e H: d(z, zo) < d(z, A(z0))}
where d is the nonéuclideah metric. Finally, the Dirichlet fundamental domain is
wp(zo) = [ Jh(A) (20)

where the intersection is over all elements A in I" — {id}. The boundary of wp(z,)
in H consists of segments of hyperbolic lines (or half lines or entire lines) which
are perpendicular bisectors of hyperbolic segments joining z,, to A(z,) for ceriain
elements 4 of I'. These segments of perpendicular bisectors bound the set wp(z,)
which is convex in the sense of noneuclidean geometry and, hence, connected
and simply connected. There may be segments of the real axis which bound
wp(zo). Such segments are called free sides. Of course, a free side is not part of

the boundary of wj(z,) in H.

&

Method II. The Ford Fundamental Domain of a Fuchsian Group I’

Corresponding to any Mobius transformation A(z) = (az + b)/(cz + d) with
c#0 and ad—bc=1 there is an associated isometric circle
I(A) = {z:|cz + d| = 1}. Since A'(z) = (cz + d) ™2, the isometric circle is the set
of z for which |4(z)] = 1. A group I' may contain an element 4 which is not the
identity and which fixes the point at infinity. This happens precisely if ¢ = 0.
Such an element does not have an isometric circle and prevents the construction
of the Ford fundamental region. Therefore, if there is an element of I' — {id}
fixing the point at infinity, we select a transformation B such that
BeT'eB~! — {id} does not have any element fixing infinity. Obviously, B~*
applied to a fundamental domain for Bo "> B~ is a fundamental domain for I".

Thus, to construct a fundamental domain, we may and do assume that every
element of I — {id} has an isometric circle. For each element 4 of I" — {id}, let
E(A) be the region in the extended complex plane € which is exterior to the
isometric circle of A. The Ford fundamental domain for I is

or = (E(4) N H, (21)

where the first intersection is over all 4 in I — {id}.
To see the relationship between the Ford and Dirichlet fundamental

domains, let z, be a point in H which is nonelliptic for I' and let
B(z) = (z — zp)/(z — Z,). Note that B transforms H into the interior of the unit
disk A and z, into the origin and the group BoI'> B™* has no elements except
the identity fixing infinity or the origin. The Dirichlet fundamental domain
wp(0) centered at the origin is the intersection of all half planes determined by
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the inequalities
dA(Z: 0) < dA(Za A(O))s (22)

where z is in A, where d, is the noneuclidean metric for A, and where 4 is an
arbitrary element of BeI' e B™" — {id}. The main point is that inequality (22)
determines precisely the exterior of the isometric circle for 4~ ! intersected with
A. To see this note that any Mobius transformation 4 which preserves the unit

disk is represented by a matrix
a f
B a)

where o and f are complex numbers satisfying |o|> — | B> = 1 (see Exercise 6).
Inequality (22) with A replaced by A~ 1 can be rewritten as d,(z, 0) < da(4(2), 0),
which is equivalent to |fz + az]|z| < |az + B|. After some elementary algebra,
this inequality combined with the condition loj? — | B> =1 reduces to
|fz — & > L.

In summary, let T be a Fuchsian group acting on the unit disk and let O be a
nonelliptic point. Then the Dirichlet fundamental domain ©p(0) centered at the
origin coincides with the intersection of the unit disk with the F ord fundamental
domain.

There is an important problem which is converse to finding fundamental
domains. A domain with sides bounded by circular arcs and a finite set
Ay,..., A, of Mobius transformations identifying these arcs pairwise are given.
The problem is to give conditions under which the group generated by
Ay,...,A, is Fuchsian and has the given domain as fundamental domain. A
great deal of work has been done on this problem and on analogous problems
for Kleinian groups. See, for example, Keen [Kel], Maskit [Mask], and
Macbeath [Macl]. ' '

We now return to Fuchsian groups I' acting on the upper half plane H. The

" area of H/T is defined to be
area(w) = 4 j j p?(z) dx dy,

where p(z) = |z — 2| ! is the infinitesimal noneuclidean metric and  is any
fundamental domain for I'. This integral is independent of the choice of
fundamental domain o. First, note that for any measurable subset S of H,
area(S) = area(A(S)) for 4 in PSL(2, R). Second, since the boundary of @ is a
countable union of analytic arcs, H — U aerA(e)) is a set of measure zeto. Thus,
for any two fundamental domains and w, we have

area(m,) = ¥, area(w; N Alw)) = Y area(4”Hw;) N @y) = area(w,),

where the two summations are over all A T
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In general, when it is a finite number, the area of H/I" depends on the genus of
the surface H/T" as well as the number of parabolic conjugacy classes in I" and
the number of elliptic conjugacy classes as well as their orders. The Gauss—
Bonnet theorem gives a formula for the area of H/T" in terms of these topological
invariants [see formula (2) of Section 9.1].

The limit set A of a Fuchsian group I is the set of accumulation points of the
orbit of any point z, in H. It is a closed T'-invariant set contained in the real axis.
I"is said to be of the first kind if A = R and of the second kind if A is not all of R.

Although the following theorem will not be needed in this book, we state it as
a matter of general information. The proof is long and may be found in Kra
[Kr5] or Lehner [Leh].

Theorem 3. Let T" be a Fuchsian group acting on H and w a fundamental domain
defined by (20). Then the following conditions are equivalent:

(a) Area (H/T) is finite.
(b) o has a finite number of sides and no free sides.
(c) T is finitely generated and of the first kind.

When I' is a group of the second kind, the Riemann surface R = H/I"
has a border. The border of H/I" is obtained by adjoining to H/I' the set
(R — AyI" with the natural topology induced by the covering
mHUR-A)->MHUR-A).IT=B-TB"! for some Mbius trans-
formation B, the transformation B induces a homeomorphism of the border of
the surface H/T" onto the border of the surface H/T".

1.7. QUASICONFORMAL MAPPINGS: GEOMETRIC AND
ANALYTIC DEFINITIONS

A Jordan region on a Riemann surface R is a connected and simply connected
open subset of R whose boundary is a simple closed curve contained in R. By a

generalized quadrilateral Q on R we mean a Jordan region on R together with .

two disjoint closed arcs 8, and 8, on the boundary of Q. The module of Q, m(Q),
is determined by the conformal mapping of Q onto a rectangle which takes the
disjoint closed arcs onto the vertical sides of the rectangle. If this rectangle has
width a and height b, then m(Q) = a/b. If @ * is the same rectangle as Q but with
two disjoint closed arcs o, and a, complementary in the boundary of Q except
for common endpoints, then m(Q*) = m(Q) " *.

Definition (Geometric Form). Let f be a sense preserving homeomorphism from a
region Q to a region Q'. Then fis K-quasiconformal if for every quadrilateral Q in
Q, m(f(Q)) < Km(Q). The smallest possible value of K for which this inequality is
satisfied for all quadrilaterals Q is called the dilatation of f.

T
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Clearly, m(f(0*)) < Km(Q*) and f(Q*) = f(Q)*, so the definition implies
K~'m(Q) < m(f(Q)) < Km(Q) (23)

for every quadrilaterial Q. Using this geometric definition, it is obvious that if f;
and f, are K- and K,-quasiconformal, then f.° f, is KK ,-quasiconformal.
The analytic definition of a quasiconformal mapping depends on the notion
of absolute continuity on lines, which we abbreviate by ACL. The function
f(z) = ulx, y) + iv(x, y) is ACL if for every rectangle in Q with sides parallel to
the x- and y-axes, both u(x, y) and v(x, y) are absolutely continuous on almost
every horizontal and almost every vertical line in R. The functions u and v will
then have partial derivatives u, u,, Uy, Uy almost everywhere in Q. The complex -
partial derivatives are, by definition,

fi=¥f—if) and fi=3f+1h) (24)

Definition (Analytic Form). Let f be a homeomorphism from a domain L to a
domain Q. Then f is K-quasiconformal if

@) fis ACL in Q; and +-
(i) |f5l < kIS almost everywhere, where k = (K — /(K — 1) < 1.

The minimal possible value of K for which (ii) is satisfied is called the dilatation of f.

Theorem 4. The geometric and analytic definitions of K-quasiconformality are
equivalent. Moreover, the partial derivatives f;andf, of a quasiconformal mapping f

are locally square integrable.

For the proof of this theorem see Ahlfors [Ah4] or Lehto and Virtanen
[LehtV]. ' .

1.8. THE BELTRAMI EQUATION

We have seen that if f is a topological (homeomorphic) ACL mapping and if
I/ f <k <1 almost everywhere, then f is quasiconformal. Let u(z) be a
measurable complex valued function defined in a domain Q for which

lull, =k < 1. The Beltrami equation is
fi(2) = w(2)f(2), (25)

where the partial derivatives are assumed to be locally square integrable and
taken in the sense of distributions. The function p is called the Beltrami

coefficient of the mapping f.
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Distributional derivatives are defined by means of the appropriate
integration-by-parts formula. In particular, 4 is the (9/0x)-derivative of f if

jjfgx dx dy = ~JJ.hg dx dy

for every C*-function g with compact support in the domain of definition of f.
The (0/0y)-distributional derivative is defined analogously and thus §/dz and
0/dz are determined by (24).

In the theory of the Beltrami equation ([Ah4], [AhBer], [LehtV]) a solution
f can be expressed as a power series in y, where the power series is made up by
taking compositions of singular integral operators. The following theorem
asserts the existence of normalized global solutions to (25) on € = C U {oo}. Tt
also expresses in a very specific way the analytic dependence of the solution f on
the Beltrami coefficient y. The analyticity of this dependence is essential in
determining a complex structure for Teichmiiller space.

Theorem 5. The equation (25) gives a one-to-one correspondence between the set
of quasiconformal homeomorphisms of € which fix the points 0, 1, and oo and the
set of measurable complex valued functions u on C for which |pl, < 1.
Furthermore, the normalized solution f* to (25) depends holomorphically on u and
for any R > O there exists 6 > 0 and C(R) > 0 such that

|f*(z) — z — tF(2)] < C(R)t? for |z} < R and |t} <6, (26)
where
z(z —1) w&)dé dn
Fe=- H«c—mc—z
and { = & +in.

Frequently, we need solutions f of (25) which map the upper half plane to
itself and preserve the real axis and have arbitrary Beltrami coefficient u with
support in H. Let M(H) be the space of complex valued L -functions u with
support in H and with || x|l , < 1. For pin M (H) let i be identically equal to u on
H and equal to u(z) on H*, the lower half plane. Then solve the equation (25)
with u replaced by ji. (The values of /i on the real axis are unimportant because it

is a set of measure zero.)
Let f = f* be the solution to (25) which has Beltrami coefficient /i and which

is normalized to fix the points 0, 1, and co. (Any three points on the real axis

would do.) Then f(z) has the same Beltrami coefficient as f and it fixes the
same three points on the real axis. Therefore, by uniqueness of solutions to

(25),% = f(z),and f is a quasiconformal mapping which preserves the real

-
R
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axis in an orientation-preserving manner. Moreover, f preserves the upper and

lower half plane.
We obtain a corollary to the preceding theorem.

Corollary. To every ;i in M(H), there exists a unique quasiconformal self-mapping
fof H satisfying fx(2z) = p(2) £.(z) on H which extends continuously to the closure of
H and is normalized to fix the points 0, 1, and co. Moreover, to every R > 0 there

exist C(R)>0and 6 >0 such that

/() — z — tF(2)| < CR)E®

for |zl <R and t real and |t| < 6, where
1 _
Fl@)=—-— jf [u(OR(E, 2) + BOR(E, 2)]dE dn,
H

z(z — 1)

RGD=rr =2

and { =¢+ 1.
Proof. We have already shown how the first part of the corollary follows

from the theorem. To obtain the infinitesimal formula for f™ we apply the
corresponding formula in the theorem to the Beltrami coefficient [i.

We frequently need the following closely related convergence principles for
quasiconformal mappings.

Lemma 5. Suppose L, is a sequence of Beltrami coefficients and |p,ll <k <1 and
1,(z) converges to p(z) pointwise almost everywhere. Let f,(z) and f (z) be the unique
quasiconformal homeomorphisms of the extended complex plane € which have
Beltrami coeﬁicients’ U, and p, respectively, and which are normalized to fix 0, 1,
and 0. Then f,(z) converges to f(z) uniformly on compact subsets of C.

Lemma 6. Let f, be a sequence of quasiconformal homeomorphisms of ¢,
normalized to fix 0,1, and co. Let K(f,) be the dilatation of f, and assume
K(f,) < K, for every n. Then there is a subsequence of f, converging uniformly on
compact subsets of C to a normalized quasiconformal mapping f. Moreover,

K(f) < Ko.

1.9. EXTREMAL LENGTH

Let F be a family of curves on a Riemann surface. Every yin F is assumed to be a
countable union of open arcs or closed curves. The extremal length of F, A(F), is
a sort of average minimum length of the curves in F. It is an important quantity
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because it is invariant under conformal mappings and quasiinvariant under
quasiconformal mappings, in the sense to be described precisely in the next
proposition. First, we define the set of allowable metrics. A metric p(z)ldz| is
allowable if

() it is invariantly defined for different local parameters z, i.e.,
P1(z1)ldz| = p,(z,)ldz,|, where p, and p, are representatives for p in
terms of the parameters z, and z,;

(i) p is measurable and >0 everywhere; and

(iii) A(p) = [[p*dxdy #0 or oo (the integral is taken over the whole
Riemann surface).

For such an allowable p, define

L,(p) = j pldz]

if p is measurable along y; otherwise define L,(p) = + 0. Let I(p) = inf L L(P)
where the infimum is over all curves y in F. The extremal length of the curve

family F is

Alp) -

A(F) =sup
P

where the supremum is taken over all allowable metrics. Notice that the ratio in
this supremum is invariant if p is multiplied by a positive scalar. Thus, in
attempting to evaluate A(F) we may normalize so that L(p) = 1 and try to make
A(p) as small as possible.

Example. Suppose R is the interior of a rectangle {z: 0 < x < 4,0 < y < b}
and F is the family of arcs in R which join the left vertical side of R to the right

-vertical side. Then A(F) = a/b.
To see this let p=1 in R. Then L(p) = a and A(p) = ab and we obtain
A(F) = a/b. On the other hand, if p is any allowable metric on R, by multiplying

p by a suitable scalar, we can make L(p) = a. Thus,

a<J plx + iy)dx
0

for every y with 0 < y < b. Integration over y and an application of Schwarz’s

inequality yield
ab < ff pdxdy, (ab)®<ab ff p? dx dy.
R . R
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Thus,

a2
g —_
Alp) —ab

SIS

Notice that if F* is the family of arcs in R which join the bottom of the
rectangle R to its top, then A(F?) = b/a and A(F HA(F) = 1.

Example. Let R = {z:ry <lz] < r,} and let F be the family of closed curves
in R which are homotopic to the core curve vy, where y,(0) = €°(ry +12)/2,
0 < 0 < 27 Let po(z) = (2njz)) "' and v,(8) = re. For any curve y homotopic to
v,, we must have

1=2ni) ! J Ei—z-
z

b4

Thus 1 < [, po(2)ldzl and 1 < L{p,).- Moreover,

rdrdd 1
Alpo) = j W =5 log(r,/r1)
) .

and, therefore, A(F) = 2n(log(r, r))~
On the other hand, for any allowable metric pldz|,

2n
Lp) < J . plreyr db,

L(p) 10%(”2/”;) <

(L) loglrs/r)? < J J Larao j f pPrdrdo,

2
Lo < antostrafry)

By similar methods one can show that if F'is the curve family whose elements
join the two boundary components of R, then A(F") = (2m)~ log(r2/r1)-

Remark. Notice that in both examples there is an extremal metric for which
the supremum in (1) is achieved. One can say more. In both examples the
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extremal metric p, is of the form po(z)|dz| = |(z)|/? |dz], where @o(z) is a
holomorphic function. Later we will see that it is natural to consider the
expression ¢q(z) dz?, which we call a holomorphic quadratic differential. For the
rectangle ¢y(z) dz* = dz? and for the annulus ¢(z) dz2 = z 2 dz2. In Chapter 11
it is shown that for a general extremal problem associated with a measured
foliation, the infinitesimal variation of the extremal length is realized by the
same quadratic differential which realizes the foliation. This phenomenon is
illustrated for the case of an annulus in Proposition 4 below. First we need.

Proposition 3. Suppose [ is a quasiconformal mapping with dilatation K taking a
Riemann surface R onto a Riemann surface R’ and a curve family F onto the curve
family F'. Then K~ 'A(F) < A(F’) < KA(F).

Proof. Let w be a local parameter on R’ and z a local parameter on R and
assume the mapping f takes z into w. For a given allowable metric pon R let the

metric p on R’ be defined by

o(z)
[wz| — [wsl

o) = )

We leave it to the reader to verify that p is a metric on R’. Then for y’ = w(y), and
{ =& + in = w(z), we have '

f FOLE f p(2)ldz]

sz - 'WZI

[ 702 dean - [[ oo et el iy < ey

This proves A(F) < KA(F’). The other inequality follows by applying the same
argument to w1,

To extend this result to arbitrary quasiconformal mappings, one can use the
analytic definition of quasiconformality together with existence of locally L,-
derivatives w, and ws, In the distributional sense. For details we refer either to

- Lehto and Virtanen [LehtV] or Ahlfors [Ah4].

There is another way in which the extremal metrics for extremal length
problems appear. To illustrate, consider the curve family F of arcs which join the
two boundary components of the annulus {z:1<lzl <r}). Let u be an L_-
function on the annulus with [u|,, < I and w* a quasiconformal mapping from
R onto a doubly connected domain R¥. The previous proposition tells us that for
F* = w"(F) the extremal lengths satisfy K ~*A(F) < A(F*) < KA(F).
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Proposition 4. The extremal length of the annulus A(F*)isa differentiable function
of 1 and, for small real numbers t, ,

log A(F™) = log A(F) + 2tRe j j 1(2)g(z) dx dy + o0, (28)

where 0(2) = 2~ *(2nlogr) ™"

Remark. The constant factor (2rlogr)” 1 in @(z) is selected s0 that

” lp(z)| dx dy = L.

1<zl <r

Proof of the proposition. The correspondence z = exp({) determines a map-
ping from the rectangle {{:0< E<logr,0<1 < 2n} onto the annulus
{z:1 <2l < r}. Without changing the Beltrami coefficient of the mapping
w = wh, we can assume by uniformization that w maps onto an annulus
w1l < lw| < 71} The correspondence w = exp(f) determines a mapping from

the rectangle {f: 0 < Ref <logry, 0<Imf <2mj onto the annulus
fwil<|wl < I}

Let y be a horizontal segment connecting the two vertical sides of the (-
rectangle. Then f (y) 1s a path connecting Re f =0 to Re f =logry and,

therefore,

S logr
log 1 < j \df| = j FALESINLS
§10)] 0
where fi = f7/f; and { =&+ in. Integrating from n = 0 to n = 2m, one obtains
2nlogry < .” |11+ B dé dn,

where the integral is over the rectangle in the {-plane. Introducing a factor of
/1 — |jif* in both the numerator and the denominator and applying Schwarz’s
inequality yields

-
ortog i < [| 10— ) dE ([ acan

Since the first integral on the right-hand side is the area of the rectangle in the f-
plane, we get

11+ Al
2nlogry S ,” 1A dé dn.
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Since z = ¢, we have ji = Hz/z, where p = f3/f.. If we set o(z) = z~*(2n log r) 1,
the last inequality can be rewritten as

A(F* i 2
?\(Tr)) < f f L‘lt%l}(pl dx dy. 29)
1<izl<r

By applying the same argument to a vertical segment connecting the two
horizontal sides of the {-rectangle, one obtains

A®) 11— no/lol?
< || T R 60

1<jz]<r
The infinitesimal formula in Proposition 4 is a straightforward consequence of
(29) and (30).

1.10. GROTZSCH’S PROBLEM FOR AN ANNULUS

If A, is the annulus {z: 1 < |z| < r,} and A, is the annulus {z:1 <|z] <r,}, then
there is no conformal map from A, onto A, unless r; = r,. This can be proved
using the conformal invariance of the extremal length of the curve family which
Jjoins the inner contour to the outer contour; it is (logr,)/2n for A, and
(logry)/2x for A,. :

Grotzsch’s problem is to find the most nearly conformal mapping from 4, to
A, [Grl, Gr2]. There is some question about what is the best way to define
“most nearly conformal.” One way is to ask for a mapping with the smallest
possible maximal dilatation. A second possibility is to ask for a mapping with
the minimum average dilatation, although this approach will not be important
to us. In either case, the problem has a solution which is unique up to
postcomposition by conformal self-mappings of A,.

To prove this we let K be the ratio of the extremal lengths of the annuli 4,
and 4, that is, K = (logr,)/(logr,) and we let f, be the mapping

fx(re®) = r¥e'®.

_To calculate the Beltrami coefficient of fy, use the notation re® = z — exp({) and
w=exp(f). Then w=K¢+iy and wg/wy =k = (K — )/(K + 1). Thus,
Uk)e/fx): = kzfz. '

Suppose f is an arbitrary quasiconformal mapping taking the annulus A4,
onto the annulus 4, = f¢(4,). First assume that K > 1 or, equivalently, that
k>0. From inequality (29) of the previous section we obtain for

®(z) = z7*2nlogr,) %,

* 2
X < J f Lt ool g < L il a0

1 —|u? Tl

1<|z|<ry
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Hence, Iple =k with equality only if p = klol/o = kz/Z almost gverywhere.
Next assume K < 1or, equivalently, k < 0. From inequality (30), we obtain

1+ 1k _ 1 ” 11— po/lel” 1+ ule

i~ K o Y T T e 2
1 <lzi<r

Once again, it follows that lulle = K with equality only if p= k|pl/¢ almost

everywhere.

This shows that the mapping fx: A, —Ayis extremal in the sense that it has
the smallest possible maximal dilation of any quasiconformal mapping from Ay
to A,. Moreover, if another quasiconformal mapping from A, to A, has the
same maximal dilatation as fx» then it must have the same Beltrami coefficient. -
In other words, fx 18 uniquely extremal up to postcomposition by conformal
self-mappings of A,.

Remark. Our proof of Teichmiiller’s uniqueness theorem for 2 compact
Riemann surface will follow exactly the same outline and depends on establish-

ing an inequality of the same type as (31). There are two differences. The first is

" that the integration is over 2 surface R instead of the annulus. The second is that
the quadratic differential @ can be any holomorphic quadratic differential with

” lp(@)dxdy =1

R

111 THE DIMENSION OF THE SPACE OF QUADRATIC
DIFFERENTIALS

We need to know the dimension of the space of holomorphic quadratic
differentials on a Riemann surface R. A holomorphic guadratic differential @ is
an assignment ofa holomorphic function @4(z,) to each local coordinate z; such
that if z, 18 another local coordinate, then 04z = cpz(zz)(dzz/dzl)z. Along a
border arc « in the border of R we require that @,(0) be real if z; 18 @ local
coordinate taking real values along . If there is a point p in the boundary of R
isolated from other boundary points of R (such that by adding the point p to R,p
becomes an interior point of disk), then we require that ¢ have at most a simple
pole at p. We do not permit poles of ¢ to occur on the border curves of R.
Denote the vector space of holomorphic quadratic differentials ¢ satisfying these
properties by A(R).

Suppose the genus of Ris g and R is obtained from a compact surface by
deleting m disjoint closed disks and 7 isolated points not Jying on these disks.

Theorem 6.

dimg A(R) = 6g — 6 +3m+ 2n
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except in cases shown in the Jollowing table:

n dimg A(R)

g m
0 0 0,1,2 0
0 1 0,1 0
1 0 0 2

In the case where m = 0, A(R) is a complex vector space and the same formula

yields
: dimc A(R)=3g —3 +n

foranyg>2,forg=1andn;l,andforg=0andn>3.

This theorem is most easily deduced from the Riemann-Roch theorem,
although it can be viewed as a consequence of Teichmiiller’s theorem and any of
the various techniques which give the dimension of the space of deformations of
a Riemann surface. We omit the proof. It can be found in Farkas and Kra
[FarK].

Notes .
It is too difficult even to begin to give complete bibliographical notes for the
material presented in this chapter. Partial references are given for most of the
theorems within the text. For more complete references we refer to the books
listed in the bibliography [Ah4, Ahé6], [AhS], [Bea], [FarK], [Kr5], [Leht],
[Ts], [We]. I would like also to mention the unpublished notes by Bers [Berl]
and Macbeath [Mac1] which give more complete introductions to much of the
basic material. The question of how to construct a Fuchsian group by
prescribing transformations identifying the sides of a fundamental domain is
treated by many authors. We point out the papers of Keen [Kel] and Maskit
[Mask]. : .

In the case where T is a Fuchsian group with elliptic elements, the Riemann
surface R = H/T" has additional structure at the points of which are images of
elliptic fixed points in H. This structure is called an orbifold structure by
Thurston [Th1] and generalizes to Kleinian groups.

Early results on the existence of the Poincaré metric are found in the work of

Poincaré [Pol] and [Po2].

EXERCISES

SECTION 1.3

1. Find the global form of the infinitesimal metric |z|~!|dz| on the domain
C — {0}. Show that this metric is complete. Hint: € — {0} is isomorphic to
C/z - z + 2nin) and the covering mapping is z = .
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9. Show that the mapping (11) preserves the unit disk. Then, using Schwarz’s
jemma; show that it is the most general-form of bianalytic self-mapping of
the unit disk.
3. Verify the identity (10).

SECTION 1.4

4. For A(z) = (az + b)/lcz + d) with ad — bc # 0, we say that A is the linear
fractional transformation corresponding to the matrix

()

Let B(z) = (ez + B)/yz + 5) with ad — py # 0. Show that the composed
mapping A(B(2)) is the linear fractional transformation corresponding to the

matrix product of
a b and “ P .
\¢c d y 0

5, Show that for a Fuchsian group the isotropy subgroup fixing any point in H
must be cyclic and finite. - »

6. Show that an arbitrary Mobius transformation which preserves the unit

disk can be written in the form Az) = (az + PN pz + @), where and f are

complex numbers satisfying lol* — B> =1 ’ :

SECTION 1.5

7. If A is hyperbolic with fixed points at aand b, the semicircle orthogonal to R
with endpoints at a and b is called the axis of A. Show that A4 leaves the axis
of A invariant. Show that the hyperbolic distance from a point p to A(p) 1s
1log A, where 1 is the multiplier for A. Show that if g is not on the axis of 4,
then d(g, A(g)) > 3log 4.

8. If an elliptic element belongs to a Fuchsian group, show thatata fixed point
it rotates through an angle which is a rational multiple of 7.

9. Show thatif A is elliptic, then (tr A)* =21 + cos g), where 0 is the angle of
rotation. Show that A> =1 and 4 # [ if and only if (tr 4)> = 0.

10. Consider the action of a Fuchsian group I acting on the upper half plane H.
Show that a point pin H s elliptic for I in the sens¢ of the definition given in
Section 1.4 if and only if there is an elliptic element A in T — {I} with fixed

point at p.
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SECTION 1.6

11.

12.

13.

14,

15.

Let 4 be a hyperbolic Mébius transformation of the unit disk. Show that the
isometric circles I(4) and I(4~') contain the attracting and repelling fixed
points of A4, respectively. Show that I(4) and I(4 ™) do not intersect if and
only if A is hyperbolic. Show that I(4) and I(4~ ') intersect the axis of 4 at
right angles. ,

Show that a point p is in the half plane (A4 ~!) defined in Section 1.6 if, and
only if, A(p) is not in the closure of h(A).

Show that no two points of the Dirichlet domain defined in (20) can be
equivalent under the action of I'. Show that the Dirichlet domain is open
and that every point in H is I'-equivalent to at least one point of the closure
of the Dirichlet domain. _

Show that the limit set of a Fuchsian group I' must be a subset of the real
axis. Show that the limit set is a closed set invariant under the action of
elements of T

Find the noneuclidean area of the noneuclidean triangle bounded by the y-
axis (y = 1), the unit circle |z] = 1, and the vertical line whose x-coordinate

is xo with 0 < x5 < L.

SECTION 1.8

16.

17.

Let f and g be C! orientation-preserving homeomorphisms of a domain
onto itself which have Beltrami coefficients u and v, respectively. Show that

the Beltrami coefficient of go f is

1) + v(f(2)0,.(2)
1+ a2v(f@)0,(2)

where 0,(z) = p/p and p = f,. Hint: Use the chain rule in complex form: for

w = f(z)
@ef).=9guf. +9:f. and (gof);=g.fs + gufs

Remark. This exercise reveals the similarity between transformations of the
unit ball of Beltrami coefficients and hyperbolic isometries of the unit disk of
the form z — (x + z)/(1 + az);where |a| < 1. Note that the Beltrami coeffi-
cient of g f depends holomorphically on the Beltrami coefficient of g.
Let ue M (H) and f be a quasiconformal self-mapping of H with Beltrami
coefficient u. Consider the mapping R,: M(H) - M(H) defined by

R ) = 1O ENE)
L+ u@v(f )00
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EXERCISES
where 0= 0,18 defined in the previous exercise. Show that R,is2 one-to-
one mapping of M(H) onto M(H). Calculate the complex derivative

fim ¢~ *[R,(t0) — R,(0)]

t—+0

numbers &
R, provides the

X d_ifferentiability of the mappings
for Teichmiiller

natural complex structure

for small complex

Remark. The comple
approach for introducing the

space.
), use the result of Exercise 16 t0 find the

as Beltrami coefficient v(z

18. If g h
officient of g L

Beltrami €O

SECTION 1.10
Assume K 2 1

anulus 4, = {Z 1 <\zl <12}
al mapping f

1 For any other quasiconform
coefficient i, define

19. Let fK(z) _ rKei® map the 2
and let (z) = 2~ X2mlogry)”
from A, onto A, with Beltrami

. 1+ 2

AvgDIlLf, @) = ” 1L oNTL gy xdy
1<lzl<r1

AvgDil(f, @) with equality only if fx =¢° f for

Prove that AvgDil(fx Q) <
some conformal self-mapping ¢ of A,-

SECTION i

20. LetDbea pl
D, the expression g(z)dz
ly, show that any ho
g(2) dz?, where the g(z)is a gl



MINIMAL NORM
PROPERTIES FOR
HOLOMORPHIC
QUADRATIC
DIFFERENTIALS

A nonzero holomorphic quadratic differential imposes on its underlying
Riemann surface a geometric structure of a very special type. Such a differential
_has horizontal and vertical trajectories which naturally give a way of cutting up
the surface into Euclidean rectangles. The coordinate function on each rectangle
maps horizontal trajectories into horizontal lines in the complex plane, and the
transition functions are compositions of rotations by 180° and translations. At
the zeroes of the quadratic differential there are singular points where more than
two rectangles are sewn together along sides which meet at a vertex with three or
more prongs. .

In this chapter we shall be concerned with holomorphic quadratic dif-
ferentials of finite norm on a Riemann surface which is compact except for a
finite number of punctures. Such a surface is called a surface of finite analytic
type. A surface which has holes is not considered to be of finite analytic type.

For such surfaces we prove two minimal norm properties for holomorphic
quadratic differentials ¢ of finite norm. The first minimal norm property says
that ¢ has minimal norm compared to all measurable quadratic differentials
satisfying side conditions which depend on the comparing heights along all
vertical trajectories of ¢. The second minimal norm property says that ¢ has
minimal norm compared to all continuous quadratic differentials satisfying side
conditions which depend on comparing heights along homotopy classes of
simple closed curves on the surface.

33
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The proofs of both minimal norm properties are based on two ideas. The first
is to analyze the local Euclidean structure induced by the holomorphic
quadratic differential on the Riemann surface away from the smgular points,
The second is to apply the length—area method together with the fact that a
curve which is transversal to the horizontal trajectories has minimum height
among homotopic curves with fixed endpoints.

We will show that these minimal norm properties lead to a general extremal
length inequality discovered by Reich and Strebel. In later chapters we will see
that the minimal norm properties explain the appearance of integrable holo-
morphic quadratic differentials in the following:

(1) Teichmiiller’s theorem. ,

(2) The Hamilton—Krushkal condition for a quasiconformal mapping to be
extremal.

(3) The infinitesimal form of Teichmiiller’s metric.

(4) A theorem which shows how they arise as extremal metrics in a broad

~ class of extremal length problems.

(5) The bijective correspondence between holomorphic quadratic differen-
tials on a given Riemann surface and the space of measure classes of
measured foliations.

For the proof of the first minimal norm property we are able to bypass some
of the detailed theory of trajectories by means of an averaging device used by
Teichmiiller. This minimal norm property will be enough to lead us to (1), (2),
and (3) above. To obtain (4) and (5) we need the second minimal norm property,
which depends on the more detailed description of trajectories.

2.1. TRAJECTORIES OF QUADRATIC DIFFERENTIALS

Throughout this chapter, we assume R is a Riemann surface obtained from a
compact surface by removing a finite number of points, that is, a surface of finite
analytic type. The removed points are called punctures. We let R be the surface
R with the punctures filled in. Thus R is compact. If g is the genus of R and n is
the number of punctures, we assume 3g — 3.4 n > 0, except that when g = 1 we
allow n to be zero. This is enough to make the vector space A(R) of integrable.
holomorphic quadratic differentials on R have positive dimension. .

For a holomorphic quadratic differential ¢ the order of a zero of ¢ at p,, is the
exponent of the first nonvanishing term in the Taylor series expansion for ¢
centered at p, in terms of any local parameter. If z, and z, are local parameters
and @; and ¢, are expressions for ¢ in terms of these local parameters valid in
neighborhoods N; and N,, both of which contain the point z,, then the
equation

d 2
01(21) = 0(z2) (i—)
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shows that the order of a zero of ¢ does not depend on the choice of local
parameter. The point is that dz,/dz, # 0 anywhere in the overlap Ny N N, of
the two neighborhoods N, and N,.

The quadratic differential ¢ has a zero at p, if the order of ¢ at p, is one or
more.
The quadratic differential is said to be meromorphic if it is holomorphic
except at isolated points where it has poles. The order of a pole at p, is the
exponent of the leading term in the Laurent expansion for ¢ centered at pg in
terms of any local parameter. Just as in the case of defining the order of a zero,
the order of a pole does not depend on the choice of local parameter. Sometimes,
instead of saying ¢ has a pole or order &, we will say ¢ has a zero of order —k. If
the pole is of order one, we call it a simple pole. '

We call a point p, a critical point of the quadratic differential ¢ if it is either a
zero or a pole of ¢. Elements of the vector space A(R) are, by definition,
holomorphic on R. They can have poles at punctures of R, but the poles can
only be simple. Note that the punctures of R are the points of R — R. A point p,
which is not a critical point of ¢ is called regular.

Let p, be a point on R and z a local parameter with z(po) = z,. Let o(z) be the
functional expression for ¢ in terms of the local parameter z. Assume p, is a
regular point for ¢. We obtain a special kind of local parameter {, called a

natural parameter, by letting

[= j * Jo@)dz (1)

It is clear that if {,(z,(p)) and {,(z,(p)) are two natural parameters coming from
¢ and defined in overlapping coordinate patches U, and U,, then

{1(z4(p) = £ {5(z2(p)) + (const.) )

forpin U;nU,.

Notice that d{*> = ¢(2) dz? for any natural parameter { associated with ¢. A
parametric curve y: I — S is called a horizontal (vertical) trajectory of ¢ if, given
any local coordinate z defined in a patch overlapping the image of y, the function
z(y(?)) satisfies @(y(t))y'(t)* > 0(<0). This means that in the {-plane, where ( isa
natural parameter, the curve y(?) is transformed into a horizontal (vertical) line.
Clearly, this notion is independent of the choice of local coordinate. In fact, for
any two different natural parameters, the transition mapping is of the form (2)
and it is a transition which preserves horizontal and vertical lines.

In an obvious sense, the horizontal and vertical trajectories of ¢ give two
transverse foliations in R in a neighborhood of any nonsingular point of ¢. With
a slight extension of the notion of transversality, we can also include the singular
points. Let ¢ have a zero of order m at p in R. At any such point there will exist a
local coordinate z with z(p) = 0 such that ¢(z)dz* takes the form z™ dz?. Let
d¢ = z™?2 dz. Although for odd integers m, { is not a single valued function of z,
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+

W
A

Horizontal trajectories Vertical trajectories
m=1 m=1

F igure 2.1

for any integer m # —2 a radial line tw (where ¢ > 0 and |o| = 1), emanating
from the origin in the z-plane, will be horizontal if (tw)"w? > 0, that is, if
@™*? = 1. In order for ¢ to have finite norm, m must always be larger than or
equal to —1. The only points where m can be negative are at the punctures
because we require the quadratic differential to be holomorphic on the surface
R. For the case where m = 1, the trajectories in the z-plane have the appearance
shown in Figure 2.1.

The directions of the vertical trajectories emanating from the origin come
from the equation ©™*? = — 1. We postpone the formal definition of measured
foliations until Chapter 11. It turns out that the horizontal and vertical
trajectories together with the quadratic differential determine two measured
foliations which are transversal. Two foliations are transversal at a. singular
point if they have a C'-topological structures equivalent to the horizontal and
vertical trajectories of z™ dz* for some integer m > —1 and in some neighbor-

hood of the origin in the z-plane.

2.2 INVARIANTS FOR QUADRATIC DIFFERENTIALS

Any nonconstant, holomorphic quadratic differential ¢ on R carries with it
several invariants. First of all, there is the area element

dA, = |p(2)l dx dy = d¢ dn,

where z = x + iy is any local parameter and where { = & + iy is any natural
parameter. From this, one obtains the norm of ¢ by letting

ol =” lp(2)] dx dy.

Of course, the area element and the norm are defined even for quadratic
differentials that are net holomorphic. If |¢| < oo and ¢ is holomorphic on R,
then it is elementary (by switching to polar coordinates) to see that ¢ can have at
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most simple poles at the punctures in R — R. Conversely, if R is of finite analytic
¢ and ¢ is holomorphic except for at most simple poles at the punctures in
R — R, then o] < .
The expression ds,, = |¢|*/*|dz| is a line element. The @-length of a piecewise
" differentiable arcy in Ris £,(y) = |, ds,. Away from the singularities of ¢ and in
terms of a natural parameter { = ¢ + i, one has ds2 = d& + dn?, so local
geodesics away from singularities are just straight line segments in the {-plane.
However, at singularities geodesics can have vertices. Although the curvature of
the metric ds,, is not defined at singular points, in an intuitive sense the points
where @ is zero contribute to negative curvature. Since we will consider the
trajectory structure of quadratic differentials which are holomorphic in R, there
is a negative-curvature-like property which forces global geodesics to be unique
([Ab], [Ah1]). In our approach it is unnecessary to consider the notion of
curvature or to define what is meant by a geodesic. However, the fact that the
quadratic differential ¢ is holomorphic on R will enter in an essential way.
For our purposes, the most important notion is the height of a curve. By
definition, if y is a differentiable curve on R, its height with respect to ¢ is given

by
mm=fumw@@w» ©)

Similarly, its width is given by
mm=jmmﬁ@w»
Y

Obviously the g-length of a curve is greater than or equal to its width and its
height.

We call a trajectory of ¢ on R critical if, when it is continued in either
direction, it meets a zero or a pole of ¢. Let b, be the subset of R which consists
of the union of all critical vertical trajectories and any trajectory which meets a
puncture of the surface. Since there are a finite number of singularities of ¢ and
finitely many punctures on the surface, b, consists of finitely many smooth
images of intervals, and therefore b, has measure zero. (In the generic case, b,, 1

a dense subset of R.) :
A vertical segment is the continuous image of an interval which lies on a

vertical trajectory. A vertical segment is called regular (or sometimes noncritical)
if it does not meet a critical point.

2.3. THE FIRST MINIMAL NORM PROPERTY
An element of A(R), that is, a holomorphic quadratic differential of finite norm,

satisfies a minimum norm property subject to side conditions determined by the
differential itself. The side conditions are conditions on its heights, and the
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minimality is relative to quadratic differentials  which are not necessarily
holomorphic. Such a quadratic differential ¥ is merely an assignment of a
function §* to each local coordinate z such that y* dz* = y*d{? in overlapping
coordinate neighborhoods.

For the purposes of the first minimal norm property, we assume that  is a
locally L, function with respect to any local parameter. Let y/* = (¢, #) be the
expression for ¢ in terms of a natural parameter { = ¢ + in. Since Y (&, n) is
integrable in any coordinate patch, by Fubini’s theorem, for almost every
&, (¢, *)is an integrable function of 5. Thus for almost every vertical segment B
the integral

hy(p) = L Tm(,/ ¥ (z) dz)|

is well defined. This integral is an unoriented line integral, taken in the positive
sense regardless of what orientation is given to f.

Theorem 1 (The first Minimal Norm Property). Let R be a Riemann surface of
finite analytic type. Assume ¢ is a holomorphic quadratic differential on R with
lell = [fzleldxdy < oo. Let y be another quadratic differential which is locally
integrable. Assume there is a constant M such that for almost every noncritical
vertical segment B, one has h,(B) < hy,(B) + M. Then

el < Hk/qo(Z)l ¥ ()| dxdy. @

Proof. Because R is of finite analytic type, every noncritical vertical trajectory
of ¢ can be continued infinitely in both directions. When we say this, we do not
exclude the possibility that the trajectory may be closed. The verification of this
assertion is given at the beginning of Section 2.5.

We need the following lemma.

Lemma 1. Let g be a nonnegative function on R and let g be integrable with
respect to the area element |@(z)| dx dy induced by the holomorphic quadratic
differential ¢. Let ||@|| < oo and { be a natural parameter for ¢. Then for real
numbers < the function h(() = g({ + it) + g({ — it) is well defined on R — b,, and

ffh(é) ¢ dn = 7—”9(() d& dn. ®)
R R

Proof. First note that integrating over R and integrating over R — b, are
equivalent since b, is a set of measure zero. Since noncritical trajectories can be
continued infinitely in both directions, after choice of orientation, the expression

3
g
%E;
g
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{ + iz) is well defined for ¢ on any particular noncritical trajectory. The idea
he lemma is that locally the mapping { — { + it is well defined and has

entically equal to one. Therefore, integration of g({)d& dn over a
tion of

g(
behind t

Jacobian id
coordinate patch near { + it gives the same value as the integra

g(¢+ it)d¢ dn over a translated coordinate patch near (. In order to piece
together this argument to make the global statement (5), we consider the
Riemann surface R which is a double covering of R constructed by continuation
of the square root of the quadratic differential ¢. Let 7: R — R be this covering.
Corresponding to a natural parameter { on R and the restriction of = to some
open subset of R where 7 is unramified and one-to-one, we obtain a local
parameter { satisfying £ = {on. The functions g and h lift to § and h by the
formula § = gon and & = hon. The quadratic differential ¢({) d¢? on R induces
@ dl* on R by the formula § = ¢ ° n(n'?). Except at the finitely many ramified
points, 7 is a two-to-one mapping. On the surface R the differential § d{? has a
global square root. The vertical trajectories § on R lift to trajectories f on R
which have global orientation. Thus, the mapping £ { + it is globally defined
and one-to-one and onto on R — b,,. Obviously, [z RCydEdn =2 [[r W) dldn
and an analogous formula holds for g and §. The equality () is now obvious and

Lemma 1 is proved.

To proceed with the proof of the theorem, let p be a point of R — b, and
define a nonnegative function g(p) by

g9(p) = L ITm({/¥ (s) ds)l; (6)

where B, is the vertical segment for ¢ with height b and midpoint p. We
emphasize that §, in (6) is an unoriented vertical segment and the integral is a

Lebesque integral.
Notice that if an orientation of 8, is selected, then g(p) can be rewritten as

o(p) = j ’/ (. Gp ity )

- j (R filp 01+ Re /§(p — ) dt

and this formula is valid no matter which orientation is selected. Thus, one finds
that

f f o(0) dé dn = f " H Re /i + )] + [Re. /i (p — )] d€ dn .

0
R R
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From Lemma 1, the right-hand side of this equation becomes
b/2
2 fo f [Re\/¥(()1d¢ dn dt
R
and thus we obtain

Jf g()dCdn=1> ff [Re\/¥({)|dE dn. o

A word concerning the meaning of the integral on the right-hand side of (7) is in

order. The variable { is assumed to be a natural parameter for the quadratic

differential . If {; and {, are two natural parameters defined in overlapping
neighborhoods and if in terms of these parameters the quadratic differential y is
represented by ¥, and y,, then y,({,) = ¥o({o)Ndl,/dl,)?. Since d,/dl; = +1,

the expression |Re. /¥/({)| d¢ dn is defined independently of the choice of natural
parameter. However, one may not use a local coordinate z which is not a natural

parameter because the integrand in the right-hand side of (7) ceases to be

invariant.
From the hypothesis of Theorem 1, we know that

b< J Im /¥ @) dz| + M,
Ao

where f, is the vertical segment of height b with midpoint p. This means that
b — M < g(p) for all pin R — b,,. From (7), this implies

(b — M) H dfdn<b U [Re /¥ ()] & dn. (8)
R R

Dividing both sides by b and taking the limits as b approaches infinity, one
obtains '

Jf dfdn < fj IRe /Y (O dE dn < fj YOl dé dn. ©)
R R R

Notice that () = 1 for any natural parameter {, so the integrand on the right-

hand side of (9) may be multiplied by [,/ @({) | without changing it. Of course, the
purpose of this is to render it invariant under changes of holomorphic local

coordinates. Then (9) becomes
jf lp(z)] dx dy < ” Re/¥(0)| d¢ dn < ” WY@/ o(2) dx dy, (10)

and this completes the proof of Theorem 1.

i

e
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Theorem 2. Let ¢ and  satisfy the same hypothesis as in Theorem 1. Then
lell < Iyl (11)

and, if this inequality is an equality, then Y (z) = ¢@(z) for almost every z.

Proof. Schwarz’s inequality gives

f f IO o@D dx dy < W12 lgl (12)

Substituting this into (10) and dividing both sides by |¢||'/* yields (11).
Moreover, if there is equality in (11), then (10) and (12) yield

ol < H WY (@) e@) dx dy < [ol.

When an application of Schwarz’s inequality yields equality, the two functions

must be multiples of one another. Thus |./¥(2)| = c|./¢(z)|- Since (10) is an
equality, one has ¢ = 1. Equality in (10) also forces Re, /Y() = 1 for any
natural parameter {. Since @({) =1 and |p({)] = [¥({)], this obviously forces
¥(¢) = 1, for any natural parameter {. Thus Y = ¢ almost everywhere and the

proof is complete.

2.4. THE REICH-STREBEL INEQUALITY

In order to obtain the inequality of Reich and Strebel from Theorem 1, we need
two lemmas. Lemma 2 says that the height of a noncritical vertical segment is
minimum among all homotopic arcs with the same endpoints. Lemma 3
concerns the extent to which a quasiconformal self-mapping of R which is
homotopic to the identity can distort heights.

Lemma 2. Let ¢ be a holomorphic quadratic differential on R and R be the
universal covering surface of R. Let B be a differentiable mapping of a closed
interval into a vertical trajectory of ¢ such that a lifting B of B is a one-to-one
mapping into R. Let y be any differentiable mapping from the same interval into R
which has the same endpoints as B and which is homotopic to B with fixed

endpoints. Then h,(f) < h,(y).

Proof. Our first step is to lift the arcs f and y and the differential ¢ to the
universal covering surface R, where they become B, %, and @. Notice that
h,;)(/?) = h,(B) and hy(F) = hy(y). We select the liftings of § and y in such a way
that f and 7 have coinciding initial and terminal points and there is a homotopy
connecting f and § with fixed endpoints in R.
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The next step is to replace 7 by a homotopic curve which is a product
&, B, a,B, of a chain of vertical segments f; and horizontal segments & for
which h,([]%-,&pB) < h,(#). To see that this can be done, we cover j by
parametric disks parameterized by natural parameters. Then we take a
subdivision {x;}/%, of the interval such that each %([x;_,, x;]) is contained in
one parametric disk. Within each disk it is a simple matter to see that
([x; -1, x;]) can be replaced by one horizontal and one vertical segment, such
that the height of the vertical segment is less than or equal to the height of
F[xi-1, x;])-

The third step is to observe that we may assume &, f; - - &,/, has no self-
intersection. The third step is achieved in two stages. First one arranges for the
number of points of self-intersection to be finite. The only way they could be
infinite is for part of a segment &; (or f;) to coincide with part of segment &; (or
B;). If this happens, it is clear that &; or §; may be shifted slightly to the side in
one of the parametric disks without losing the homotopy. The second stage
prescribes a way of reducing the number of self-intersections by at least one. You
move along the path until you come to the first self-intersection point. Then you
proceed along the path, marking as you go in red, until you return to that
intersection point. The part marked in red may contain further intersection
points. Whether it does or not, you delete from the path the part marked in red.
You have reduced by at least one the number of self-intersection points and you
have not lost the homotopy because R is simply connected. .

The fourth step is to observe that you may assume &, f, - - - &,8, does not
intersect f§ except at the two endpoints. Since the inequality to be proved is
h,(B) < Y-, h,(B;), one simply deletes the segments where f is common with
any of the §; and then one proves the inequality between each successive point of

intersection. ,
 The fifth and final step is to treat the case where § and &, f, - - - &,f, joined at
the two endpoints make up a simple closed curve C. We will show that there is a
measure-preserving injective map from finto { ), f; defined at all but a finite
number of points of §. Given a point on f, we consider the horizontal trajectory
& passing through this point inside the curve C. Since @ has only finitely many
zeros inside C, by omitting consideration of finitely many points of f we can
assume the horizontal trajectory is noncritical inside of C. It must be a crosscut,
by which we mean & is a simple arc with two endpoints on the curve C. If this
were not the case, starting along the trajectory & in.one direction from some
point p inside C, there would be a sequence .of points z, on & which would
converge to a point z inside of C. Let u be the arclength parameter along &
initialized so that the distance from p to &(u) is u and oriented so that a(u,) = z,
with u, an increasing sequence. Let { be a natural parameter with domain in a
neighborhood N of z. If z is a critical point, clearly by changing u, to u, + € and
taking a subsequence of a(u, + &) we get a sequence of points on & which
converge to a noncritical point z inside of C. We keep the same notation, z,, for
the sequence. Let J be a vertical arc through z contained in N and containing z
in its interior. Since z, converges to z, & must return to 6. But then we can make a

R
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R?

Figure 2.2a Figure 2.2b

.

simple closed surve consisting of a subarc of & and a subarc of 6. This simple
closed curve C, could be essentially of two possible types, shown in Figures 2.2a
and 2.2b. By the argument principle, the change in argument of @(z) along a
curve Cy is 27 times the sum of the orders of the zeros of inside C,.- In

particular,

j d arg o(z) =2 0,
Ci

assuming the integration along C, is in the positive direction. Since arg P(z) dz?
is constant along 6 and &, we see that d arg (z) = — 2d(arg dz) along o and @.
Since the vertices are regular points of , the total change in arg § at the two
vertices of Figure 2.2a is 7 and the total change in arg ¢ at the two vertices in
Figure 2.2b is 0. Thus we find that '

J darg p(2)= —2n+7 in Figure 2.2a
Cy ’ -
and

f d arg ¢(z) = —4n in Figure 2.2b.
C:

In either case, we get a negative number and this is a contradiction. Thus we see
that & is a crosscut of C with two endpoints on C. '

The next important observation is that, while one of the endpoints of & is on
B, the other endpoint must be on one of the Bj. With a similar use of the
argument principle, the proof of this is an easy exercise.

We see that the crosscuts map f into ( J f.. Since the measure |dn| is preserved
(where { = ¢ +in is a natural parameter) as we move along horizontal

trajectories, we get

Remark. Lemma 2 can be generalized to measured foliations. Let |dv| be a
measured foliation and let § be any curve which is quasitransversal to the leaves
of the foliation |dv|. (These notions are defined in Chapter 11.) Let y be any curve
which has the same endpoints as f and which is homotopic to f. Let
h,(y) = {,|dv|. Then h,(B) < h,(y). Hence Lemma 2 would follow on letting

|dv| = {Im./ 0(z) dz|.
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We will not need this stronger form of the lemma. We mention it only to
observe that the fact ¢ is holomorphic is not essential in this lemma. All that is
necessary 1s that its singularities take a form to which the argument principle
can be applied.

Lemma 3. Let ¢ be a holomorphic quadratic differential on R with ||@|| < co. Let f
be a quasiconformal self-mapping of R which is homotopic to the identity. Then
there exists a constant M such that for every noncritical vertical segment B of ¢,
one has

ho(B) < h,(f(B) + M.

The constant M depends on ¢ and f but not on B.

Proof. As before, let R be the completion of R with the n punctures filled in.
So R is compact with no punctures. Since f is quasiconformal, f extends to f,a
quasiconformal self-mapping of R and f fixes the punctures because f is
homotopic to the identity on R. The line element ds, = |p|"/*|dz| determines a
finite-valued metric on R. To see that the distance from a point in R to a
puncture is finite, one observes that ¢ has at most simple poles and so to find the
length of a short arc ending at a puncture, one has to calculate an 1ntegra1 of the
form [§ t~/2dz, and this clearly converges.

Let f, be the homotopy connecting f to the identity, so fo(p) =p and
f1(@) = f(p). Let £(p) be the infimum of the ¢-lengths of all curves which go from
p to f(p) and which are homotopic with fixed endpoints to the curve f,(p).
Clearly, #(p) is a continuous function on the compact set R. Let M, be the
maximum of this function.

Let B be a noncritical vertical segment of ¢ with endpoints p and g. The
segment B and the curve which consists of f,(p) followed by f(B) and then
followed by f; _,(g) is clearly homotopic to § with fixed endpoints. By Lemma 2,

ho(B) < ho((P)) + hy(f(B)) + hy(f1-:(9))-

Since the ¢-length of a curve is greater than its height and the first and third
terms in this inequality are bounded by M,, the lemma is proved if we let
M - 2M1 . .

Theorem 3 (The Inequality of Reich and Strebel). Let R be a Riemann surface of
finite analytic type and let ¢ be a holomorphic quadratic differential on R with
lell < co. Let f be a quasiconformal self-mapping of R which is homotopic to the
identity and let p(z) = f3/ f, be the Beltrami coefficient of f. Then

{1 —u(@%

1—|p@)P

ol Sj lo(2)] dx dy. (13j
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Proof. Let y be defined by

V(@) = o(fD) 2 ( - ”(Z)W))z. (14)
lo(2)]

We will show that y satisfies the hypotheses of Theorem 1. An elementafy
- calculation shows that W is quadratic differential. From Lemma 3,
hy(B) < h,(f(B)) + M for all noncritical vertical segments f. From the definition

of h,, we have
ho(f(B) = L(m [Im./(f) df |-

Since df = f,dz + f;dz = f,(1 + u(dz/dz)) dz, by introducing \/»I from (14), this
last integral becomes

ho(f(B) = L Im\ /¥ (2) (1 + udz/dz))(1 — p(e/lel) ™" dz.

Since @(z)dz? <0 along the vertical segment f, one easily sees that
o/|p| = —dz/dz along B. The final result is that h,(f(p)) = h,(B). Hence from
Lemma 3, h,(f) < h,(f) + M for all vertical segments B. Theorem 1 tells us that

loll < f f | U@/ 0@)] dx dy. (15)

Substituting (14) into (15) yields

lel Sj lo(fEN1111 — no/lolllo@)'? dx dy. (16)
e ,

Introducing a factor of (1 — |g]?)'/? into the numerator and denominator of (16)
and applying Schwarz’s inequality yields

2 1/2
H<P”<(J o U@L = 1) dxdy) U ML “T/'l‘f“ dx dy) _

The first integral on the right-hand side of this expression is simply ||o||*/*, and
so we have (13).

Remark 1. If, instead of using the stronger inequality (4), one uses the
inequality (11), then one obtains :

o1 ot =4
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where w =u + iv = f(z). This is enough to prove Teichmiiller’s uniquenesg
theorem, but it does not yield (13), which is more useful in Teichmiiller theory,

Remark 2. Inequality (13) can be proved easily for holomorphic quadratic
differentials all of whose noncritical trajectories are closed in the same way that
we proved inequality (31) in Section 1.10. If we could appeal to the fact that such
differentials are dense (to be proved in Chapter 11), we would immediately
obtain (13) in the general case.

2.5. TRAJECTORY STRUCTURE

The remainder of this chapter is devoted to proving the second minimal norm

property. This property is not used until the last chapter, the chapter on
measured foliations, so the reader may prefer to bypass the rest of this chapter
until reading Chapter 11. :

In order to obtain the second minimal norm property a more detailed
analysis of the trajectory of a quadratic differential is required. The analysis has
been developed by many people, including Jenkins [Jel, Je2] Strebel [St1], and
others. All of the material of this section is contained in greater detail in Strebel’s
book on quadratic differentials [St4].

We only need that part of the theory of trajectories which relates to quadratic
differentials on surfaces of finite analytic type. In effect, this means a quadratic
differential induces a decomposition of the Riemann surface into domains of two
types, spiral domains and ring domains. In this section we consider primarily
horizontal trajectories. Since the vertical trajectories of — ¢(z) dz? are the same
as the horizontal trajectories of ¢(z) dz?, the difference is of no consequence,
Also, it is also frequently convenient to use the letter w = u + iv for a natural
parameter.

Accordingly, let P, be a regular point for ¢(z) dz2 on R (recall that R is the
surface R with the punctures filled in) and let w be a natural parameter centered
at P,. Thus '

W(P) = LP Jo@) dz

and dw?® = ¢(z)dz*. Let ®(P) =w and ®(P,) = 0. Then the map &~ can be
continued along open neighborhoods containing the horizontal trajectory o
through P,. Thus @ yields a mapping from « to a maximal horizontal interval

(-, Uy ) in the w-plane, where w = u + ip. If there are two points u; and u, in.

this interval for which @ Y(u;) = @ Yu,), then « is a closed trajectory. If not,
then every closed subinterval [u;, u,] is mapped homeomorphically into R and
is therefore a closed Jordan.arc of p-length u, —u,. :

Since R has no boundary, the maximal horizontal interval in the w-plane
along which ® maps into the trajectory « has a finite endpoint ®~}(x_) if, and

:
g»,;.
£
g
g:
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only if, there is a sequence u, increasing to u., such that P, = ® '(u,)
converges to a critical point of ¢. By taking a subsequence, we may assume P,
converges to a point P in R. If u , is finite and P is not a critical point, then
there is a nonsingular natural parameter at P and we can continue the map @ !
beyond the point u, ,,, contradicting its maximality. On the other hand, if P,
approaches a singular point, then the maximal horizontal trajectory terminates
. either at a pole or a zero of .

Definition. Let P, be a regular point of ¢, let « be the maximal horizontal
trajectory through P, and let ® be a continuation of a natural parameter mapping
defined on all of a with ®(P,) = 0. Then ®([0, ., ,,)) = a* is called the positive ray
of a with initial point Py. Similarly, ®((u_,, 0]) = o~ is called the negative ray of
o with initial point P,.

We have seen that the ray a* has finite length if, and only if, it leads into a
critical point. Of course, there may be two points u; and u, such that
@ Y(u,) = @ (u,) on the ray a*. In that case o™ and « sweep out the same
closed trajectory.

Any trajectory « is of the form ® " !((u_,, u, ) for some natural parameter
®. Choose a closed subinterval [u,, u,] in (u_, 4, ,) on which the mapping
@1 is one-to-one. Since ¢ is regular along @~ *([u,, u,]), by continuation it is
possible to construct a rectangle R(¢) in the w-plane (possibly very narrow) of the
form R(e) = {(u,v): u; < u < uy, [v] <&} such that ®~* [R(g)] is a nonover-
lapping strip S on R having ®*([u,, u,]) as a bisecting horizontal segment.

Ring Domains

We now consider the case that « is a closed trajectory. There exists a largest
positive number u, such that @ ! is one-to-one on the half-open interval [0, u;)
and ®~1(0) = @ !(u,). By continuation, it is obvious that there is a rectangle

Riey, &) = {(u, 0): 0 Su<uy, &, Sv< 8y

contained in R such that ®~! is one-to-one on R(g,, ¢,) and extends to a.
mapping of the closed rectangle on which ®~ "' identifies the point iv with the
point u, + iv. Then, one can extend R(e,, ¢,) to the largest rectangle in which @
is defined at regular points of the quadratic differential ¢ and on which @~*

maps the rectangle
Ry, vy) = {(,1): 0 S u < uy, vy <v <y

onto a ring domain of the Riemann surface with the points iv identified with
u, + iv. If either v, = — o0 or v; = + o0, then thearea of the rectangle would be
infinite and ¢ would have infinite norm. Let 4 be the ring domain which is so°
constructed.
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Suppose the quadratic differential ¢ has at least one critical point (this
excludes the case of a torus) and also suppose that there is a regular point P on
the boundary of the ring domain. Let o7 be a horizontal ray with initial point P,
One finds that a7 cannot be closed because it would then lie on the middle line
of a ring of closed trajectories some of which would lie in the ring domain A,
Thus, 4 would not be maximal. It follows that «f leads into a critical point.
Moreover, there is no point P, on of after P with the ¢-distance from P to P,
greater than u;. The reason is that ® would be one-to-one on the segment
[P, P;] and we could erect a strip with [P, P,] as its median line on which @ is
one-to-one and part of this strip would map into the ring domain A. This would
contradict the fact that ® ! identifies the images of the points iv and u; + ivin
A. Thus we see that oy must lead into a critical point before it has traveled a
distance u,. Of course, the same argument applies to a, . We have proved the
following theorem.

Theorem 4. Let « be a closed trajectory of a holomorphic quadratic differential ¢
of finite norm and with at least one critical point. Then o is contained in a maximal
ring domain A which is swept out by horizontal trajectories of ¢ and the boundary
of A in R consists either of critical points or of trajectories which lead into critical
points in both directions.

From the maximality it is clear that the ring domain is uniquely determined.

The situation is special if the quadratic differential has no critical points. That
can happen only if the Riemann surface is a torus, possibly with some punctures.
But since the quadratic differential has no critical points and, in particular, no
poles, it can be extended to a quadratic differential on the torus with no
punctures. From uniformization, Theorem 1 of Section 1.2, this means it is of the
form @(z) dz? = ¢ dz* on C/L, where L is a lattice and c is a complex constant. It
turns out that for ¢ to have closed horizontal trajectories, ¢ must be a positive
multiple of (m + n7)?, where the lattice is generated by 1 and t and where m and
n are integers. Now the closure of the ring domain 4 will be the whole torus, and
it is clear that it is nonunique because it can be shifted upward or downward in
the v-coordinate.

Going back to the case where ¢ is a quadratic differential with critical points,
let A; and A, be two maximal ring domains consisting of closed horizontal
trajectories of ¢. If they have any point in common, they must obviously be
equal. Moreover, we claim that if «, is a closed trajectory of 4; and «, is a closed
trajectory of A4,, then «, and &, cannot be homotopic. Moreover, neither of the
curves a; or a, can be homotopically trivial or homotopic to a puncture.

First we will show that «; cannot be homotopic to a, on R, that is, by a
homotopy that does not move across the punctures. If they were homotopic,
then by continuation, we could lift ¢ to a holomorphic quadratic differential ¢
in a doubly connected domain. This doubly connected domain would have @,
and &, as inner and outer boundary contours where &; and &, are lifts of the
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curves o, and o,. Also arg (z)dz? is positive along &, and d,. Now, by the
argument principle,
—1 d N( )
rg @
arg ¢(z

27 Ja, s,

is the total number of zeros of ¢ inside the doubly connected domain. But since
darg ¢(z) = —2d arg dz along the trajectories &, and &,, the integral is obvi-
ously zero. This shows that a boundary contour of 4, does not contain critical
points, and we know this cannot be the case.

Now, assume o, is homotopically trivial or homotopic to a puncture. Again,
by continuation, we could lift o; and ¢ to &, and @, where &, bounds a disk or a
punctured disk and & is holomorphic except for possibly a simple pole at the
puncture. On calculating

1 -
7 leafg ?,

we find, on the one hand, that it must be bigger than or equal to — 1, that is, the
sum of the orders of the singular points of & inside the disk. On the other hand,
darg p = —2d argdz along the trajectory &, and, since we integrate in a
counterclockwise direction, the integral is —2. We have proved the following

result.

Theorem 5. Let a; and o, be two closed trajectories of a holomorphic quadratic
differential of finite norm on Riemann surface R of finite analytic type. Suppose the
maximal ring domains A, and A, constructed in Theorem 4 do not coincide. Then
they are disjoint and the curves o, and o, are not homotopic. Moreover, for any
ring domain A, the trajectory o, cannot be homotopically trivial or homotopic to a

single puncture.

Spiral Domains

Next we consider a regular point P, for the quadratic differential ¢ which is the
initial point of a ray «*. Moreover, we assume o™ is nonclosed and never runs
into a critical point. Thus a natural parameter @' can be extended by
continuation to a mapping which takes the positive real axis isometrically to the
ray o with ®~1(0) = P,. Our next goal is to show that such a ray is recurrent in

the sense of the next theorem.

Theorem 6. With the notations just described, let B be a noncritical vertical
segment with one of its endpoints at P,. Then the ray o must return to B, that is,
there is a point P after Py on a™ which also lies on . Moreover, for some point P
ona’, Pison ff and ot passes through f in the same direction that it emanates

from B at Py.
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Proof. If the ray o™ passes through f in the same direction that it emanates
from B and P,, we will say that it passes through B in the positive direction.

To begin the proof of the theorem, pick a point P in a* not equal to P,. By
shortening f8 to 8, we may assume that the interval [P,, P] on ot and S, are
two sides of an embedded rectangle in R and that no horizontal line through this
rectangle is part of a closed trajectory.

Mark every horizontal ray y* with initial point on 8, and which departs from
Bo in the same direction as «* and which leads into a critical point before
returning to B, in the positive direction.

If two marked rays y; and y; tend to the same critical point along the same
prong, then one of them, say y{, would have to be a subray of the other, y;. In

that case, y; would cross f, in the positive direction at the initial point of y], .

and thus y; would not be marked. We conclude that only finitely many of the
rays are marked since there are only finitely many prongs leading into finitely
many critical points. Let f;, be a subinterval of f, with the same initial point P,
but containing the initial points of none of the marked rays.

If none of the rays y* with initial point on B, return to B, in the
positive direction, then since they are not marked, none of them can lead into
a critical point. This means we could construct an embedded infinite strip S with
a vertical side on fi, and one horizontal side along a™. To see that the strip is
embedded, consider Figure 2.3. Let u, +iv, and u, + iv, be coordinates
such that ® '(u; + iv,) = ® (u, + iv,). By continuation we would get
O Yuy, —t+iv)) = D Yu, — t + iv,) and we would then find that the ray
starting at the point iv, on fi; would return to 8, in the positive direction at the
point ® " (iv,) = ® (u, — u, + iv,). This contradicts our assumption that the
rays in S do not return.

Now, the strip would have infinite area and this, of course, contradicts the
fact that the total area of R measured by the quadratic differential ¢ is finite. We
conclude that one of-the rays y* with initial point in B, returns to § in the
positive direction.

If o is this trajectory, we are done. If a* is not this trajectory, then «* must

return in the manner shown in Figure 2.4. Now apply the same argument to the
smaller strip S’ bounded by a™ and the dotted line in Figure 2.4. Since the rays
of S’ have not returned to f, at the point where the rays of S did, we can
continue S’ further until it meets B,. When this happens, the ray o™ will be
forced to lead into f8, because the strip S’ has already covered the points along
the continuation of 8, just above the point P,. ’

Po a
o Uy tiUy
B'o S
sust v,
Figure 2.3
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Figure 2.4

Definition. A trajectory ray is called regular if it does not lead to a critical point.

Definition. The limit set A of a regular trajectory ray o™ is the set of points P in R
which can be expressed as limits of sequences of the form ®~(u,), where u, — c0.

Theorem 6 implies that a nonclosed regular trajectory ray at is recurrent, by
which we mean that its initial point is in 4. Since A does not change if we pick a
different point on a horizontal trajectory « as initial point, itis clear thata < 4
and, since 4 is closed, @ < A. On the other hand, A is contained in a, so we have
& = A for any nonclosed, regular trajectory a in A.

Theorem 7. Let ot be a regular, nonclosed trajectory ray and A its limit set. Then
the interior A® of A is a nonempty connected open set, that is, a domain. The
boundary A — A® of A°, if it is nonempty, consists of critical trajectories of finite
_ length and the critical points that they lead into. Moreover, the limit set of any
regular horizontal trajectory ray which has initial point in A is equal to A.

Proof. First we assume that P is a regular point of ¢ in 4 and that the
horizontal trajectory y through P has infinite length. We will show that P'is in
the interior of a rectangle contained in A. Since o™ is assumed to be regular, this
will show, in particular, that A° is not empty. Now since P is a limit point of ™,
it is obvious that any other point on y is a limit point of ot and, therefore, 5 < A.
Since y has infinite length, one of the rays y* or y~ with initial point at P must
have infinite length and therefore one of these rays is recurrent. Choose a vertical
segment § with P as one of its endpoints. Let P be the point of first return of one
of the rays, y* ory~, to f. ‘

Construct a rectangle U, which has as one of its sides a segment of y with
midpoint P and a median vertical segment along B from P to P,. (See Figure
2.5.) By making U, small enough, we may assume ¢ is regular throughout U,. If
the segment [P, P,] is contained in 4, then so is every horizontal segment of U,
passing through [P, P,] and we see that U, would be contained in A. If [P, P,]
is not contained in A and a point Q, between P and P, is not in 4, then Q, is
contained in a largest open subinterval I, on f not contained in 4. Let P, be the
endpoint of I, nearest to P. Py is notequal to P because 7 is recurrent. P is itself
a regular point of a trajectory y, of finite length. If y, had infinite length, it would
be recurrent and would pass through a point on I,. But clearly y, would then be
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b Y
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Figure 2.5

contained in 4, and this contradicts the definition of I 1- If[P, P,]1is contained in
A, then the subrectangle U, of U, with median vertical segment [ P, P,] would
be contained in 4 and we would be done. If [P, P,] is not contained in 4, we get
a point Q, between P and P, not in A4 and we can construct a maximal open
interval I, containing Q, on B but not in 4 and proceed in the same fashion. If
this process proceeds indefinitely, we obtain a sequence of trajectories y, of finite
length running through the upper endpoint of each interval I, and passing
through the rectangle U,. This would be a contradiction, because the total
length of critical trajectories of finite length is finite.

By the same argument, 4 must contain a rectangle adjacent to y and lying
above the point P, and hence P is in A°, the interior of A.

Second, assume P in 4 is a regular point and lies on a trajectory of finite
length. The trajectory «* must cross arbitrarily close to P on at least one side of
7. Choose a vertical segment B with initial point at P and such that «* intersects
B in every neighborhood of P. Then on using « instead of y and on repeating the
argument above, we find a rectangle U with one side along a segment of y with P
as its midpoint and U contained in A.

In the last case, P in A could be a critical point. Then one of the sectors
determined by the critical trajectories ending at P must contain a sequence of
segments of the ray a™ which contain P in their limit set. By applying the same
argument as above, we find that a sufficiently small relatively open neighbor-
hood of P in this section must be contained in A.

The statement in the theorem about the boundary 4 — A% is now obvious.
Suppose a; is a regular horizontal trajectory with initial point in A°. It cannot
be closed because then it would be contained in an open ring domain of closed
trajectories none of which could be limit points of any other trajectory. Since by
assumption it does not lead into a critical point, it must have infinite Iength and
must be recurrent. Let 4, be the limit set of «;. 4, is a domain and obviously
o< Ay and a; < A. Thus 4; < A and 4 c A4,.

Definition. 4 domain A° formed by taking the interior of the limit set of a regular,
nonclosed trajectory ray is called a spiral domain.

Decomposition of a Spiral Domain into Rectangles

Let S be any vertical segment in a spiral domain 4. Mark the two sides of § by
B™ and 7. Mark each point on §* with a label y* if either

e e A e e
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(1) it is an endpoint of § *, or

(2) if the horizontal ray emanating from B at y; leads to a critical point of ¢
before returning to f, or

(3) if the horizontal ray emanating from f* at y; leads to an endpoint of p.

gimilarly, mark the points y,, on B~. Pick a monotone parametrization of and
Jet the points v and y,, have their natural ordering.

Define a ray emanating from + to be of the first kind if the point of its first
return to B ison f7. A ray emanating from B* is of the second kind if its first
return to B is on p*. Clearly, every ray emanating from B in the interior of the
interval [y}, vy 1] is of the same kind. We will call the interval [y,f, yaii] @
first kind interval if its interior rays are of the first kind. In a parallel manner, we
define intervals of the second kind. Clearly, the intervals of the first kind on B*
are paired with intervals of the first kind on p~, and two such paired intervals
determine a rectangle S,. Similarly, there are rectangles S; of the second kind
and the total length of all intervals of the second kind on f is equal to the total
length of all intervals of the second kind on B*. The union of all of the finite
aumber of closed rectangles S; and S, obviously contains the limit set of any
recurrent ray passing through f. Therefore, the union of these rectangles is A
itself.

This observation holds true no matter how short the originally selected
interval B is. In the next section we will let f become arbitrarily small.

We need a final result for ring domains and spiral domains which is parallel

to Theorem 5.

Theorem 8. Let ¢ be a holomorphic quadratic differential on a surface R of finite
analytic type. Let R be the surface R with the punctures filled in. Assume ¢ has at
least one critical point and is of finite'norm. T hen the total number of maximal ring
domains and spiral domains associated to ¢ is not more than 3g — 3 + n. The
closure of the union of these domains is R.

Proof. Let Ay, ..., A, be the set of disjoint ring domains and spiral domains.
We will construct a set of simple closed curves yg, ..., ¥m with each y; contained
in A; with the following properties:

(1) No y; is homotopic to any yy if j # k.
(2) No y; is homotopically trivial or homotopic to a single puncture.

From elementary topology, this will imply m < 3g — 3 + n. (This is proved in
Lemma 1 of Chapter 10.)

To construct the curves y;, if 4; is a ring domain, let y; be any one of the
closed trajectories in A;. If 4; is a spiral domain, select a vertical segment f in the
interior of 4;and construct the rectangle decomposition of 4; associated with .
If this contains a strip of the first kind, let y; be formed from a horizontal
segment along the strip joined at the two ends by a segment of B. If every strip in
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the decomposition is of the second kind, let S* be a strip both of whose ends lie
on f* and let S~ be a strip both of whose ends lie on f~. Let a* be the
horizontal segment joining the two ends of S* and let o~ be a horizontal
segment joining the two ends of S~ with one endpoint at P. Now, let the curve Vs
consist of a~ followed by a* followed by appropriate segments of f so as to
make a closed curve homotopic to a simple closed curve.

In every case y; has either no vertices or two vertices or four vertices, each one
lying on the vertical segment f with the curve entering from one side of f and
departing from the opposite side.

The rest of the proof that the curves v; have properties (1) and (2) is exactly
like the proof of Theorem 5. If y; were homotopic to y, for some j # k, then a
boundary contour of 4, would not contain any critical points. But we know the
boundaries of every A, consist of critical trajectories of finite length and the
critical points they lead into.”

Now assume we constructed maximal ring domains and spiral domains
Ajg,..., Ay I closure of ({ 4~ ; 4;)is not equal to R, we could construct another
ring domain or spiral domain A, ,,. Since the process must end with some
integer m < 3g — 3 + n, we have the closure of Ur.i 4, =R

2.6. THE SECOND MINIMAL NORM PROPERTY

For a closed curve y in R, define h,[y] to be the infimum of the values A, (y'),
where y’ varies over all closed curves in R freely homotopic to 7. Let % be the set
of all simple closed curves in R which are not homotopically trivial and not
homotopic to a puncture. In order to define h,(y) we must have a meaningful
interpretation of the integral

J Im(,/¥ (2) dz)!.

Since the path of integration is not necessarily a piece of horizontal or vertical

trajectory, Fubini’s theorem does not apply as it did for the first minimal norm
property. Thus, it is convenient now to make the assumption that ¥ be

continuous. If lIm(ﬁ dz)| is nonzero along a nonrectifiable part of y, we
interpret the integral to be + co. Thus hy[v] is well defined for every homotopy
class [y].

Theorem 9 (The Second Minimal Norm Property). Assume R is of finite analytic
type. Let ¢ be an integrable holomorphic quadratic differential on R and \y another
quadratic differential, continuous except possibly at the punctures of R. Suppose
h, [yl < hy[y] for all y in &. Then

ol <ﬂ Wb Soldxdy < o)) 12 (17)
R

and |lo|l = |y only if ¢ = .
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Remark. The proof is exactly the same as the one given by Marden and
strebel [MarS]. In their version of the theorem y is assumed to be harmonic and
the conclusion is that ||l < [y

Proof. We use the decomposition of R into maximal ring domains and spiral
sets, but we use the decomposition which is induced by the vertical trajectories of

First let A be a ring domain swept out by closed vertical trajectories of ¢. Let
« be a horizontal segment connecting the two boundary contours of the ring
domain. With respect to a natural parameter { = ¢ + iy the domain 4 — « is
mapped onto a rectangle {0 < & < a,0 < 5 < b} where a is the ¢-width of the
rectangle and b is the height of any one of the closed vertical trajectories of A.
Let § be a simple closed curve moving along one of the closed trajectories and
going around the ring once. In Theorem 8, we have seen that f is not
homotopically trivial and not homotopic to a puncture. Thus f is in .

The next observation is that h,[ f1 = h,(f). That is, the height of Bis less than
or equal to the height of any homotopic curve y. This can be viewed as a
consequence of Lemma 2 in Section 2.4. In fact let f(s) be a homotopy of f toy.
By this we mean f,(s) is a continuous function from I x § ! into R with fy(s) a
parameterization of § and fi(s) a parametrization of y. Let nf and ny be the
curve f and y followed n times around. Clearly, f induces a homotopy of nf
onto ny, which we denote by the same letter f. Let y; be the curve £40) followed
by the curve ny followed by the curve f; _,(1). Clearly y, is homotopic to nfbya
homotopy which fixes the endpoints, and so Lemma 2 implies

nb = hy(nf) < hy(py) = nhy(y) + (const)

Here, the constant represents the integral f|Im\/a dz| along the curve f;(0),
0 <t<1,and the curve f; ,(1),0<t< 1.
On dividing both sides by n and taking the limit as n — co, we obtain

b < h,(y)

for any curve y homotopic to f. This shows that h,[f] = h,(B).
Since B is in %, the hypothesis of the theorem tells us that

b< L [m/¥ () dl| = L.IRC\/J!(C)I |dn]. (18)

The equality on the right holds because (is a natural parameter for ¢ and thus
d{ = idn along a vertical trajectory. Integrating both sides of (18) across the ring

domain A from ¢ = 0 to ¢ = a, we obtain

Lf lo(z) dx dy < H [Re/¥ () dE dn. (19)

A A



56 MINIMAL NORM PROPERTIES

Now suppose A is a spiral domain. We pick a regular horizontal segment
contained in A4 and let S, and S,, be the rectangles of the first and second kind
based on a. We use the decomposition described in Section 2.5, except it is based
on a horizontal instead of a vertical segment. We further subdivide the
rectangles S,, of the second kind so that the ones S,, based on the positive side
o™ of a can be paired with the ones S,, based on the negative side «~ of o in such
a way that the width of S;7 is equal to the width of S,, . This can clearly be done
because the total length of intervals of the second kind on &~ is equal to the total
length of intervals of the second kind on ™.

For a rectangle S, of the first kind, let §, be a vertical segment joining the two
ends which meet « on opposite sides. Let a, be a subsegment of o joining the two
endpoints of 8, and let ,a, be the simple closed curve made up from f, and a,,.

Now we need a slight improvement of Lemma 2 of Section 2.4. Replace the
single vertical segment § in Lemma 2 by two vertical segments ; and 8, and a
horizontal segment «, connecting an endpoint of f; to an endpoint of f,.
Assume that §, and f, emanate from o on opposite sides of o;. Then a curve
which is homotopic to f,a,8; which fixes endpoints must have height greater
than or equal to the height of B, plus the height of ,. Hence, by the same
argument we just used for the case of a ring domain, we see that

hqol:ﬁnan] = hqz(ﬂn) = bn'

Since B,a, is in &, the hypothesis tells us that k[ f,a,] < hy[B,a,], and we find
that ‘

b, <j [Re /¥ (O)] ldn| +J‘ [Im/¥ ()| d¢].
Bn an :

On letting a, be the width of S, and intégrating with respect to & across the width
of §,, we obtain

a,b, < ‘” IRe/W()| 1d¢ dn| + a, j [Im/¥ (0! ldc}. (20
s "

Now consider two paired rectangles S, and S,, of the second kind, each with
width a,, and with heights b, and b,,. Let f and B, be vertical segments
joining the two ends of S;; and S,, , respectively. Let a,, and o, be subsegments of
o shown in the Figure 2.6 and let the closed curve y be formed by following f,,
then o, then f,,, and finally «,,. That is, y = a,,f,, o, fn. Although y is not a
simple curve in Figure 2.6b, obviously by shifting «,, slightly upward and
o, slightly downward it can be made into a homotopic simple curve with the
same height. Again, we see that y is in & and that h,[y] = h,(y) = b, + b,,.
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S S
m +
S a
B={ {Bm
S, S,
Figure 2.6a
S} St
Bm
\ Bm
U
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o
Bm Bm
Sm Sm
Figure 2.6b
- Thus
by + by < L , [Re./w(Olldn| + j. Im, /¥ /()] ldE]
v+ B Oy + Ol

and, on integrating both sides of this inequality across the common width of S,

and S,,, we obtain

m /Y@l @)

m T

(b + b)) < “ IRS\/w(C)IdédnJramJ

Stus,
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Clearly, ) a, + 2} a,, = a = the length of &. Thus on adding up the areas of alj
the rectangles S, and S,; and S,, in the decomposition of 4 based on « and using
inequalities (20) and (21), we see that

ﬂ lp@@)|dx dy < JJ Re/¥(0)|d¢ dn + af T/ (0)] |dS]. 22

A A
Since ¥ is continuous on the closed interval a, the second integral on the right-

hand side of (22) is finite. If we allow the length of «, which is g, to approach 0,
the right-hand term in the right side of (22) approaches zero.

To complete the proof of the theorem, we sum inequalities (22) and (19) over -

all ring domains and spiral domains for the quadratic differential ¢ and obtain

f f lo(2) dx dy < f f Re /¥ (O] d¢ dn

R

A

WVl dldn < ff WY OV el ddn

< || W@y o) dx dy.

v
R

The uniqueness part of the theorem follows in exactly the same way as it did for
the first minimal norm property.

Notes. The material of this chapter is based on ideas of Teichmiiller [T1], Bers
[Ber2], Marden and Strebel [MarS], Reich and Strebel [ReiS1, ReiS2], and
others. A minimum norm property very close to the ones given here was proved
by Marden and Strebel [MarS]. They stated the property by way of comparison
to harmonic quadratic differentials. The property is generalized in two ways
here: first, by allowing comparison to measurable quadratic differentials and
second-by allowing comparison to continuous quadratic differentials. Moreover,
the inequality in the conclusion is strengthened to a form involving square roots
of quadratic differentials. The idea of looking at heights instead of lengths of
curves is due to Thurston. The averaging device in Lemma 1 is due to

Teichmiiller [T1, T2] and reformulated by Bers in [Ber2]. It also appears in

Abikoff’s book [Ab]. The strengthened minimal norm properties and the use of
the first minimal norm property to prove the Reich—Strebel inequality is due to

the author.
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The recurrence property (Theorem 6 of Section 2.5) leads to applications of
the theory of quadratic differentials to interval exchange transformations

[Masu4].
The detailed analysis of the trajectory structure given in Section 2.5 is due to

jenkins [Je2, Je3] and Strebel [St1, St4].

EXERCISES
SECTION 2.1

1. Draw a picture of the horizontal and vertical trajectories of z7tdz* in a.

neighborhood of z=0.
2. Draw a picture of the horizontal and vertical trajectories of 77 2d7

SECTION 2.2
3. Letp(t)=10<1< 1. Find the width and height of 7 with respect to the
quadratic differential ¢(z) = z7tdz2
4. Lety(@®)y=(+ Demi2,0 <t < 1. Find the width and height of y with respect
to the quadratic differential ¢(z) = 772z 2

SECTION 2.4

5, Show that the Reich-Strebel inequality (13) is equivalent to

pe o \ul?lel
Reﬁ 1—lmzd’°dy<ﬁ e

6. Let f be a quasiconformal mapping from R to f(R) and f; be quasi-
conformal from f(R) to R. Assume that fy° f is homotopic to the identity.

Let p(z) = fil f= 2nd

W) = of /0w
(W) = 'a"fl Jow

and p = f,. From inequality (13) derive

11— poflell 11— wi00/lol?
” olavar < || 10T T bedy

R R
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where

0==(1~ up/loll — up/lo)~*.

AR ]

Remark. The result of Exercise 6 is called the “main inequality” by
Reich and Strebel.

SECTION 2.6

7. Let a>2 and ¢(z)dz? = —dz*/[z(z — 1)z — ®)]. Let P(E) =4 + e
0 <t < 1. Write an integral formula for the height of the homotopy class of
y with respect to ¢ on the surface C — {0,1, a}.

8. Find the decomposition of C — {0,1,a} into ring domains (and possibly
spiral domains) corresponding to the quadratic differential in Exercise 7.

9. Explain why the second minimum norm principle can be stated in terms of
just one homotopy class in (C — {0, 1, &}) for the quadratic differential ¢ in
Exercise 7.

10. Draw a picture which makes it clear why there are infinitely many

homotopy classes in ¥ (C — {0, 1, a}).

‘.
i
g
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THE REICH-STREBEL
INEQUALITY FOR
FUCHSIAN GROUPS

Theorem 3 of the previous chapter gives the inequality

1 — z 2
H o) dxdy < ﬁ (@) L—%@u’dx dy. 0
R R

This was proved for all holomorphic quadratic differentials ¢ in A(R), where R is
a Riemann surface of finite analytic type. The Beltrami coefficient 4 was assumed
to be of the form p = f3/fz> where fisa quasiconformal self-mapping of R which
is homotopic to the identity. v

Inequality (1) 18 essential to our development of Teichmiiller theory. The
efforts of this chapter and the next are directed to proving (1) in a more general
setting. In this chapter we prove (1) in the setting of a Fuchsian group I’ and
under assumptions which imply that the relevant space of holomorphic
quadratic differential forms is finite dimensional. In the next chapter we
generalize 10 infinite dimensional cases.

In the generalized version of inequality (1), the region of integration R is
replaced by a fundamental domain © for I'. The holomorphic quadratic
differential ¢ 18 replaced by 2 holomorphic quadratic differential form on H
which takes real values on the part of the real axis complementary toal-
invariant closed subset C of R which contains the limit set of I'. The Beltrami
coefficient p is of the form it = W [w,, where w isa quasiconformal self-mapping
of H for which we 4 = gowforall Ain T and w(x) = x for all x in C.

6%
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3.1. INTEGRABLE CUSP FORMS

For a Fuchsian group I’ acting on the upper half plane H we have seen in
Chapter 1 that H/T" has a natural Riemann surface structure even when I" has
elliptic fixed points. We consider this surface as being punctured at the elliptic
fixed points. ’ 7

It is convenient to delete the preimages of the elliptic punctures from M.
Accordingly, let H. be H with all of the fixed points of elliptic elements of I"
removed and let R = H,./T". When T is finitely generated and of the first kind, R
has finite genus g and n punctures. The total number of punctures 7 is ny +n,,
where n; is the number of punctures on R coming from parabolic conjugacy
classes in I' and n, is the number of punctures on R coming from elliptic
conjugacy classes. When T is finitely generated and of the second kind, the

surface R also has holes.
If T is of the second kind, we let C be a closed I'-invariant subset of the

extended real axis which contains the limit set A of I". If o is a closed subset of the
border of R = H/T, then such a subset C is obtained by letting C = Aun~ (o),
where = is the covering mapping of Hy onto R extended to the border of R.

We now define A,(R, o), the space of symmetric holomorphic quadratic
differentials on R relative to ¢, and AT, C) the space of symmetric holo-
morphic quadratic differential forms for I relative to C.

Definition. Let o be a closed subset of the border of R. T ‘hen A(R, o) is the Banach
space of all holomorphic quadratic differentials ¢ satisfying

(@) @ has at most simple poles at the punctures bf R;
(b) @ is real valued with respect to boundary uniformizers on the part of the
border complementary to o; and

© lol = [fzlo(z)| dx dy is finite.

Definition. Let C be a T-invariant subset of the extended real axis. Then AT, C)
is the Banach space of all holomorphic functions & satisfying '

(1) §(A()A'(2)* = @(z) for all AinT;
(i) @ is real valued on R — C: and
(i) @) = Hw |@(2)| dx dy is finite, where w is a Jundamental domain for T in M.

Remark. The subscript s in the notations A4(R, 0) and AT, C) is meant to
refer to the symmetry properties (b) and (ii) in the definitions.

Theorem 1. Let R = H/T" and let 7 be the unique extension of the covering
mapping Hy. — R to the part of the real axis where T acts discontinuously. Let o be
a closed subset of the border of R and let C=n"Yo)UA. Then n induces an
isometric isomorphism of A,(R, ¢) onto AT, C) by the formula ¢ — ¢ = (pemn’?,
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Remark. If T is of the first kind,then A = C = f2 and ¢ is empty. If " is of the
second kind, the border of R = Hy/T is obtained by taking the quotient by I' of
the part of the real axis where I' acts discontinuously.

Proof. Itis obvious that |||l givenin (c)is equal to [|@] given in (iii) because 7
is a one-to-one mapping of  onto a subset of R whose complement has measure
sero and the Jacobian of 7 is 7' (2)|%.

It is also obvious that condition (b) on ¢ corresponds to condition (if) on ?.
The fact that ¢.is 2 quadratic differential converts into the relation in (i) for @
because no A = m for all 4 in T.

We must show that ¢ has at most a simple pole at 7(po), where po is an elliptic
fixed point of an element A in T if, and only if, @ is holomorphic at po- BY
mapping H to the unit disk and p, to the origin, we may assume that A(z) = az,
where o is a primitive nth root of unity and n is the order of the elliptic element
4. If we let { = 2", then { will ‘be a local coordinate at 7i(po) on R. Moreover

-

o0 (%) - 90 ®
Z

Thus, if M is the order of ¢ at ¢ = 0 and m is the order of p atz =0, by equating
the orders in the variable z of the-two sides of equation (2), we have
Mn + 2(n — 1) =m. The condition m =0 is equivalent to M> =2(1—1/n).
Since n > 2 and M is an integer, we see that m > 0 if, and only if, M = — 1.

Next, we must show that ¢ may have at most a simple pole at a parabolic
puncture. Such a puncture corresponds to a primitive parabolic element Aof T
and, by conjugation, we may assume Az)=z+ LA local coordinate { at the
puncture is given by the formula { = ¢*™*. There always exists a fundamental
domain which contains {z:0 <x <1,y> 1}. (This is proved in Lemma 1 of
Section 8.4.) Hence the condition ||@| < co implies that

w0l

” |p(2)] dx dy (3)

10

is finite. Changing to integration in the {-plane and using (2), (3) becomes

H lp(O)1 d& dn. Q)

lgj<e™?"

In order for (4) to be finite the function ¢, which is assumed to be holomorphic n
the punctured disk, may have at most a simple pole at the origin. The theorem 18

now proved.
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3.2. TRIVIAL MAPPINGS FOR FUCHSIAN GROUPS OF THE F IRST
KIND

In Theorem 3 of Section 2.4 we used the notion of a trivial self-mapping of a
surface R. A trivial self-mapping of R is merely a homeomorphism f of R which
is homotopic to the identity. We need the corresponding notion for a Fuchsian

group.

Definition. Let I' be a Fuchsian group of the first kind acting on H and let w be q
quasiconformal self-mapping of H. Then w is trivial JorTifwoAdew™ = A for all
AinT.

First, recall from Section 1.8 that any quasiconformal homeomorphism w of
H has a unique continuous extension to the real axis, which we again denote by
w. We now show that if such a mapping wis a trivial mapping for a group of the
first kind, then its extension fixes all points of the real axis. If x is an attrac-
ting fixed point of a hyperbolic element and z is in H, then
w(x) = lim,_, ,w(4"(z)) = lim, , ,A"(w(2)) = x. Since such points are dense in R,
the mapping w must fix all points of R. Moreover, if p is an elliptic fixed point of
an element A4 of T, then w(p) = w(A(p)) = A(w(p)), so w(p) is also a fixed point of
A. Since an elliptic element has only one fixed point in H, we see that w(p) = p.
On the other hand, if w(x) = x for all x in R and if we A ow ™! equals a Mobius
transformatjon, then obviously we Aew™! = 4. We have proved the following
proposition.

Proposition 1. Let w be a quasiconformal self-mapping of H which conjugates a
group I of the first kind into a group of Mébius transformations. Then w is trivial if
and only if w(x) = x for all x in R. Moreover, a trivial mapping w automatically
fixes any elliptic fixed points of T.

Proposition 2. Let T" be a Fuchsian group of the first kind acting on H and let
R = Hy/T. Then a trivial mapping f of R naturally induces a trivial mapping w for

I.

Proof. Let m: Hr—Hp/I" be the natural mapping and R = Hy/I" the quotient
Riemann surface. Let ;: H — Hp. be the universal covering of Hy. with covering
group I'y . (If I has no elliptic elements, then I", = {identity}.) Then & = mon, is
the universal covering mapping from H to R and it has covering group I'. Now
T consists of all self-mappings A of H for which there exists an element B of I"
such that 7, A = Bor,. Moreover, I, is a normal subgroup of I and I'/I", is
isomorphic to T.

Let f:R— R be a quasiconformal mapping. Then there exists a quasi-
conformal mapping w: H — H such that 7o w = f o7t If W, is another lifting of f
(satisfying 7io W, = f° ), then W, = Bo W for some Bin I Clearly, for any A4 in
T, Wwedisa lifting of f Therefore, there exists B in I" such that Wwe 4 = Bo .
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H . Z — H
Ty ™
T 7
Hp = > Hp
Vy \\’
HF/F’ . 3 Hp/T
Figure 3.1

Now f is homotopic to the identity on R. Since homotopic maps lift to
homotopic maps, the lifting W is homotopic to the identity by a homotopy W,
with Wy =W and W, = identity (see Figure 3.1). This homotopy gives a
continuous curve of homomorphisms x;: F — " determined by

WeAd= Xt(A)OVVt-

Then xo(4) = 4 and y,(A4) is a continuous mapping into the discrete group r
and, therefore, 1,(A4) = Afor 0<t< 1. We conclude that we A° w ! = Aforall

AinT.
The mappings described above are summarized in the diagram in Figure 3.1.

We have added in on¢ new mapping, namely, w. Itis uniquely determined by the

condition that the diagram in Figure 3.1 commutes.

To define w(z) we pick a point p in H such that m,(p) =z Then let
w(z) = 1y ° W(p)- To show this is well defined, suppose P 15 another point for
which 7,(p) = 2. Then there exists A, in T, for which A4,(p) = p. Then

w(E) = Wo A;:(p) = 41 o W(p) and
751"77"@) = 731°A1°ﬁ’(l’) = “1°V~V(P)-

We claim that we 4 = 4o for all Ain [ implies we B = Bowforall BinT.
Let B be in " and let 4 in [ satisfy m, 04 = Bem,. Then

WOB"ﬂi =W°7131°A=TEI°V~V°A

=q0A°W = Bom, oW = Bowemy.
This shows we B = Bew and thus that wis a trivial mapping for I

Proposition 3. Suppose that T is a Fuchsian group of the first kind and that T has
no elliptic elements. I 'f the mapping W which is the lifting of the mapping fin Figure

3.1 is trivial, then f is also trivial.
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Proof (due to Ahlfors [Ah4]). Suppose w(x) = x for all x in R and w is the lift
of a quasiconformal mapping f: H/I"— H/I". We must construct a homotopy
which connects f to the identity. Let p be the noneuclidean metric for H and
define w,(z) to be the point in H which lies on the noneuclidean segment joining z
to w(z) such that the noneuclidean distance from z to w,(z) and the noneuclidean
distance from w,(z) to w(z) are in the proportion t: (1 —1). Then w,(2) is
obviously continuous in both ¢ and z and w,o A(z) = Aow,(z) because
weA =Aow and the transformation 4 is an isometry in the noneuclidean
metric. Thus w, projects to a homotopy f, which connects f to the identity.

Remark. By a theorem of Marden [Mar], Proposition 3 is true even when
I" contains elliptic elements. That is, if w is induced by f and if w is trivial, then
there is a homotopy f;: Hp/I" — Hr/T" which connects f to the identity. But this
is more difficult to prove. The argument used above does not work because, for a
pair of points z and w(z), the noneuclidean segment from z to w(z) may pass
through an elliptic point and, therefore, the homotopy would not project to the
punctured surface HF/F - Ultimately in Theorems 1 and 1’ of Section 9.1 we
prove a theorem of Bers and Greenberg [BerGr] which implies Proposition 3
for Fuchsian groups with elliptic elements. That theorem was also proved in the
finitely generated case by Earle and Kra [EK2]. Further references for this fact
are given in the bibliographical notes to Chapter 9..It is even true that the
homotopy for f in Proposition 3 may be replaced by “isotopy through
quasiconformal mappings.” This follows from the paper of Reich [Reil] (see the
notes for Chapter 6). It has also been proved in a recent paper of Earle and
McMullen [EM] by using the extension theorem of Douady and Earle [DE].

3.3. THE REICH-STREBEL INEQUALITY FOR FINITELY
GENERATED FUCHSIAN GROUPS OF THE FIRST KIND

We have already introduced in Section 3.1 the space of symmetric integrable -

holomorphic quadratic differential forms, A (T, C). When T is of the first kind
there is only one choice for the invariant closed set. C, namely, C = A = R.
Hence, we simply write A(T') instead of A,(I", C). Note that whereas A(T,C)isa
real vector space, A(I) is a complex vector space.

Theorem 2. Let I be a finitely generated Fuchsian group of the first kind acting on
H with fundamental domain o. Let My(T') be the space of all trivial Beltrami
differentials i for T. That is, i = wz/W:z> where w is a quasiconformal homeomorph-
ismof H for whichwe Aew™' = A for all A inT. Then for every p in M) and
every @ in A(T), one has

W o@iaxay < || Lreloll oo ay, )
1—1y

w

e A T R R AR
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proof. When T is finitely generated and torsion free, the theorem follows
from Theorem 3 of the previous chapter. Itis only necessary to observe that A(R)
and A() are isometric by Theorem 1, where R = H/T and trivial maps from R
into R correspond to self-mappings W of H for which weAew™ 1 - 4, by
Propositions 2 and 3. Then inequality (1) translates into inequality (5). Now
suppose T contains elliptic clements. We need an algebraic theorem which says
that any finitely generated Fuchsian group I contains a subgroup of finite index
o which is torsion free. The proof of this result is algebraic and not contained in
this book. It can be found in Fox [Fox], Mennicke [Men], of Selberg [Sel-
gince I'is of the first kind, the subgroup I, of finite index must also be of the first
kind. If pis trivial for T, it is obviously trivial for T',. Moreover, AD) = AT )
Therefore, we have inequality (5) with o replaced by we, 2 fundamental domain
for Ty I nis the index of T in T, we can obtain w, by taking the interior of the
closures of n iterates of o (see Section 1.6). Moreover, the integrals in (5) over
each iterate of ® will be equal. Therefore, (5) follows by dividing through by n the

corresponding inequality for @o-

The remainder of this chapter, as well as all of Chapter 4, is devoted to
proving (5) for arbitrary Fuchsian groups T and arbitrary spaces AT, O). The
reader who wishes to use Teichmiiller theory only for Riemann surfaces of finite

analytic type may g0 on to Chapter 5.

3.4. TRIVIAL MAPPINGS FOR GROUPS OF THE SECOND KIND

The objective of this section 1is tO extend the notion of a trivial mapping to
groups of the second kind and to surfaces with boundary and to prove
propositions analogous to Proposition 2 and 3 for finitely generated groups of
the second kind. As before, we are able to show that the two concepts of triviality
coincide under the natural isomorphism only in the case that the group has no
elliptic elements. To show they coincide in the general case would take us t00 far
afield. However, we arc still able to obtain the Reich—Strebel inequality for
groups with elliptic elements.

As before, let C be a closed subset of R which is invariant under I’ and which
contains the limit set AofT.Leto =(C— A)/T bea distinguished subset of the
border of the Riemann surface R = Hy/T" Throughout this section we assume T
is nonelementary, by which we mean A contains at least three points.

Definition. A quasiconformal self-mapping W of H is C-trivial for the group Iif
wo Aow ™t = A for every AinT and if wlx) = x for every X in C.

Definition. 4 quasiconformal mapping [+ R = R is g-trivial if there is @ continuous
curve of continuous mappings fi: R — R such that
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(1) fo is the identity on R;
(1) f, extends continuously to the border of R and f,(p) = p for p in ¢ and
0<t<1; and

(i) f; = f.

All of the mappings in Figure 3.1 are defined in the same way as in Section 3.2
and we have the following result.

Proposition 4. If f is g-trivial and if w is the corresponding lifting in Figure 3.1,
then w is C-trivial, where o = (C — A)/T. Moreover, if T contains no elliptic
elements and w is C-trivial, then f is o-trivial.

Proof. Just as in Proposition 2, we can show that if f is g-homotopic to the
identity, then we B = Bow for all Bin I'. It follows that w(x) = x for every x in A.
Let w, be a lifting of the homotopy f,.. Let J be a component of R — A. Now J is
an open interval and w(J) must be the same interval since w fixes the endpoints
of J, which are in the limit set A. For pin C n J we know that w(p) = B(p), where
B is in the subgroup of I' which fixes J. If B is not the identity, then the
~ continuous curve w,(p) which joins p to B(p) would project to a continuous curve
Ji(m(p)) which winds around the boundary component determined by J. But
J(m(p)) = n(p) for each ¢, 0 < ¢ < 1 and n(p) in ¢. Thus B is the identity and we
see that w(x) = x for all x in C. '

Conversely, suppose w(x) = x for all x in C and suppose that I has no elliptic
elements. Let p be the noneuclidean metric for the region € — A. This differs
from the proof of Lemma 1 where we took the noneuclidean metric for H. Define
w,(z) to be the point in H on the noneuclidean segment (with respect to p) joining
z to w(z) such that the noneuclidean distance from z to w,(z) and the
noneuclidean distance from w,(z) to w(z) are in the proportion t: (1 —t). Then
w,(Az) = A°w,(z) for Ain T and w,(p) = p for p in C. Therefore, w, determines a
o-homotopy f, which joins f to the identity.

3.5. FINITELY GENERATED GROUPS OF THE SECOND KIND

Let I' be a finitely generated Fuchsian group of the second kind acting on H and
let C be a I'invariant closed subset of R containing the limit set of I". Assume
o = (A — C)/Tis a finite set. Let M(T", C) be the set of all functions u(z) defined
on H of the form u = wz/wz> where w is a quasiconformal self-mapping of H
satisfying wo Aew™! = 4 for all 4.in T and w(x) = x for all x in C.

Theorem 3. In the above setting, for all ¢ in AT, C) and all win My, C), one
has inequality (5).
Proof. For this case we consider the surface R = (C — C)/T, which is a

surface of finite analytic type. A trivial Beltrami coefficient pin My(T, C) extends
to a Beltrami coefficient /i(z) equal to x in the upper half plane and pu(z) in the

E}
;‘%
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Jower half plane. If I is torsion free, then the Ahlfors’s homotopy (Propositions 3
and 4) for p extends to a homotopy for the sclf-mapping of R with Beltrami
coefficient i Inequality (5) follows even for the case where I’ has elliptic elements

py the same device used to prove Theorem 2.

Remark. From the results of the next chapter, We will see that Theorem 3is
true whether or not I is finitely generated and whether or noto = (C — N/T isa

finite set.
Notes. Formulation of inequality (1) in the setting of Fuchsian groups does not
the literature. The jsometry between the Banach spaces A(R, 0) and

appear in
A, C)in Section 3.11s well known and can be found in the book by Kra [Kr2]

or the papers of Ahlfors and Bers referred to there. The notion of trivial
mappings and Ahlfors’s homotopy for torsion free Fuchsian groups i treated in
Ahlfors [Ah4]. Bers [Ber10] considers the same problem of extending to general
Fuchsian groups an inequality analogous to but different from (1).

The technique we use to generalize the Reich—Strebel inequality to Fuchsian
groups which contain elliptic elements relies in an essential way on an algebraic
theorem. The theorem says that any finitely generated Fuchsian group contains

a torsion free normal subgroup of finite index. References for this result are given
aper of R. S.

at the end of the proof of Theorem 2 in Section 3.3. A recent p
Kulkarni [Kul investigates the minimum index of a torsion free normal
subgroup of a {p, a0 r}-triangle group. In our application it is not necessary for

the subgroup to be normal.



DENSITY THEOREMS FOR
QUADRATIC
DIFFERENTIALS

In Chapter 3, the inequality of Reich and Strebel is proved for any finitely
generated Fuchsian group of the first kind, or a finitely generated Fuchsian
group of the second kind and a finite closed set on the border of the associated
Riemann surface. This is enough to treat the theory of finite dimensional
Teichmiiller spaces, and if one does not wish to develop the theory for infinite
dimensional spaces, most of the results to be proved in this chapter are
unnecessary.

In order to extend the inequality, we need to look at three topics. The firstis a
density theorem for rational functions with simple poles in a closed set C in the
space of all integrable holomorphic functions on C — C. The second is a
theorem on the surjectivity of the Poincaré theta series operator. The third is a
theorem on the existence of reproducing kernel functions for connected plane
domains with more than two boundary points. Finally, using these topics, we
can give the exhaustion process which accomplishes the desired generalization
of the Reich—Strebel inequality.

Except for the exhaustion process, all of the above theorems are presented in
greater generality in Kra [Kr2]. The exposition given here is more brief and
adapted to our special needs.

A similar but different exhaustion process is given by Bers [Ber10].

4.1. BERS’S APPROXIMATION THEOREM

Let C be a closed subset of € and C, a dense subset of C. Let R(C,) be the set of
rational functions r(z) which are holomorphic except for at most simple poles at

7i
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points of Cy and for which

Il = ‘U [r(z)| dx dy < oo.
c &

Let A(C) be the set of all functions ¢ holomorphic in C — C for which
lp(z)] = O(|z] %) as z — o0 when oo ¢ C and for which

ol = H lp(z)] dx dy < 0.

c-C

Theorem 1. If C, is dense in C, then R(C,) is dense in A(C) in the L,-norm.

Proof. If Cis a finite set, then the hypothesis implies C, = C and the theorem
is obvious.

If C is infinite, obviously C, is infinite and by using a conjugation by a
Mobius transformation we may assume 0, 1, and co are points of C,. Suppose
u(z) is an L, complex valued function which satisfies the orthogonality
condition

Jf u@r(z)ydxdy =20

for all rational functions r(z) in R(C,). From the Hahn—-Banach theorem and the
Riesz theorem which says that L, is the dual space to L,, Theorem 1 will follow
if we show that this orthogonality condition implies jjw dxdy = 0 for all ¢ in
A(C).

We form the potential function

Flz) = — Z(Zn— 1) J'J C(H(C)dédﬂ (1)
C

(—1)C—-2)

We will show that the potential function F in (1) satisfies
0
a_— F(Z) = ,U(Z),
z

where the derivative is taken in the distributional sense. Notice that part of the

integrand in (1),
z(z — 1)

| ) __ 2
((-DC -2 @

r0) =

is a rational function with only simple poles in R(C,), so long as z is in C,.
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We can now outline a heuristic proof of the theorem. We will see that F(z)
defined in (1) is continuous and so the hypotheses that y is orthogonal to R(Co)
and that C, is dense in C tell us that F (z) = Ofor zin C. Let ¢ be in A(C). Then,
where the double integrals are taken over the domain C — C, we have

” w2)o(z)dx dy = J J F;(z)q(z) dx dy

=—% Jf -a—z—(F(z)go(z))- dz A dz
1

=+ % Jf d(F (z)p(z) dz)
i

1
= 5[ F(z)p(z)dz = 0.

The last integral is a line integral along the boundary of the domain of
integration, where F is identically zero. Of course, @(z) is not continuous on this
boundary and the boundary certainly need not be a smooth curve. Thus the line

integral is not defined.

In order to make this heuristic proof valid, we need to establish continuity
properties of the potential function F and to use a device known as Ahlfors’s

mollifier.

Lemma 1. The potential function F(z) defined in (1) has the following properties:

(@) F(z)=0 forall zin C;
(i) |F(z) — F(1)| < (const)|z — t|log|z — t|7t for lzI and |t <R and
Iz —t] <%
(i) |F(2)| < (const)|z|loglz| for |z| > 3; and
(iv) F:(z) = p(2) in the sense of distributions.

The constants in (i) and (iii) depend only on R and | pll-

Proof. Since C, is dense in C and (ii) implies F (z) is continuous, (i) follows
from the hypothesis that u(() is orthogonal to the rational function of { given in
(2). Notice that (2) has the partial fractions decomposition

z — 1) 1 z—1
z(z — 1) _z L7 ‘ G)

C—0)(—2 (—z (-1 ¢
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It is therefore obvious that for |z| < R, the function
1 1)
Fi(z)=—— ” T——dcdn
i {—2z
Ill<2R

differs from F(z) by a holomorphic function. Thus it suffices to show the
continuity condition (ii) for the function F,(z). Clearly

i)~ Fi)= f f e

I{i<2R

and on making the substitution (z — t)w = { — z, one obtains

du dv,

1 1
|F1(z) — Fy(t)] <E lz — e [l Jf ’m

where the integral is over the region |w| < 3R/|z — t|. This integral can be
divided into two parts: the part where |w| <3 and the part where
3 < |w| < 3R/|z — t]. The first part is bounded by a constant times |z — ¢| and the

second is bounded by a constant times

Iz — Jj—l—idudv, @
lwl

where the integral (4) is taken over the domain 3 < |w| < 3R/|z — t]. This clearly
- works out to condition (ii).
To verify (iii), write

nF ()| f J dé dy f j dé dy
lellwlzz — D1~ ) 1= 1 — 2) KC—~ -2

[{1<2 {/>2

The first integral is obviously less than a constant times |z] ~* for |z| > 3. Thus we
must show that the second integral gives a contribution of order 0{|z| ! log|z))
for |z] > 3. The second integral is less than

déd
2 f{‘ rr__é_n 2" (5)
J &=zl
i{1>2

Let { = zw and d¢é dn = |z|* du dv, where { = & + in and w = u + iv. Then (5) is
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Jess than a constant times |z ™' times

dudv
f lw — 1fjw]* ©)
) .

H<1w|

If (6) is broken down into the sum of the integral over the region 2|z| ™' < |w| < 3
and the integral over the region § < |w|, the first integral contributes a term of
order log|z| and the second a term which is constant. Putting all this together,

the estimate (iii) follows.
To prove (iv), first suppose u is C* and has compact support. Then from (3) it

is obvious that F(z) defined in (1) differs from

d
Gl = — f J ﬂ(?_id"

by a holomorphic function and so Fz = Gz- Notice that

G(Z)=~%H“(C;Z)d€dn

and so
1 pQ)dEdn
GE(Z)=—EJJ‘ (—Z .

Since u has compact support, Stoke’s theorem yields

G;(z) = __I_JIMZ 1 Hm f —ﬂ—@“dl=#(z), Ul
Ve

o [~z T 2mies0 ), ((—2)

where v, is a circle of radius ¢ about z traced out in the clockwise direction. One
sees that F(z) = u(z). To finish the proof of part (iv), we must show that

J J F(2)p;dxdy = —“ p(Qe() dl dn ©)

for every C? function ¢ which has compact support. But

SRS N oz
ﬂ Fosdxdy = "ﬂj “@H e e A

and, by the same argument used to show (7), for the integral on the inside of the
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right-hand side, we have

1 z(z — 1)
-jjy%@aijﬁjzw@=—¢@

The end result is (8).

For the next step in the proof of Theorem 1 we introduce Ahlfors’s mollifier.
Let j(t) be a real valued smooth function such that jt)=0fort <landj(r) =1
for t > 2 and form

. n |
o) ®

where 4(z) is the minimum of e 2 and the distance from z to the closed set C.

Lemma 2. For positive integers n, the function m,(z) defined in (9) has the
following properties:

@) 0<m(z)< 1,
(i) for each z, there exists n, such that m,(z) = 1 Sor n larger than n;
(iii) m,(z) = 0 in a neighborhood of C; and

- m, 1 1
—_— < e
(iv) 7 (const) 7 Slogo!

Proof. The first three properties are obvious. Notice that from the definition
of 6(z) it is obvious that

0(z) — 6(w)l <z — wl

and from this inequality one can show that the partial derivatives of § with
respect to z and Z exist in the sense of distributions and they are both bounded

by 1. A calculation gives

am, —n 1 85

=4

- : Sy 10
oz O liogiog 677 5Togst 2 (10

Here, the argument of /' is the same as the argument of j in (9), and since Jj=0
unless 1 <t < 2, in (10) we may assume that

n
l<ermem—m < 2.
<10giog 51
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Therefore, (10) yields

1 1
(COﬂSt) m 5 (1 I)

5| S

which proves Lemma 2.
To proceed with the proof of Theorem 1 recall properties (i) and (ii) of Lemma
1. They tell us that for z with distance less than 3 to C and for |z| < R

[F(2)l < C(R)d(z) log 0™ '(z). (12)
Since d(z) is never more than e~ 2, this inequality obviously holds throughout

|z| < R for a constant C(R) depending only on R and not on z.
For any function ¢ holomorphic in the complement of C, we have

J‘J‘ uom, dz dz = 'U m, d(Fo dz)

lzl<R jz| <R

om, _
={ m,Fodz + J:f Fo—
|zl =R 0

|z} <R

13)

From (12) and property (iv) of Lemma 2, the double integral on the right in (13)
is less than a constant times (1/n) [, <z ¢l dx dy and, if ¢ is integrable, this
approaches 0 as n — oo. Taking the limit as n — co in (13), we arrive at

[[roue

|z] <R

f |Fo||dz| < (const)R log R f lo@)|(dzl.  (14)
[z]=R

|z|=R

But it is not possible for there to exist a constant C > 0 for which

C
L;_RW(Z)[ ldz = oz R (15)

If (15) were true, then

f f l0(2)] dx dy > J ) j 10(2)] ldz] dR
2 JlzI=R

S C © dR o
- o RlogR ™~
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which contradicts the assumption that ¢ is integrable, and the proof of Theorem,
1 is now complete.

Remark. It is not always necessary for C, to be dense in C. The potentia]
function F defined in (1) is holomorphic on any open subset of the complement
of the support of 1. We only need a subset C, of C which is sufficiently large that
if F vanishes on C,, then it vanishes on the boundary of the complement of C
(see [Ber4]). This remark is of no use in our situation because we will apply the
theorem for sets C with no interior.

4.2. A DENSITY THEOREM FOR FUCHSIAN GROUPS

Let C be a closed I'-invariant set for the Fuchsian group I' and assume
A € C < R. Let o be a fundamental domain for I"in € — A. Obviously, we may
choose w so that it is symmetric about R; that is, @ = @. If T is of the first kind,
then o is necessarily disconnected, but we may assume the component in each
half plane is noneuclidean convex. If I is of the second kind, we may assume o is
connected and bounded by circular arcs and vertices.

The space A(I', C) consists of all functions ¢ holomorphic in € — C for which

(i) @(B(z))B(z)* = ¢(z) for all B in T'; and
i) ol = [f,lp(@)| dxdy < .

The space R(T, C) is the subset of A(T, C) whose elements are holomorphic in
C - A except for at most isolated simple poles on C — A which are finite in
number on the orbit space (C — A)/T". Note that by reflection the space AT, C)
introduced in the previous chapter can be regarded as a subspace of A(T', C).

Theorem 2. Suppose A < C, < C = R and C, and C are in-variant sets for the
Fuchsian group T with limit set A. Then R(T', C,) is dense in AT, C) if Cy, is dense
in C.

Proof. It is easy to check that R(BTB™ !, B(Cy)= R(I,C) and
A(BTB™1, B(C)) = A(T, C) for any M&bius transformation B. Since C must have

at least three points [or else A(,C) is empty], we may assume, after a
conjugation, that 0, 1, and oo are points in C,. Form the summation

Lo - DB
O =L 5060 = VB0 =2’ 19

where z is in C, and the sum is over all B in I'. The series in (16) converges
absolutely and uniformly on compact subsets of C — C,. It has simple poles at
the points of {B(z)|B in T'}. These points form a discrete set on the real axis with
the limit set removed since I" acts properly discontinuously at points not in its
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{imit set. The convergence of the series (16) follows from the inequalities

[[orazan <3 [] [ 51

w B(w}

([ k=1
= U D¢ -2 <

C

where the summation runs over all B in I'. It is also easy to see that
r(B(C))B'(C)Z = r({) for B in T. Therefore, r({) is in R(I', Co).

To prove the theorem we suppose u is an L -function on w for which
[, pr = 0 for all r in R(I', Co) and we must show that ff, ue = 0 for all ¢ in

AT, ). First, extend the function p to all of C by stipulating

W(B(z) = HaBE) ¢ inwand Bin T (17)
B'(z)

This defines x4 up to a set of measure zero because C — A is the disjoint union,
except for'a countable union of analytic arcs, of the sets B(w) for Bin I'. For the

_ function r({) in (16), we have

H H(OR(E) dE dy = f f e HOdedn (19)

© C

Therefore, the hypothesis that {f, #(Q)u(()d¢ dn — 0 for all in R(T, C,) tells us
that F(z) defined in (1) is zero for z in Co. By the continuity of F, this means
F(z) = Ofor z in C and the proof of Theorem 1 tells us that

j f O()u(C) dE dn = 0 (19)

C

for all ® in A(C). This then implies

” (Y, QBB ) dEdn =0 (20)

o

for all ® in A(C), where the summation in the curly brackets in (20) is taken over
all Bin I'. To complete the proof of the theorem, we need to know that the
summation inside the integral in (20) sweeps out a dense subspace of A(T', C) as
@ varies in A(C). In the next two sections we will show that this summation gives

a surjective mapping.
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4.3. POINCARE THETA SERIES
Let © be the linear operator from A(C) into A(I, C) defined by
O(F)z) =Y, F(B(z))B'(2)?, (21

where the summation is over all B in a Fuchsian group I'. Assume that 0, 1, and
co are in C.

Theorem 3. The series in (21) converges absolutely and uniformly on compact
subsets of C — C. The series (21) defines a linear operator ® from A(C) to A(T, C)
which is surjective and has norm less than or equal to 1. Moreover, ® maps the unit
ball in A(C) onto the ball of radius % in A(T, C).

Proof. The statements about the convergence of the series and the fact that
@] <1 follows immediately from the following string of equalities and
inequalities:

IeF|, < j Y. IF(B(2))B'(z)| dx dy

= ﬂ |F(z)ldx dy = “ [F(2)ldx dy = |[F|,
B ) C

where the summation and union are over all Bin I'.

For the proof of the rest of the Theorem 3, we need to prove the existence of a
reproducing kernel function for the domain D = C — C, which is the topic of the
next section. At the end of the next section, we finish the proof of Theorem 3.

44 KERNEL FUNCTIONS FOR PLANE DOMAINS

Lemma 3. For any plane domain D with three or more boundary points in C, there
is a kernel function K (z, {) defined for (z, {) in D x D which is holomorphic in z and
antiholomorphic in { which has the following properties:

) Kz, ) = K(, 2);
(ii) for every conformal self-mapping A of D, K(Az, AD)A'(z)*A'(0)* = K(z, {);
(i) f[IK(z Q) dx dy < mp*(();
(iv) for every integrable holomorphic function ¢ on D, ¢(z)=
G/m) {f 0 OK (2, De(() dE dn; and
(v) for each fixed { in D, sup,|K(z, {)lp~*(z) < .
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In the above formulas and integrals, D is the domain of integration and p(z) is
the Poincaré metric for the domain D. If confusion can arise because of
discussion of different domains, we will sometimes write pp, and K.

We first discuss the case where D is the unit disk A. Then K and p are given

explicitly by the following formulas:

Ka(n )= (1 =207,
pal) = (1 = 297" 22)

In this case, property (i) of the lemma is completely obvious and the verification
of (ii) is an elementary exercise. To verify (iii), let

g9(0) = H |Ka(z, O dx dy

A

and note that by using the change of variable (i A({) we get
g(ANA'Q)I? = g({) for any M&bius transformation A which preserves A. Thus
we can determine g({) by calculating g(0). Obviously, g(0) = n and we get

property (iif) with equality.
To prove (iv), observe that for r < 1 the mean value property for harmonic

functions says
1 (2 .
@(0) = = J p(re”) do.
2n 0
Thus,

1 1 2n 1 .
»(0) j (1 —r¥rdr=— J f (1 — r?)2p(re®)r dr db,
4] 2n 0 0

which holds as long as @(z) is integrable in A. This can be rewritten as

T

90 =" H 9o (O)~2K o0, () dE di. 23)

A

A simple calculation using the invariance properties of ps and K, now yields (iv).
Property (v) for K, and p, is obvious.

Now we treat the case where D is a connected open set with at least three
boundary points in €. This hypothesis implies that there is a universal covering
mapping p: A - D with a Fuchsian covering group G for which A/G= D. The
noneuclidean metric p for the domain D is defined by the relation

p(p(@)p'(2)] = pal2).
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" To obtain the kernel function, we first form the series
F(z, {) = Y, Ka(B(z), ()B'(2)* (24)
. BeG

defined for z and { in A and then let the kernel function be determined by the
equation

K(p(z), pO)P(@°P(0)* = F(z, (). (25)

Ultimately, we will show that K in (25) is well defined and satisfies all the
properties of Lemma 3. First, we need to establish analogous properties for

F(z,0).

Lemma 4. The series for F(z, () in (24) converges absolutely and uniformly on
compact subsets of A to a function which is holomorphic in z and antiholomorphic
in { and which satisfies

() Fz, {) = (& 2);
(i) for every B in G, F(Bz, {)B'(z)* = F(z, {);
(iii) F(Az, ADA(2)*A()* = F(z,{) for all A in the normalizer of G;
(iv) for every G-automorphic quadratic differential  for which
,”A/G l(z)] dx dy < o0,

b= f J o HOF (2, QW) d& dn;

AJG
and
(v) for fixed (| < 1, sup|F(z, {)ps *(2)] < co.

Proof. For fixed {, the function K,(z, {) is integrable in the variable z and the
statement about (24) converging absolutely and uniformly on compact subsets
of A follows in the same way we proved the corresponding statement for the
series in (16). This observation also shows property (ii). The fact that F(z, () is
holomorphic in z and antiholomorphic in { is obvious. To verify (i) it is
necessary to use the symmetry property for K, and the fact that
Ka(A(2), AQNA' (2P A'(0)* = Ka(z, O)-

To prove (iii), let A be in the normalizer of G. Then

F(4z, ADA' @A) = BZG K(BAz, A()B (A2)*A'(z)*4'(0)?

= Y K(BAz, AL)(BA) (2)*4'({)?
=Y K(AA™'BAz, ALYAA™'BAY (2)*4'(()?
= Y K(A™'BAz (YA 'BAY(z)* = F(z,{).
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Using the invariance property of F(z, ) in (ii) and the invariance of p,, the
formula in (iv) reduces to the formula in part (iv) of Lemma 3 for the case D = A,

4 case which we have already proved.
To prove (v) it suffices to show that

Y, |4'(@) < (const)p(2), (26)

AeG

where the constant depends only on the group G. To see this, form the function

. dé dy
; 27
h(z) = H T 27)
where o is a fundamental domain for G. Note that
dé dn 1
WA2)|A' (2))? = = . 28
AZG (Az)|A' ()" = H T2~ A= PP (28)

The denominator of the integrand in (27) is clearly less than 2% = 16, and thus
1
h(z) = pam —— x (Buclidean area of w). (29

From (28) and (29), we see that (26) is true with the constant equal to
16n/(Euclidean area of w).

Now we return to the kernel function K defined in (25). The fact that K is well

defined follows from property (iii) of Lemma 4. To see that K satisfies property

(iii) of Lemma 3, we calculate

j [K(p(2), )l d& dn = ” K (p(z), pON P/ (O dE dn
D

w

_ J j Pz, 0) dé dnlp'(2)

w

<Ilp(@™? q |Kalz, )l d dy

B &

= 71ip'(2) 2lpal2)* = npp(p(2))?
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The verification of the rest of the properties for the kernel function K stated ip
Lemma 3 follow easily from the analogous properties of the function F and we
leave them to the reader.
We can now show that the theta series operator from A(C) to A(T, C) is
surjective. Let ¢ € A(T, C) and let p and K be the noneuclidean metric and the

kernel function described in Lemma 3 for the domain D = € — C. Let w be a
fundamental domain for I" in D and y,, be the characteristic function of . Let

3
D(z) = j f K(z, Oxo)e()p () dé an. (30)
D

By properties (i) and (v) of Lemma 3, we know that
sup [K(z, O)lp () < co.

Since ¢({) is integrable over w, clearly y,,({)@({) is integrable over D, and thus
the integrand in (30) is integrable for each fixed z and gives a holomorphic
function of z. Moreover, from property (iii) in Lemma 3, we see that

3
' J.j |®(2)] dxdy<;fff IK(z, O)] dx dyly., op 2| dE dn

<3 ﬁ o] dE dn. (31)
Finally, on using properties (ii) and (iv), we see that

Od(z) = %ij K(Az, )4 @) *o()p~HL) d& dn

3
= ;Z H K(Az, ADA'(2)* p(AD)p ™ HADIA ()P dE dn

A" Hw)

3
= gff K(z,OeQp ) dE dn = ().

This shows that @ is surjective and inequality (31) shows that it maps the ball of
radius 1 onto the ball of radius 4. Theorem 3 is now completely proved.
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45. THE INEQUALITY OF REICH AND STREBEL FOR ARBITRARY
FUCHSIAN GROUPS

Let I' be a Fuchsian group with at least three points in its limit set A and assume
C is a closed I'-invariant set with A < C < R In this section, let @ be a
fundamental domain for I' in H. Let w be a quasiconformal self-mapping of C

such that

(i) wiz)=w(),
(i) wedew '=A4  forevery AinlI, and (32)

(i) w(x)=x for every x in C.
Let u be the Beltrami coefficient of w, that is, w,/w; = . Such a Beltrami

coefficient y coming from a quasiconformal mapping w satisfying (32) is called a

trivial Beltrami coefficient.
Let ¢ be a quadratic differential in A(T, C), by which we mean ¢ satisfies

(i) ¢ is holomorphic in C — C,
(i) ¢(B)B'@?=g(z) forallBinT,

@) ol = Jf lp(2)l dx dy < oo, and
(iv) o(z) is real valued if zis in R — C. (33)

Theorem 4. For u and ¢ satisfying the above conditions, one has the following
inequality:

ol < j [ oty L HACDROL gy, (4

Proof. Clearly, if ¢, is a sequence in A4,(I’, C) for which |¢,— @[ —0 and ¢,
satisfies (34), then ¢ also satisfies (34). Now let T', be a finitely generated
subgroup of T with limit set A;. Clearly AcsAcsCcs R. From Chapter 3,
Theorem 3, we know the inequality holds for the finitely generated group I'; and
any I';-invariant closed set C; with A; € C, < Rand for which (C, — ATy s
a finite set. Clearly, holding T, fixed, we can let C, become a larger and larger
subset of C, and, by Theorem 2 of this chapter, we obtain (34) for the closed set C
and any finitely generated subgroup of I

For the next step, we take an increasing sequence ", of finitely generated
subgroups of I" whose union is I'. Let © and ®, be the theta series operators for
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I and I',. Thus we have surjective mappings:
B: A(C) > A, C) and ©,: A(C) - A(T,, C).

From the methods of construction of fundamental domains described in Section
1.6, we can take fundamental domains o for I" and w, for I'; in H with o < o,
such that ﬂ n=1 0, = @ Moreover, we have the following equality, which is true
except for a set which is a countable union of analytic arcs:

U B, — o) =H — | B(w).

Bel'y, Bel'y,

If we let D, = | Jger, B(w), then D, is an increasing sequence of open sets whose
union is equal to H except for a set of measure zero. :

Before proving inequality (34) it is convenient to rewrite it in the equivalent
form given in the next lemma.

Lemma 5. Inequality (34) is true for a given ¢ and a given ¢ if, and only if,

Reﬂ i dxdy<f li‘ill"i:;dxdy. (35)
p :

1 — [uf?

w

Proof. Simply expand the numerator in the integrand on the right-hand side
of (34). We get

[pl{1 — ul*> — 2 Re po/lp| + 2|u?}.

The term involving 1 — |y)? can be divided out and then we can subtract ¢
from both sides of the inequality. Obviously (35) follows and this reasoning is

reversible. .
Our task is to prove (35). Let ¢ = OF and ¢, = ®,F. Since u is a Beltrami

coefficient for I" and I', = T, it is easy to show that

e, e
————dxdy = || ——— dxdy.
ﬂuw Y Hl-w Y

Since we have proved the finitely generated case, we know that

d> 2@, F
Re” ) rdysf lul?1®, Idxdy' 36

1— |uf? L — |u?

@n

Now the idea is to take the limit in (36) as n approaches co. Since /(1 — |uf?) is
a bounded function, the fact that we obtain (35) in the limit follows from the

following lemma.
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Lemma 6 _

Iim

n—co

ﬂ ;@m_ﬂ or 0

Proof. We must estimate two terms,

UJ |®nF)—lf |®,F|| and ’g !Q,,Fl—g |®F|‘-

The first term is bounded by j jH _p,|F|, where D, is the union of the sets B(w) for
Bin T,. Since I, increases-to I, D, increases to M. The fact that F is integrable
implies that this limit approaches zero. The second term is bounded by

J f S |F(B())| B (z)2] dx dy,

w

where the sum is over B in ' — T, This term is equal to [{w —p, |F|, Which, as we
just mentioned, converges to zero.

Notes. Bers’s approximation theorem appears in [Be4]. The density theorem in
Section 4.2 is due to Ahlfors [Ah3] and Bers [Ber4], as are the theorems on the
surjectivity of Poincaré theta series in Section 4.3 ([Ah3], [Ber5]). The proof of
convergence of the series (26) is adapted from a paper of Earle [E1] and a paper
of Godement [Go]. Much of the organization and the clever proof of surjectivity
of the theta series operator given at the end of Section 4.4 is due to Kra[Kr2].
The proof of the existence of the kernel functions and K are also adapted from
Kra [Kr2]. The proof of the extension of the Reich—Strebel inequality to general
Fuchsian groups given in Section 4.5 is due to this author. Bers proves a similar
result in [Ber10]. Strebel [St3] generalizes the inequality to arbitrary Riemann

surfaces by different methods.

EXERCISES

SECTION 4.1.

1. Let J,(z) be a nonnegative real valued function with support in {z: |z] < &}.
Assume J, is C? and [{c J,(2) dx dy = 1. For any L,-function f(z) defined for

zin C, let

-
fil2) = j { Jelz = O f () dc dn,

C
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where { = ¢ + in. Show that [[|/,| dxdy < [ |f|dx dy, where the integrals
are over C. |

Remark. Here f, is called the e-mollification of f.

2. Suppose f satisfies a Lipschitz condition, that is, | f(z) — f(W)] < K|z — w|.
Show that f, satisfies a Lipschitz condition with the same constant K.
Conclude that |(8/6z)f,| and [(6/0z)f,] are both bounded by K.

3. For the f in Exercise 2 show that f, converges to f uniformly in C.

4. For the f in Exercise 2, show there is an L_-function g such that

f Jozdx dy = ” go dx dy

for all C* functions ¢ with compact support. [In this case, the function —g is
called the generalized (0/0z)-derivative of f.]

Hint: Show that the linear functional ¢(¢) = [[ fo; dx dy is bounded in
the sense that |£(¢)] < K [ |¢| dx dy. Then use the Hahn—Banach and Riesz
representation theorems to find g.

SECTION 44

R

5. Consider the inner product of functions defined in the unit disk given by

1 S
J@)g(@)) =~ j j p~H2)f(2)g(z) dx dy.

Izl <1

(a) Show that the holomorphic functions f(z) for = which
I 711? = {f(2), f(z)> < oo is a Hilbert space.

(b) Show that the set of functions {c,z"} makes an orthonormal set with the
proper choice of constant c,.

(c) Show that the function

K@= 3 @y

is a constant multiple of the kernel function K,(z, {) defined in (22).

6. Let

A—1

R(m) = z(z— 10z — 4)
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and let T be the cyclic group generated by z — 4z, 4 # 0, and |A] # 1. Show

that
+2z72 if |Al > 1,

OR() = {—2_2 if 12 < 1,

where @ is the theta series for the group T.



TEICHMULLER THEORY

This chapter gives the definitions of Teichmiiller space of a Riemann surface and
of a Fuchsian group and tells under what conditions they are equivalent. It also
gives the manifold structure for Teichmiiller space, which is a system of
coordinate charts modeled on a Banach space. For many cases and, in
particular, for the case of surfaces of finite analytic type, the coordinate
mappings are complex analytic and the Banach spacé is finite dimensional. The
chapter also contains part of the infinitesimal theory and, in particular, a
theorem on the existence of trivial curves with given infinitesimally trivial
tangent vector. '

We now give a heuristic argument which shows why the space of different
complex analytic structures on a surface of genus g has complex dimension
3g — 3, when g > 1 and dimension 1 when g = 1. By the end of the chapter, a
rigorous argument is provided.

From the uniformization theorem, Theorem 1 of Chapter 1, the compact
Riemann surfaces of genus > 1 are realized by the complex plane factored by a
Jattice or the upper half plane factored by a torsion free Fuchsian group. We
count the number of free parameters needed to determine the conjugacy class of
the covering group of the surface. When the genus is one, there is a lattice L
generated by two translations z - z + @ and z - z + w,, where w; and w, are
independent over R. Conjugation by the transformation T(z) = w; 'z changes
the lattice L to the lattice TLT ! generated by z—z + landz +z + 7, where
T = w,/w,. The complex parameter t determines the one complex dimensional
family of complex structures on a torus.

In the case where the genus is more than one, the usual way to select a set of
generators for a fundamental group is to take loops o; and §;, 1 <j <9, where
«; and B; go around the jth handle in the way indicated in Figure 5.1. On
choosing a basepoint for the surface and connecting each of these loops to the
basepoint, they become a basis for the fundamental group satisfying the

commutator relation

o Bror BTt o By B =1

91
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Figure 5.1

The liftings of these loops to the Fuchsian covering group yield Mobius
transformations 4; and B, satisfying the commutator relation

Ay By A By A,B A B =1,

Since each Mobius transformation is determined by three real parameters, the
2g transformations, 4,, B,, ..., A,, B,, are determined by 6g real parameters.
The commutator relation takes away three degrees of freedom and the fact that
the group I' and any conjugate of it, BT B~ !, determine the same complex
structure takes away three more degrees of freedom. We are left with 6g — 6 real
parameters.

In our setup for Teichmiiller space, the definitions include surfaces much
more general than compact surfaces of finite genus. The surfaces can have
infinite genus or infinite connectivity or both. They can also be bordered
surfaces with certain points of the border fixed. An interesting example is
obtained by letting the surface be the extended complex plane with a Cantor
subset of the unit interval removed. This particular example has genus zero, no
border, and infinite connectivity.

We have already used the notion of a bordered Riemann surface in Section
3.4. We remind the reader of the following facts. If a Riemann surface R is
represented by H/T', where I is the universal covering group of R, the border of
Ris the set (R — A)/T". Each component I of R — A is an open interval. It is easy
to see that if I has three or more limit points, then there is a cyclic group I'(I)
which contains all of the elements of I' which preserve 1. Now I'(I ) is either
trivial or is generated by a hyperbolic transformation whose fixed points are the
two endpoints of I. The part of the border of the surface corresponding to I is
represented by I/I'(/), and the inverse of the universal covering maps gives a
chart which realizes the border as a real analytic curve.

5.1. TEICHMULLER SPACE OF A RIEMANN SURFACE

Let R be a Riemann surface, possibly with border, and ¢ a closed subset of the
border. In this section we define T(R, o), the Teichmiiller space of R relative to o.
In the case where R is the unit disk and ¢ its circumference, T (R, o) is universal
Teichmiiller space. If ¢ is the whole border of R, then T(R, ) is called unreduced
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Teichmiiller space. If the border is nonempty but ¢ is empty, T(R, 0) is called
reduced Teichmiiller space. For surfaces of finite analytic type there is no border
and these distinctions do not exist.

T(R, o) as a Deformation Space

Consider the set Def(R; o) of all pairs (f, R*), where f is a quasiconformal
homeomorphism of the surface R onto a surface R*. Two pairs (fy, Ro) and
(f1» Ry) in Def(R, o) are equivalent if there is a conformal map c: R, — R, such
that ¢ © f, is homotopic to f; in the following sense: There is a continuous curve
of continuous functions g,: R — R, which extend continuously to the border of

R such that

(@) go(z) = c° folz) and g,(2) = fi(2) for z in R; and
() g,(p) = ce fo(p) = fi(p) for every p in ¢ and every t with 0 <t < L.

From the theory of quasiconformal mapping, f, and f, extend continuously to

the border of R in a unique way.
By definition, T(R, o) is Def(R, ) factored by this equivalence relation.

T(R, o) as an Orbit Space

Let M(R) be the open unit ball in the Banach space L, (R). By L, (R) we mean
the space of all Beltrami differentials y. Such a differential y is an assignment of a
measurable complex valued function y* to each local parameter z on R such that

(a) pi(z)dz/dz) = pHONdT/dC) for any two parameters z and { with over-
- lapping domains; and ‘
(b) full, = sup{llp*(2)ll, for all parameters z} < .

It follows from the theory of the Beltrami equation (see Section 1.8) that for
any u in M(R) there is a quasiconformal homeomorphism w from R onto

another Riemann surface R* satisfying

Wy = UW,, (1)

and which extends continuously and uniquely to the border of R. Let Dy(R, o) be
the group of quasiconformal homeomorphic self-mappings of R which are
homotopic to the identity in the sense described above. Specifically, h is in
Dy(R, o) if there exists a continuous curve of continuous self-mappings g, of R
extending continuously to the border of R such that

golzy =z and g,(z) = h(2) for zin R

and
gpp=np=rp forpinc and O0<i<L
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The group operation for Dy(R, 0) is composition and obviously there is a
group action Do(R, o) x M(R)—> M(R) given by (h, u)— h*(p), where
h*(p) = (we h);/(we h), and w satisfies (1). If v is the Beltrami coefficient for h, that
is, if v = hz/h_, then the Beltrami coefficient h*(y) is

v(2) + u(h(2))0(2)

() = 2
W Ort00)

where 0(z) = (h )h,.
Obviously [|h*(u)]l,, <1 since it is the Beltrami coefficient of a quasi-

conformal mapping. Teichmiiller space can now be defined as the set of orbits in
M(R) under this group action. Since it is a different definition from the one
already given, we denote it by T,(R, o).

Proposition 1. T(R, 6) and T|(R, o) are naturally isomorphic.

Proof. There is a natural map «: T(R, o) to T,(R, o). Given an equivalence
class [ f, R*]in T(R, o) and a local parameter g on R*, we form

=(g°f)/g° f).. @

Notice that p is defined independently of g and udz/dz is invariant on R. We
define o[ f, R*]) = p, where p is given by (2). To show that « is well defined
assume [fy, Ro] ~ [f;, R;]. Then there is a conformal mapping c: R, - R,
such that ce f; and f; are homotopic as maps from R to R, and co f, and fi
coincide on ¢ as does the homotopy g, which connects them. Let h,= fileg,.
Then h,;: R -+ R and h; is the identity and hy = f['ogy = fi'oco f,. Let u; be
the Beltrami coefficient of f fori=0and 1. Now h¥(u,) = u, and h¥(u,) is the
Beltrami coefficient of f; o hy = ce f; and so h#(u;) = u,. Therefore, y, and Ko
are in the same orbit under Dy(R, o). A

This same argument applies in reverse and shows that if u, and p, are in the
same orbit under Dy(R, o), then there exists a gc-homeomorphism % of (R, o)
homotopic to the identity for which f;°h and f, have the same Beltrami
coefficient. This implies the existence of a conformal mapping ¢: R, — R, for
which f; ek = co f;,. Finally, the surjectivity of a follows from the existence of
quasiconformal homeomorphisms w satisfying (1) for given y in M(R).

5.2. TEICHMULLER SPACE OF A FUCHSIAN GROUP

Now suppose the universal covering surface R of the Riemann surface is
conformally isomorphic to the upper half plane H. The cover transformations of
R over R are represented by Mobius transformations with no fixed points in H.

The Riemann surface R is realized as the orbit space H/I" and the canonical
mapping 7n: H — H/T" is a complex analytic projection (see Section 1.4). If
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H
lﬂl
R

1

~

.
i

h
h - Figure 5.2

[, =A°TeA " for Ain PSL(2, R), then z — A(z) gives a one-to-one corre-
spondence from the orbits of T to the orbits of I'; and so yields a bianalytic
ijsomorphism of H/I' onto H/T’;. Conversely, if h is a quasiconformal
homegmorphism of R onto R, it can be lifted to a gc-homeomorphism hof R
onto R, which satisfies 7; ° h = he 7 (see Figure 5.2). If h is conformal, so is i and
therefore h is a Mobius transformation. Thus, the groups I' and I'; are
conjugate, RTh~! = T,. This equality holds even if 71 is only quasiconformal but
% is no longer a Mobius transformation. It is this freedom which enables one, by
use of the quasiconformal mapping R, to deform I into nonconjugate subgroups
of PSL(2, R). ‘

Let T be any Fuchsian group, possibly with elliptic elements, and define M(I')
to be the set of Beltrami coefficients u with support in H and which are
compatible with I in the sense that u(B(2))B'(z) = u(z)B'(2) for all Bin I We
assume that p is measurable and complex valued and [|pfo < 1. Let w, be the
unique gc-homeomorphism of H whose extension to the real axis fixes 0, 1,and
oo and which satisfies (1). Let C be any closed subset of R which contains the
limit set of I' and which is invariant under T.

Definition. Two elements u and v of M(T') are C-equivalent if w,(x) = w,(x) for all
x in C.

Definition. T(I, C), the Teichmiiller space of the Fuchsian group I’ relative to the
closed set C, consists of equivalence classes of elements of M(I'), where p~ v if

w,(x) = w,(x) for all x in C.

Lemmal. Ifue M(D), thenw,cA°w, 1 j¢ g Mébius transformation for every A in
T.

Proof. The self-mappings of H given by w, and w,°A have Beltrami
coefficients u and u{A(z))A' (z)/ A'(2), respectively. Since p is in M(I), these
Beltrami coefficients are identical. Choose 2 Mobius transformation A4, such
that A,°w, and w,° 4 have the same values at 0, 1, and 0. Notice that 4,°ow
and w,° 4 are normalized solutions of the Beltrami equation with the same

Beltrami coefficient. Therefore, by uniqueness, Agew,=w,° A
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Lemma 2. Let I be a torsion free, discontinuous group of Mobius transformations
and C a closed T-invariant subset of R which contains the limit set Aof T Let
R =H/T and ¢ = (C — A)/T". Then T(R, o) is canonically isomorphic to T(T, C).

Proof. Recall that T(R, 6) = T;(R, o) by Proposition 1 of Section 5.1. Given
an element [u] in Ti(R, 0), we lift u to a Beltrami coefficient jt defined on H and
satisfying ji(Bz)B'(z) = ji(z)B'(z) for every B in I'. We must show that p, and U
are equivalent in Ty(R, o) if and only if /i, and By are equivalent in T(T', C). Let w,
be the normalized gc-mapping of H with Beltrami coefficient ii; and let f;be a gc-
mapping of R onto R, with Beltrami coefficient p;, i = 0 or 1. We claim the
homotopy from f;, to f, fixing ¢ lifts to a homotopy from w, to w, fixing C. The
condition that f; is homotopic to ¢ o J1 for some conformal mapping c: R, — R,
forces woI'wg ' = w I'w ! since w, and w, are normalised. Moreover, for each
A in T, the homotopy w, from w, to w; gives a continuous curve of
homomorphisms y, from I' to the discrete group wooIowg ! determined by
x{A)°w, = w,° A. Thus, we see that y,(A) is constant for 0 < ¢ < 1 and therefore
(Wo tow)o A" = A"o(wgytow,) for all AinT. By letting n — oo it follows that Wo
and w, are identical on the attracting fixed points of elements of I" and hence on
the whole limit set. (Notice that we do not take the inverse of the mapping w, in
this argument. In fact, we are not permitted this freedom because w, 18 not
necessarily a homeomorphism.) Since f, and f, are identical on ¢, one sees that
for every point p in C and not in the limit set of I', there is an element A4 in I" for
which wy(p) = w,(A(p)). Let J be the open interval of R — A containing p. Since
wo(x) = wy(x) for x in A and, in particular, for the two endpoints of J, we see that
A(J) = J. If A were not the identity, then fy'o f, applied to projection of p
would be a loop winding around the boundary component of R corresponding
to J and f;!e f, would not fix the points of 6. We conclude that wo(p) = wi(p)
for p in C and that fi, and Ji, are equivalent in T(T, C).

To show the converse, we start by assuming Ji, and fi, are equivalent. We

must show there is a homotopy between Jo and f; which maps H/T" onto H/T'*,
where I'* = woI'wg ' = w;T'w; L. Let p and p* be the noneuclidean metrics for
the domains € — A and € — A*, where A and A* are the limit sets of the groups
I" and I'*. Given any two points in the upper half plane H, there is a unique line
segment connecting them in either of the metrics p or p*. The same statement is
true if the two points are in a component of R — A or R — A*. Notice that for a
component I of R — A, one has wo(I) = wy(I) because w, and w, are identical on
A. '
Now the groups I" and I'* consist of isometries of the domains € — A and
€ — A* in the metrics p and p*, respectively. Define w,(z) to be the point on the
p*-line segment between wo(z) and w(z) such that the p*-distances from wo(z) to
w,(z) and from w,(z) to w,(z) are in the ratio ¢: (1 — ¢). The mapping w, is not
necessarily quasiconformal, but it is clearly continuous from Hu (R — A) to
Hou(R— A*). Since wo(dz) = Aowy(z) for A in I and 4 in T'* and
wi(Az) = Ao w,(z), it follows that w,(4z) = 4 °w,(z). Moreover, from the de-
finition of w,, it agrees with w, and w, at any points x for which Wol(x) = wy(x).
Thus w, factors to a homotopy f, from f, to f; which fixes points of ¢.
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Remark. The idea of using noneuclidean line segments to construct the
homotopy comes from Ahlfors [Ah4]. We have altered his construction by using
noneuclidean metrics for the domains € — A and € — A*. This is necessary in
order to get a homotopy which extends to C and keeps points of C fixed.

53. TEICHMULLER’S METRIC

Given two points [¢] and [v] in the Teichmiiller space T(I, C) define the
Teichmiiller’s metric d by

d([ ], [v]) = § inf log K (wz°wi "), 3

where wj; and wy are quasiconformal mappings with Beltrami coefficients fi and ¥
and the infinum is taken over all ji and ¥ in the same Teichmiiller classes as u and
v, respectively. From the dilatation properties K(f) = K( f~1 and
K(f °g) < K(f)K(g), one easily sees that d is symmetric and satisfies the triangle
inequality.

To see that d is nondegenerate, suppose d(0, [ 1) = 0. Then there is a
sequence of normalized quasiconformal mappings w, with Beltrami coefficients
u, for which K(w,) — 1 and each p, is in the same Teichmiiller class as . This
means w,o Aow, ! =w,°Acw, ! for eachn and each 4 in T and w,(x) = w,(x)
for each x in C. By the convergence principle for quasiconformal mappings,
Lemma 6 in Section 1.8, we know that w, must have a subsequence which
converges uniformly on compact subsets of C to some limit w with K(w) = 1. We
see that w(z) = z for all zin H U R and, therefore, w,(x) = x for each x in C and
w,o Aow, ' = Afor each Ain T This shows that [ u] is the trivial Teichmiiller
class.

The Teichmiiller metric for the Teichmiiller space of a Riemann surface R
with a specified closed subset o of its border is defined analogously. Given two

points [ f,] and [f,] in T(T, o), we define
A LD = bintlog Koo /) @

where the infinum is taken over all quasiconformal mappings f; and f, in the
classes of f, and f,, respectively.

5.4, THE BERS EMBEDDING OF TEICHMULLER SPACE

The Bers embedding of T(I', C) applies when C = R. This can happen either
when T is of the first kind or when ¢ is the whole border of H/T'. An important
example is the case where T is the universal covering group of a surface R of
finite analytic type. Such a group is necessarily of the first kind and thus
A = C = R. By Lemma 2 of the previous section, we then have T(T', C) = T(R).
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Whenever C = R, the equivalence relation on M(I ) which determineg
(T, C) takes a particularly simple form. Two Beltrami coefficients wand v are
equivalent if and only if w,(x) = w,(x) for all x in R. Here, w, 1s a quasiconformal
self-mapping of the upper half plane normalized to fix 0, 1, and oo with Beltrami
coefficient x. The mapping w, has the same definition with yu replaced by w.

Let w* be the unique gc-homeomorphism of € normalized to fix 0, 1,and o
with Beltrami coefficient y in the upper half plane and 0 in the lower half plane,

Lemma 3. The following conditions are equivalent:

(1) wu(x) = w,(x) for all x in R;
(i) w*(x) = w(x) for all x in R; and
(i) w'(z) = w*(2) for all z in the lower half plane.

Proof. Let f* be the unique conformal mapping from H* = w*(H) to H
normalized to fix 0, 1, and 0. Since S*ew#|H has the same Beltrami coefficient
as w,, is normalized at 0, 1, and oo, and maps H to H, we have w,(z) = f*o wh(z)
for zin H. In fact, f* is determined by the set w*(R), since a normalized Riemann
mapping is determined by the domain. Hence, if w#(x) = w*(x) for every xin R,
then f*(z) = f(z) for z in H* and this implies w,(x) = w,(x) for all x in R. This
shows that (i) implies (i).

For the opposite implication, suppose w,(x) = w,(x) and form

{0

wYe(w*)™1 - elsewhere.

Then h extends continuously to w#(R). It is quasiconformal in the whole plane
and conformal off the set w*(R) and it is normalized. Since a quasiconformal
image of the real axis is a removable set for analytic mappings, we conclude that
h is the identity. Thus w* =w" on R and S =f" on w*R) and we get
w,(x) = w,(x). '

It is obvious that (ii) is equivalent to (iii) because both mappings w* and w" are
holomorphic in the lower half plane and continuous on its closure.

The next lemma is the basis for the existence of quasi-Fuchsian groups.

Lemma 4. Given y in M(T'), then for every BinI', w*o Be(w*)™! = B* s a linear
Jractional transformation which leaves invariant the region w*(H) = H*. That is,
B(z) = (az + b)/(cz + d) with a, b, ¢, and d complex and ad — be = 1.

Proof. w*°B and w* have identical Beltrami coefficients because
;t(Bz)B-’—@/B’(z} = u(z). Thus by selecting 2 Mébius transformation B* (with
complex coefficients) so that B#o w* and w* o B are identical on the points 0, 1,
and o, one finds that w” o B = B*o w* because of the uniqueness of normalized
solutions to the Beltrami equation. Since B* = w#o Bo(w#) ™1, BHH*) = H~
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The Schwarzian derivative is defined by {fzy=1"11 —3(f"/f")*. Onme
easily verifies the Cayley identity: {f°4, 2} = {f, g}g'(&)* + {g, z}. Moreover
{g,z} =0ifand only if g is a Mobius transformation.

Lemma 5. If pis in M(I'), then {w", z} = @ is a holomorphic quadratic differential

for I in the lower half plane H*.

 Proof. Note that w* is holomorphic in the lower half plane. On taking the
Schwarzian derivative of both sides of the equation w*o B = B*ow" and using
the Cayley identity, we see that @(Bz)B'(2)* = (z) for Bin I'.

Lemma 6 (Nehari-Kraus [Krau, Ne]). Iffis holomorphic and univalent (one-to-
one) in the lower half plane, then KA 2y <3 :

Proof. This inequality comes from Bieberbach’s area inequality, which says
that if F({) is univalent in |(] > 1 and F({) = {4+ b,y /0 + b,/{% + -+, then
Y ¢nlb,)* <1. The area inequality follows from the observation that
(1/2i) jm:,‘F_ dF measures the area enclosed by the Jordan curve which is the
image under F of the circle |¢] = r and hence is nonnegative. Thus

T U O A TR VUL TR
EJ.M!* FdF_2iJ<€+5+' )(1 ¢ 0 >dC
2
:n(rz_@“zlbziz_..);o. )

On letting r decrease to 1, one gets the area inequality. In particular, |b;| < 1.

Now {F,(}= —(6by/¢% + . Let { =T = (z — Zo)/z — Zo)s where
Zo = Xo + iypand yo < 0 and let F(T%) = f(z). As usual, let H * be the lower half
plane. Then T(H*) = {the exterior of the. unit disk} and T(zo) = 0. Also

{f, 2z} ={F, {3'(z)* and {'(2) = — 2y /(z — zo)*. Hence

N1\ —4y
{fiz} = (—6b1 + powers of Z)(EZ)%Z — 20)4)

_ 1\ 4%
= (—6171 + powers of E)((z — 20)4) . (6)

Taking the limit as { — 0 and z — z4, We get

6b, ™

{f;Z 4 = 5.
o 4y3

Since |b,] < 1, the lemma follows.
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Lemma 7 (Ahlfors—Weill). Suppose ¢ is a holomorphic function in the lower half
plane H* which satisfies ||@(2)y*[l, <3 Let u(z) = —2y%0(z) for z in W ang
w(z) = 0 for z in H*. Then {w*", z} = @. Moreover, if ¢ is a quadratic differentia]
for I', then yu is a Beltrami coefficient in M(T).

Proof. We begin with the assumption that ¢ is holomorphic in a neighbor-
hood of the lower half plane H *, that is, in the exterior of a circle contained in H.
We also assume |p(z)] = O(z]*) as z— . For two linearly independent

solutions #, and #, of n” = —3¢n normalized by 1,7, — 54y, = 1, form
11(2) + (z — Z2)ni(2) :
= —— for zin H
” 12(2) + (z — 2)15(2)
fz)= 8)
(@ for z in H*,
12(2)

- Notice that since the solutions #, and 7, are holomorphic along R, the two
definitions are continuous and coincide for z in R. Also, in both formulas the
numerator and denominator do not vanish simultaneously because
i, — nany = 1. Simple calculations yield f/f, = —2y%*¢(z) for z in H and
£, =0 for z in H*. Since f has Beltrami coefficient L with jull, < 1, we know
that f is quasiconformal. _

To show that f is a homeomorphism of € onto €, from topology it suffices to
show it is a local homeomorphism at each point. Since Jac(f) = |£,|4(1 — |ul?)
and [luf, < 1, it suffices to show f, # 0. Now f, = (1,(2)) "2 in H* and since 7,
is holomorphic in H*, f, cannot be zero. If 5,(z) = 0, then we consider instead
the mapping 1/f. Now (8/32)(1/f) = (— /™), = (1:(z)) "% in H*. Since , and 5,
cannot be simultaneously zero, we see that either f or 1/f is a local
homeomorphism at every point and, therefore, so is f a local homeomorphism
at every point in H*, '

If z isin H we get f, = (1,(2) + (z — 2)73(2))~ 2. Thus f. cannot be zero and we
take care of the case when it is co by considering (1/f) just as we did before. Since
1, and 7, are holomorphic on R and the two formulas for f, match along R, we
see that f, #0on HUR U H*

It remains to show that [ is a local homeomorphism at co. Let t = 1/z be a
local parameter at co. We must show that f, = (f,)(—1/t%) approaches a nonzero
limit as ¢ — 0. Since |@| = O(|z|~*) as z — oo, the solution #,(z) to the equation
n" = —%on will be of the form a,z + b, + O(|z| ). Hence #3(z) = a, + O(z| %)
and f, = (a2 + by + a3z — a,2 + O(lz] ") "% and [, = —(a, + byt + O(t) 2
for z in H. One obtains the same formula if z is in H*. Thus lim,_, f, = —a; 2.
This shows f is a local homeomorphism at oo so longasa, #0.Ifa, =0, we
consider 1/f, and since this has the effect of inverting the formulas in the
definition of f we get lim, .(1/f), = —aj 2, where 5,(z) = ayz + b, + O(z| Y.
But 1%, — n3m, = 1 gives a;b, — a,b; = 1 and so not both a; and a, are zero.
Hence f is a local homeomorphism in both cases.

i
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To remove the hypothesis that ¢ is analytic on R with-fourth order zero at 0o,
we take a linear fractional transformation S, such that the closure of S,H* is
compact in H* and such that S,z -z as 1 — . Form ¢,(z) = @(S,2)(Sw(2))*
Clearly |@,(z)| = Olz| “%)asz— oo and @, 18 holomorphic in a neighborhood of
R. Also since S,H* = H¥, p(S(2)Si2)| < p(2), where plz)ldz| is the noneuclidean
metric for H*. Hence |S,(z)ly < [Im S,(z)| and one sees that '

2 0a(2)] = 10(5,2)8:(2)*1y* < le(S,2)l [Im S1(2)? ©)
and so
12@x@)w < 170@) -
Now ¢, — ¢ normally in H * and hence normalized solutions to N = —5al
will converge normallyin H* to normalized solutions of 7" = —1¢n. One forms

£, corresponding to @,. Each f, is a quasiconformal homeomorphism of C
normalized at 0, 1, and 0 and with dilatation bounded by || Vo), < 1. By
the existence theorem for the Beltrami equation, we can form f, a normalized,
quasiconformal homeomorphism of € with Beltrami coefficient —1y?*p(z)in H
and 0 in H*. Since y*¢,(z) converges in the bounded pointwise sense to y2o(z),
we know that f, converges normally to 7 (see Lemma 5 of Section 1.8).
Moreover, { f,, 2} = @, converges normaily to {f, z} in H* and hence { fzy=0.

It is trivial to show that if ¢ is a quadratic differential for T, then y*@(z) is a
Beltrami differential, and this completes the proof of Lemma 7.

Beltrami differentials of the form y2o(z) are called harmonic Beltrami

differentials.
For p = |dz|/2y, let B(I') be the space of holomorphic quadratic differential

for T defined in the lower half plane H* with norm [[¢ls = lp 2@l - The
condition in Lemma 7 that | y*¢ (@)l < 1 is obviously equivalent to lolls <2

Theorem 1. Let I be a Fuchsian group acting on H. Then the mapping
®: M(I') —» B(I') defined by d(y) = {w", z} induces a one-to-one mapping
®: T(I') — B(I') whose image in B(I) is contained in the ball of radius 6 and
contains the ball of radius 2.

Proof. Lemma 3 implies ® is well defined and one-to-one and Lemma 6
yields [|@(w)| z < 6. Lemma 5 tells us that {w*, z} is a quadratic differential for I’
and the Ahlfors—Weill extension lemma (Lemma 7) says that the image of @
contains the open ball of radius 2.

Remark 1. Ahlfors and Bers have shown that ®(M () is an open set in B().
This fact depends on Ahlfors’s theorem concerning the existence of a Lipschitz
continuous  anti-quasiconformal reflection about a quasicircle w(R)
[Ah2, Ah4]. In cases where B(T) is finite dimensional the fact that ®(M{I’ 3) is
open follows in an clementary way from the theorem on invariance of domain
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(see Theorem 4). In the general case (even without the deep theorem on ant.
quasiconformal reflections), we can use the above theorem to introduce loca]
coordinates which make T(T') into a complex manifold. We pursue this topic in
the next two sections.

Remark 2. w*(R) is a quasicircle, that is, the image under a quasiconformal
mapping of R. In [Ah2], Ahlfors gives a geometric characterization of quasi-
circles. The books by Ahlfors [Ah4] and Lehto and Virtanen [LehtV] contain
the same theorem. Gehring [Ge3] gives further characterizations of quasicircles,
In the case where I" is the identity and C = R, the universal Teichmiiller space T
is ®(M(T)). By Ahlfors [Ah4] and Bers [Ber6], T is an open subset of the
Banach space B(I') contained in the closed set S of Schwarzian derivatives of all
univalent functions. Gehring showed that when T is the identity group, T is in
interior of the closure of T [Gel] and that there are points in S not in the closure
of T Thurston [Th3] showed that S contains uncountably many isolated points,

Remark 3. There is a geometric characterization of Jordan arcs which are
images of intervals under quasiconformal mappings (see Rickman [Ri]).

5.5. TRANSLATION MAPPINGS BETWEEN TEICHMULLER SPACES

Let [u]e T(I,C)and w = w,. Then T'; = woI'ow ™! is also a Fuchsian group
and C; = w(C) is a closed subset of the extended real axis which contains the
limit set A; of I'y. Let d be the Teichmiiller metric for T(I", C) and d, be the
metric for T(I'y, C,).

The mapping w induces a mapping g from T(I',, C,) to T(T, C). For [v] in
T(I",) we let B[v] be the Beltrami coefficient of w, o w,. It is obvious that fis an
isometry with respect to the metrics d and d,.

In the case where C; = C = R, Theorem 1 applies to the group I'; as well as
the group I' and so we have the following diagram:

T )—L— 1)
3, 3
B(T,———> B(D).

The next step is to give an explicit description of the mapping @ foB;* in
terms of the quasifuchsian group IT'* = w* o I'o(w#) ™! and its invariant domains
= w*(H) and Q* = w*(H*). Let /* be the unique conformal mapping from Q
to H normalized at 0, 1, and co. Note that f#°w*(z) = w,(z) for zin HU R

Let B(I'*) be the Banach space of holomorphic quadratic differentials ¢ in
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with norm given by

loll = sup lp@)pu®) b (10)

where Pu 1S the noneuclidean metric for Q. Thus (@) = p( e ¥ (z)|, where
o) = \dg =& Similarly, let B, (T") be the Banach space of holomorphic

quadratic differentials @ it Q* with norm given by
lel = Su(glco(Z)p‘;(Z)'zl, (11)

where plz) = p‘;(w”(z))\w“'(z)l. Let j(w) =W Obviously, the map

@ (p(w“‘(z))w“'(z)2 from B*(F“) to B(I') is an isometry. Similarly, if jw) =W,

then the mapping ¢+ joi(f*@Nf #(z)? from B(I) to B(r'*) is an isometry.
Givena Beltrami coefficient 7 supported in Q, let w* be the unique normalized

qc-mapping which is conformal in Q* and has Beltrami coefficient T in Q.

Lemma 8. {W', z} has norm < 12 in B, (I*)

Proof. Let g be the unique normalized conformal mapping from wH(Q*) to
the lower half plane H*. Then gew'® w'(z) = 2. Taking the Schwarzian
derivative of both sides of this equation, We get

{g, wi(g~ Y(z)? + {wr, wv}w“'(z)2 + {w" z} = 0. (12)

Since g teg(@ =12 {9, w}(gﬁl)’(z)2 — —{g7% 2} But from Lemma 6, g™ "
2} < 6and | {w', 231l <6 Therefore, the norm of {w", z} in B, (") is <12

Theorem 2. Let peBTy) and let @ =jgoj(f”(z))f”'(z)2. Let V= pgz(C)@,
where p, S the noneuclidean metric for the domain Q= wh(H). Then the
mapping Hopod;t takes @ into W whw# (@) + W z}. Hence,
Hopodi B()— BTy is continuous and holomorphic in @ neighborhood of the
origin.

Proof. The formula for ®°p° Do) is 2 routine calculation using the
Cayley identity. From the formula, it is clear that the mapping has a bounded
Frechét derivative and, In particular, the intermediate mapping ¥ = {wf’, w} from
M(@T*) to B,(I'*) has derivative at the origin bounded by 12 (from Lernma 8).
Moreover, the intermediate mapping ¥ {w', w} is differentiable at any point
where |[Vlo < 1.

56. THE MANIFOLD STRUCTURE ON TEICHMi'JLLER SPACE

Just as for the cas€ of Lemma 7 and Theorems 1 and 2, throughout this section
we again assume c = Rand write T() instead of (T, C). We use the mapping
& of Theorem 1 as a local coordinate for T(T) at the origin. If [uleT (1) and
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Iy =w,oTo(w,) " welet ®, 5! be a local coordinate at [ u]. In order to Use
these mappings as local coordinates, we must show that, restricted to a Suitably
small neighborhood of the origin, the map @, is a homeomorphism and that the
transition mapping ®ofo®; ! i holomorphic. That the transition mapping i
holomorphic follows from the explicit description given in Theorem 2. The next
theorem shows that ® and @, are homeomorphisms when restricted to suitably
small neighborhoods of the origin.

Theorem 3. Let U = {[ u] e T(I): d(0, 1) < 3log2}. Then ®|U is a homeomorph-
ism onto an open set contained in the ball of radius 2 and containing the ball of
radius % in B(I').

Proof. The topology on T(I) is the quotient topology from M (I') under the
equivalence relation which defines T(I'). Therefore, the continuity of ® follows
from the continuity of ®. Since M (T') is the unit ball in a Banach space and since
® is obviously holomorphic (in the next section we will compute its complex
derivative), by Schwarz’s lemma 19w < 6]lull.,. Here we use the fact that
Lemma 6 tells us that the image of ® is contained in the ball of radius 6. Now
assume d(0, [ 40]) < 4log 2. From the definition of Teichmiiller’s metric (3), this

implies [ ] is represented by a Beltrami differential Mo for which |y, <4,

and hence ||®(u,)|| < 2. Suppose ¢, = ®(u,) and @, — @oll converges to 0.
Then for sufficiently large n, |, <2 and D(—2y%¢,(2)) = ¢, and
Ho ~ —2y?@q(Z). The hypothesis that l®x — @oll — O then implies that

d(=2y°0,(2), —2)%p0(2)) - 0 (13)
and therefore ® ~! is continuous on ®(U).

Finally, suppose ||, < 2 Then pu(z) = —2y%¢(2) has L _-norm less than L
and ®(u) = ¢. Hence,

[315

1
d(0, u)<%10g1 *

e

=1log 2.

Thus ®(U) contains the ball of radius 2

Theorem 4. The Teichmiiller space T(I) is a complex manifold modeled on the
Banach space B(I'). When B(T') is finite dimensional, the mapping ®: T(T') — B()
is a homeomorphism of T() onto a bounded open subset of B(I).

Remark. We wish to emphasize that the Bers embedding ® realizes T(I') as a
bounded open subset of the complex Banach space B(I') even in the infinite
dimensional cases. This fact is not proved in this book. The proof is in Ahlfors’s
book [Ah4] and depends on establishing geometric properties of quasicircles.

oA a1 O gt
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proof. For any point [¢] 1n (), let I'y = wuol“owu—l. The Banach spaces
B(Ty) and B(I) are isomorphic. If o < 1 this fact is obvious by looking at
the derivative of the mapping Dopeodi 1 giscussed in Theorem 2. On the
other hand, for any H in M([) we can express Wy in the form
W, = Wi Wy, °0" O W where I'ys1 = wukoFkO(wuk)’1 and each Iillo < i
The mappings ® and @, give local coordinates if we restrict them to Teichmilller
neighborhoods of Teichmiiller distance Jess than % log 2 from the origin in the
respective spaces T(I') and T(T,). By Theorem 2, the transition mappings are

holomorphic.

To prove the second part of the theorem, note that @ is one-to-one and
continuous from T(I') onto a subset of B (.U B () is finite dimensional, then ®
is one-to-one and continuous from T(T') onto 2 subset of B(I) and T(T') has a
manifold structure of the same dimension as B(I'). From the topological
theorem ot invariance of domain, @ is therefore a homeomorphism of T(I') onto

a domain in B(I).

57. THE INFINITESIMAL THEORY

From the theory of quasiconformal mapping, W (z)hasa Frechét derivative with
respect tO [ Let F(z) = lim, o (1 [t w(z) — z). This limit converges uniformly
for z in compact subsets of C and S

@4n“ W(0) dE dn

F@ =~ JJt- -2 14

H

We turn next to the function (ep)={w"s z}. Since w(z)=z+tF (z)—i—O(tZ)

uniformly on compact subsets of C, upon taking the Schwarzian derivative in
H* we get (W, 2} = tF"(z) + O(t) uniformly on subsets of H*. But

6 [ w)dEdn
) =——\\ T F 15
o-- 2] =
H ‘
From this integral formula, it follows that F"(Az)A’ (2 = F "(z) for A inT. The
calculation depends on the relation u(Az)A’(z) = pu(2)4'(@).
We use the notation ®[ul = hmt_,o(l/t)@(tu). From the above discussion,

dLule) = F" @)

Theorem 5. There exists a constant C such that \@(tu)(z)-t@[u}{z)\éfi y 2t
for |t] less than some positive sumber & and where 2 = x + iy. In other words, @ is
the derivative of @ with respect 10 the norm for the Banach space BT
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Proof. From Lemma 6 we know that [D(u)(z)y? <3 for t < lull o Now
O(tu)z)y*is a holomorphic function of t, and thus there is a bound on its secong:
derivative for |t| < § which depends only on 2 and the amount by which § is Jegg
than 1/||lu|l . The inequality of the theorem therefore follows.

Corollary. For any function @ in B(I') one has the reproducing Sformula

12 [ n2(0) d¢ dy
oz) = + —n—ffwa (16)
H

where z is in H* and { = ¢ + in.

Proof. We showed in Lemma 7 that D(—2y%¢(2)) = ¢(z) for ¢ in B(T") and
llells < 2. The corollary follows by letting y = —2)?¢(Z) in Theorem 5, dividing
by t and letting ¢ — 0.

Formula (16) can be proved directly. In fact, on making the change of
variable { — { it can be rewritten as

_2([1-0 e
o(z) = T f[ T (Z—Tf ¢ dy, (17)
H* g
or, equivalently,
3 _
®(z) =;jf P HOK (2, Oe(C) dE dn, (18)
IH]*

where p is the noneuclidean metric for 1 * and K(z, ) is the kernel function we
introduced in Section 4.4. Formula (18) was already verified in that section.

5.8. INFINITESIMALLY TRIVIAL BELTRAMI DIFFERENTIALS

We continue to assume C = R so that the mapping ® from () in B(I )'is
defined and one-to-one and, when restricted to a neighborhood of the origin,
maps onte an open set. We have the following Banach spaces:

_ K 1s a measurable function on H, }

Lo(T) = {# — .
u(Az)A'(z)=p(z)A'(z) and lullo<ocoforall Ain T

A = o ¢ is holomorphic in H, P(A(2)A'(z) = ¢(2)
"% forall Ain T, and Jo| = {1l dx dy < oo

N = { ueL (T and ij/r,ucpdxdy =O}:

| for all ¢ in 4(D)
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M(I) 18 the open unit ball of L,(@) and M) 18 the subset of Beltrami
coefficients which are equivalent to 0. By Section 592, pisin M H(D)ifitisin M)
and if w,(x) =X for all x in R Now M o(T) is catled the space of trivial Beltrami
coefficients and N(I) 1s called the space of ,inﬁnitesimally trivial Beltrami

differentials.
The following theorem says that the infinitesimally trivial Beltrami dif-

ferentials form the tangent space to M (I) at the origin.

Theorem 6. [ is an inﬁnitesimally trivial Beltrami differential if, and only if, there
exists @ holomorphic curve O of trivial Beltrami differentials for whic

6(2) = tu(z) + o(th uniformly in z.
Proof. Suppose such a curve exists. From Theorem 4 and Lemma 5 of
Section 4.5, We know that

.’
dxd
Re jj 1'\‘)}\2 * )’»

H/T HT

2
< j‘j .1‘—%"“%5 dx dy. (19)

Substituting ing, =tu+ O(t?), we see the right-hand term vanishes of second
order whereas the left-hand term is of first order. We obtain {§,; rhe dxdy =90
for all @ in A(T). Thus p is in N().

Conversely, suppose # is in N({I)- Consider the quadratic differential
o) = M A(OPNAQ) — z)*, where (€ H, zeH*, and the summation is OVer all

AT, (Thisis a Poincaré theta series.) Obviously,

AEY ([ dgdn _T -
o< | E\M@)fz)‘*\d‘””‘ e+

H/T H

By the hypothesis §Sur uQe) dédn = 0. Therefore,

_” (Cpfcl)“ dédn="0 for all z in H*

H

and we see that ®[u] = 0. Now let ¢'(2) = ®(1)(z) and let v,(2) = —2y2¢'(2). BY
Lemma 7, @) = ®(tp) and, since @: T() — B(T) is one-to-0nc, this means
ty ~ v, Moreover, by Theorem 3, 1@ ()Y < ct? and 50 [Ville < Ct*.

Now form W, = (wy)~ 1ow,. Note that o(t) 1s 2 trivial Beltrami differential
because ti ~ Vi Also, o(f) = (tn + N/ + t7i9), where 9 is the Beltrami coeffi-
cient of the inverse mapping to Wy, times a function of modulus constantly equal
to one. We conclude that 6; = tu + 0(t?) and 0:€ M)

Remark. This theorem is the basis of a pumber of important existence
theorems. We will use it to prove the existence part of Teichmiller’s theorem
and the Hamﬂton-Kmshkal necessary condition for extremality.
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5.9. TEICHMULLER SPACES OF F UCHSIAN GROUPS WITH
BOUNDARY

In Section 54 through 5.8, we assumed C = . This provided us with the very
convenient fact that u and v were Teichmiiller equivalent if, and only if
{W", 2} = {w", 2z} in the lower half plane. We now treat the case where C is a I-
invariant closed set containing the limit set of I" and C is a proper subset of |
Our objective is to show that the Teichmiiller space T(T, C) is a real analytic
manifold modeled on a Banach space and to obtain a theorem analogous to
Theorem 6 for trivial curves. This objective naturally leads us to consideration
of noneuclidean crystallographic groups which are Fuchsian groups to which
anticonformal isometries have been adjoined.

Since C is I'-invariant and closed, the complementary set Q = € — C is I~
invariant and open. Moreover, since C contains the limit set, I' acts dis-
continuously on Q. The Riemann surface Q/T has an anticonformal involution
induced by the conjugation J: L2 — Q given by j(z) = z.

Let T'" be the group generated by I" and j. Note that 't is a group of
isometries of Q in the noneuclidean metric for Q and a fundamental domain for
I' acting on H is also a fundamental domain for I'* acting on Q.

Let u be a Beltrami coefficient for T acting on H. We extend 4 to a Beltrami
coefficient i for I'* acting on Q by the formula

1) {,u(z) for z in the upper half plane,
iz =<7
u(@) for z in the lower half plane.

By definition, a Beltrami coefficient for a group which contains some
anticonformal as well as conformal transformations obeys the laws

: a4 d
@) w(Az) — = u(z) o4 when A is conformal, and
0z 0z
(20)

(i) pu(A(z) (‘Z—’;) = u(z) (%";) when 4 is anticonformal,

We leave to the reader the verification that the mapping u — ji establishes an
isometric isomorphism from the space M(T') of Beltrami coefficients for I acting
on H onto the space M(I" ) of Beltrami coefficients for I'* acting on Q.
Moreover, if w is a quasiconformal homeomorphism of H with Beltrami
coefficient y, then W given by win H and by w(z) in the lower half plane is a
quasiconformal homeomorphism of the extended complex plane with Beltrami
coefficient fi.

Let n: H — Q be the universal covering of Q. Then the groups I' and T'* of
isometries of Q lift to groups G and G* of isometries of H. In general, elements of
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G+ are either of the form

az+b
A =
2 cz+d
or of the form
az +b
Az) = —
@) cz+d’

where &, b, & and d are real numbers with ad — bc = 1. The Beltrami coefficients
for I'* acting on Q lift to Beltrami coefficients M(G™) for G* acting on H by the

formula

() = v /T @) 1)

It is obvious that the mapping 4 — n*(f) gives an isomorphism of M (I') onto
M(G™)

We recall the definition of the set M,(T, C) of trivial Beltrami coefficients for
the group I’ with respect to C. My, O) consists of all Beltrami coefficients of
quasiconformal self-mappings W of H for which

@) wod=A°wW forallAinF,and
- 22
(i) wlx)=Xx for all x in C. @2

Let My(G™) consist of Beltrami coefficients in M(G") of quasiconformal self-
mappings f of H for which flx)=x for all x in R. A quasiconformal self-
mapping f of H is called trivial for G* if its Beltrami coefficient is in M oG )

Lemma 9. The natural isometry () from M (I') onto M(G™) takes
M (T, C) onto My(G™). In other words, trivial mappings w for T relative to C

correspond uniquely to trivial mappings for G*.

Remark 1. The point of this lemma is that it replaces an equivalence relation
based on two functions being equal on some [-invariant closed set C by an
equivalence relation based on two functions being equal on all of R.

Remark 2. The Fuchsian group G may of may not be of the first kind.

Proof. It is permissible to assume C contains . The open set R — Cisa
countable union of open intervals [,. Any on¢ of these intervals, say I,,is a
noneuclidean goedesic 1n the domain £ and, therefore, each component of
n M) is a hyperbolic line in H.

Let w be 2 quasiconformal self-mapping of £ whose Beltrami coefficient,
when restricted to the upper half plane, is an element of Mo(I, € ). A lifting f of
& satisfies o f = WeT. If [, is one of the components of n~Y(I,), then

~

(f(I)) = wn(fy) =wI) =1 and, therefore, f(1) 18 also a component of
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7~ }(I,). The covering group G, for the covering 7 permutes the different liftingg
of I, and thus there is an element 4 of G, for which 4 o f(I,)=1I,. Since 4 ° fig
also a Iifting gf 7, by selecting the correct lifting, we may assume A4 is the identjty
and f(I,)=1,.

Pick a second open interval I, in R — C and a curve y lying in the upper hajf
plane which connects I, to I,. This curve lifts to a curve 7 which connects I to 5
hyperbolic line I, in H for which n(l,) = I,. By repeating this process for every
interval I, in R — C, we obtain a family of hyperbolic lines in H which bound 5
noneuclidean convex set & and the covering mapping 7 restricted to & is 3
homeomorphism of & onto H. Reflect & about I, and let o be the union of ®, its
reflection about [, and the common boundary line [;. Then o is a fundamenta]
domain for the covering group G, of the covering =. In @ the lifting 1 which
preserves the hyperbolic line I} is given by the formula

f = (mw)™t oo (nlw). (23)

The fact that Ao f = fo 4 for every A in the covering group G, implies that
formula (23) determines f everywhere in the upper half plane. Moreover, f must
preserve any component of any one of the sets =~ (I,), as well as the orientation
of any of these components. Thus the unique quasiconformal extension of fto
the real axis (which we also denote by f) fixes the endpoints of any of the liftings
I,

Any point p in R which is in the limit set for the covering group G, of the
covering = is an accumulation point of endpoints of the hyperbolic lines A(l,),
where A is in G, and k varies. In this case f(p) = p because the endpoints of the
hyperbolic lines A(I,) are held fixed by f. On the other hand, if pis not in the
limit set, then there is an interval & in R containing p such that z|& is a
homeomorphism from & onto an open interval « contained in C. In this case,
f(p) = p because of formula (23) and the fact that W(x) = x for all x in C.

Conversely, if f(p)=p for all p in R, then from formula (23) the same
argument shows that w(x) = x for all x in F The lemma follows.

The Teichmiiller space T(G*) is defined to be the M(G™) factored by the
equivalence relation induced by My(G™).

Theorem 7. Assume T is of the second kind and C is a closed, proper, [-invariant
subset of R containing the limit set of I'. Then the Teichmiiller space T(I', C) is

naturally isomorphic to T(G™).
Proof. We have already defined the natural isometric isomorphism from

M(I') onto M(G*). By Lemma 9 this mapping preserves the equivalence
relations for the two Teichmiiller spaces. Therefore, it induces an isomorphism.

To obtain the Bers embedding we form the space of quadratic differentials
B(G") for the group G*. An element i of B(G*) is a holomorphic function in the
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upper half plane for which

() Y (AE)A (z)* = Y(2) for conformal elements Aof G,
(24)

0AN? ——
(ii) ¥ (A(2) (—6—2‘) = s(z) for anticonformal elements Aof G, and

i) Il =sup W (z)4y?| is finite.

Given a Beltrami coefficient p in M (G*), satisfying (20), we let f* be a
pasiconformal homeomorphism of the sphere with Beltrami coefficient ident-
jcally equal to zero in the lower half plane and equal to p in the upper half plane.
It follows from the Cayley identity (see Section 54) that the Schwarzian

derivative

o (2 = {f"2

satisfies (i) of (24). It satisfies (iii) of (24) with |@*ll <6 because of the Nehari—
Kraus lemma (Lemma 6 of Sectien 5.4). To prove property (i) we introduce the
notation j(z) = 2 and S(f) = {/, z}, the Schwarzian derivative of f. Correspond-
ing to an anticonformal transformation 4 in G*, there is an anticonformal
transformation A" for which frod =4"° f* On applying the Schwarzian
derivative to both sides of the equation j° froAd =joAre f* and using the

Cayley identity, We obtain
S(o f*° 4) = S

Now rewrite jo f*° Aasjoftejeie A and take the Schwarzian derivative and

the complex conjugate. Since
(A _ <
SGef*d) (52— =50

and since joS(jef*° jeje A= S(f)c A, we obtain the required: identity. It
follows that ¢* is an clement of B(G™).

Since the equivalence relation which determines trivial elements of M (G™)
involves the equality frx) =x for all'x in R (see Lemma 3), the mapping

®*: M(G*) = B(G™)

given by @ (4) = {f*, z} induces 2 one-to-one mapping &+ from T(G") into
B(G™). Tt is not complex linear because the conditions (20, 11) and (24, 1) ar¢

ltiplication by real numbers. However, just as in the

invariant only under mu
case of Theorem 1, the image of &+ is contained in the ball of radius 6 and
because ®@T is the

contains the ball of radius 2. The same bounds apply
restriction of the holomorphic mapping @ M(G)— B(G)-
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Let A, C) be all holomorphic quadratic differentials ¢ defined on H such
that ,

() @(B2)B'(z)* = ¢(2) for all Bin T';
(i) @(x) is real if x is in ® — C; and
(i) o]l = HH/H(DI dxdy < 0.

The space of inﬁnitesimally_ trivial Beltrami differentials for I” relative to C is

Jf up =0  for all ¢ in AT, C)}.

H/T

NI, C) = {u inL_(T)

We obtain the following modification of Theorem 6.

Theorem 8. Let C be a I'-invariant closed set containing the limit set A of I and
contained in R. A Beltrami differential p is in N(T, C) if, and only if, there exists q
real analytic curve o, of trivial Beltrami coefficients in My(I', C) for which

6.(z) = tu(z) + O(t?) uniformly in z.

Proof. Because of Lemma 9 and Theorem 7 the proof is analogous to the
proof of Theorem 6.

Notes. The major parts of this chapter are due to Teichmiiller [T1, T2], Ahlfors
[Ah4], and Bers [Ber2, Ber3]. Alternative interpretations of the Schwarzian
derivative are given by Hawley and Schiffer [HS] and by Thurston [Th3]. The
interpretation of the imaginary part of Schwarzian derivative as a measurement
of the change of curvature appears as an exercise in Ahlfors’s book [Ah6].
Exercise 12 of this chapter gives an approach used by Bers and Royden [BerR]
to the lambda lemma of Mafi¢, Sad, and Sullivan [MafiSS].

A great deal of work has been done by Wolpert in describing the geometric
meaning of harmonic Beltrami differentials [Wo3, Wo4, Wo5]. One of his very
significant results is that with regard to motion along a path in Teichmiiller
space tangent to a harmonic Beltrami differential, the geodesic length functions
measured in the noneuclidean metric are convex [Wo5].

We have only briefly mentioned quasicircles and quasifuchsian groups in
Lemma 4, Theorem 1, and the remarks at the end of Section 5.4. Quasicircles
were characterized geometrically by Ahlfors [Ah4]. Gehring has written a
monograph entitled Characteristic Properties of Quasidisks [Ge3], and quasi-
circles and their generalizations are an active subject of research ([Ge2],
[GeO]).

We have omitted the important result of Ahlfors and Beurling [AhBeu]
which characterizes the homeomorphisms of the real axis which can arise as
boundary values of quasiconformal self-mappings of the upper half plane (see
[LehtV]).
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The infinitesimal theory worked out in Section 5.7 for Fuchsian groups also
leads to an infinitesimal theory for Teichmiiller spaces of Kleinian groups and to
Fichler cohomology (see, for example [Krl, K13, Kr4, Kr9, Kr10]}.

The result of Exercise 11 in this chapter appears in [Gall.

A way to introduce a local complex structure for Teichmiiller space arises
from the variational techniques of Schiffer and Spencer [ScSp]. See also [Ga2]
and [N2].

In Section 5.9 we considered discrete groups of conformal and anticonformal
;sometries of the noneuclidean plane. Such groups are called noneuclidean
crystallographic groups and have been studied by Singerman [Siz2], Bujalance
[Bu], Macbeath [Mac2], and others. '

The Ahlfors—Weill section was first presented in [AhW]. A generalization to
quasi-disks is used by Ahlfors in [Ah4] to prove arbitrary Teichmiller spaces
are bounded domains in certain Banach spaces. Earle and Nag [EN] use
conformally natural reflections to show the existence of a section equivariant
with respect of the action of a quasifuchsian group- The method of Earle and
Nag is based on the conformal extension operator of Douady and Earle [DE].
There is also a recent paper of Velling [V] which gives a threc-dimensional
interprctation of the Ahlfors—Weill extension.

EXERCISES

1. Show that formula (4) in Section 5.3 gives a metric.
2. Let R=1{z:1<l2d < A} and o be the empty set. Show that T(R, 0) 18
isometric to R, with BEuclidean metric.
3. Let R = C/L, where L is the lattice generated by z =2 +landz—z+1
(Here o must be the empty set since R has no boundary.) Show that T(R) is
‘isometric to the upper half plane with the noneuclidean metric.
4. let fbea holomorphic function in a domain D and define
F(w, z) = log —’—’f(w) —/0 .
w =z
/
Show that - f(z) 18 univalent in the domain D if, and only if,
U(w, 2) = (0*/0z0W)F (w, z) is regular in the domain D x D [HS].
5. Show that for the function U(z, w) defined in Exercise 4 that

—6lim U(w, z) = the Schwarzian derivative of f at z.

wz

6. Let f(z) be holomorphic in & neighborhood of the origin and suppose ')
is not zero. Let L be the best approximating M&bius transformation to f at
the origin. By this we mean that L™ to f(z) has & Taylor expansion of the

form
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L7Tof(z) =z + Byz® + Byz* + -+,

Prove that Bj is the Schwarzian derivative of f evaluated at z = 0,

7. (Ahlfors [Ah6]) Let z = z(z) be a plane curve of class C3. Show that the
rate of change of the curvature of z(¢) is |2'(t)] ~! multiplied by the imaginary
part of the Schwarzian derivative of z(t).

8. Let f(2) = ao(zo) + a1(z20)z — z¢) + ay(zo)(z — 2o)* + - - with a, # 0 and let

(a} — aza0)(z — zo) + Aoy
—ay(z — zo) + a;

L(z) =

Show that L(z) has the same 2-jet as f, that is,
Lzo) = ay, L'(zo) = a;, and L'(zo) = 2a,.

9. (Thurston). Let n, and 7, be independent solutions to n" +3on =0
normalized so that #,n) — #,75 = 1. Assume ¢ is holomorphic. We have
seen that {f, z} = ¢, where f = 7,15 . Show that the best approximating
Mébius transformation L in Exercise 8 can be rewritten in matrix form as

_ N1(zo)z — 2zo) + 11,(20)
Lz = M2(zoz — 2o) + M2(z0)

[This means that to obtain the Ahlfors—Weill extension in formula (8) you
evaluate the best approximating Mébius transformation at z, and apply it
to zy.]

10. Show that the homeomorphisms of R which fix the points 0 and 1 and which
extend to quasiconformal homeomorphisms of H form a group under
composition. :

11. Let w, be a quasiconformal extension of a homeomorphism of k in the
group described in the previoy)s exercise and let w* the normalized
quasiconformal homeomorphism of the sphere € with Beltrami coefficient u
in the upper half plane and zero in the lower half plane. Let C* = w*(R).

(a) Show that the oriented curve C* determines the group element A.
(b) Show that the complex conjugate of the oriented curve C* is the oriented
curve which determines /7.

12. [BeR] Let fi(1) be a family of »n holomorphic functions defined in
Al <1 and satisfying fi(4) is not equal to 0 or 1 for any k with
I<k<n and f(A)#f{4) whenever k+#j The vector ()=
©, 1, o, f,(2), fH(A),..., f.(A) is called a holomorphic motion of n + 3
points in the extended complex plane @;The conditions on the f; ensure
that no two of the n + 3 coordinates of f(4) coincide.
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Let Xn+1 be any point not equal to any of the coordinates of f(0). Show
that f extends to 2 holomorphic motion g4 ofn+4 points defined for
A< 1. By this we mean the first n + 3 components of g are ijdentical with

the components of f and gns1(0) = Xns1 and g, +1 Das image in C — {0,1}
and gur1) s never equal to any, fi(yfor 1< k < n and for Al <3

Hint: Let T be- the Teichmiller space Of ¢ - {0,1,0; £,(0),
£0), - 1.0} Observe that f determines 2 holomorphic function from
|4 < 1into T,. Use the Ahlfors—Weill section.

Remark. 1t is not known whether a holomorphic motion of 7 points
defined 1n |A| can be extended 10 @ holomorphic motion of n+ 1 points
peyond the disk 1A <%

e
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TEICHMULLER’S THEOREM

In this chapter we prove Teichmiiller’s theorem as well as the necessity and
sufficiency of the Hamilton—Krushkal condition for a quasiconformal mapping
to be extremal in its Teichmiiller class. We deduce the uniqueness part of
Teichmiiller’s theorem from the Reich—Strebel inequality (Theorem 3 of Section
2.4) and its consequence, Exercise 6 of Chapter 2. The Reich—Strebel inequality
(and, consequently, the result of Exercise 6 of Chapter 2) is generalized to the
setting of Fuchsian groups in Chapters 3 and 4.

We deduce the existence part of Teichmiiller’s theorem from the existence of
coordinates for Teichmiiller space and, in particular, the existence of a trivial
curve tangent to a given infinitesimally trivial line (Theorems 6 and 8 of Chapter
5).
In Section 6.6 we give a variational formula for the extremal value and in
Section 6.7 we prove that finite dimensional Teichmiiller spaces are cells.

Finally, in the last section of the chapter, we give Strebel’s frame mapping
condition. The frame mapping condition is a sufficient condition for determining
when a Teichmiiller equivalence class can be represented in the form klol/ o,
where ¢ is a holomorphic quadratic differential of finite norm.

6.1. THE HAMILTON-KRUSHKAL CONDITION: NECESSITY

Let I’ be a Fuchsian group acting on the upper half plane H and let be a
fundamental domain for T in H. Let C be a T-invariant closed subset of R with

AcCcR

Theorem 1. Ler pe M(I) and assume p is extremal in its class, that is,
I tllw < IVl for all v in M(I) for which w,(x) = w,(x) for all x in C. Let

ko =l ttll - Then
ko = sup H pp dx dy}, 03]

o

117
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where the supremum is taken over all ¢ in AL, C)  for  which
loll = ffoleoldxdy = 1.

Remark 1. Notice that this is an existence theorem because it implies the
existence of a sequence ¢, in A, R) with loall =1 such that
ko = lim,_ . {[ ue, dx dy.

Remark 2. Using normal family arguments for quasiconformal mappings it is
elementary to see that for any v in M(I'), there is an extremal element in its class,

Proof. Start by assuming k = ||u||,, > ko, where k, is the supremum in (1). By
the Hahn—Banach theorem and the Riesz representation theorem, there exists v
in M(I') such that [f,, ug dx dy = ({,, vep dx dy for all ¢ in A (T, C) and such that
[l o = ko, the supremum in (1). Hence y — v is infinitesmally trivial and, by
Theorems 6 and 8 of Chapter 5, there exists a curve of trivial Beltrami
differentials ¢, such that

lo, — tlu — W, = O 2

For brevity let ¢ = ¢, and form
we=w,°(w,)" L (3)
Clearly, 7 has the same Teichmiiller class as y. For sufficiently small ¢t > 0, we

will show that ||z||,, < |ull, and this contradicts the assumption that g is
extremal in its class. An application of the result of Exercise 16 of Chapter 1

yields

I

D) =15 W@

where 8 = p/p and p = (0/0z)w, . Clearly, (4) implies

|4 — 2Re ug + |o]?
1 —-2Reus + |ou)* ’

[row,[? =

which gives

1 —|pf?

Re ua + O(t2). (5
[ul

[tow,| = |ul -

Combining (5) with (2), we find that

1 1,12
feowyl =l —t = Requi — w5y + 06 ©)
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Recall that kg = ||v]l, < k = [ul»- Let

S, = {zeH||u@)| < (k + ko)/2},  and
S, = {zeH|(k + ko)/2 < |u(2)] < K}.

Clearly, S; U S, = H and (4) implies there exists 8, > 0and ¢, > 0 such that for
0<t<0y,

[tow,(z)] <k —cyt for zin §;. 7

For z in S, the coefficient of ¢ in (6) is bounded below by

1— k2 [[k+ky\2 1— k2 [k—ko\?
() ] () o

Therefore, (6) implies there exists d, > 0 and ¢, > 0 such that for 0 <t < d,,

Jrew,(2)] < k—cyt for z in S,. (8

Putting (7) and (8) together, we find that Izl < k for sufficiently small ¢ > 0,
and this proves the theorem.

6.2. TEICHMULLER’S THEOREM: EXISTENCE

We will prove a more general existence theorem in Section 6.8. In this section we
assume that T(T', C) is finite dimensional. Then AT, C) is finite dimensional
and there must be an element @ in A(T, C) with |lopl =1 for which the
supremum in (1) is achieved. This means that if p is extremal in its class, then

hitll = ” 1o dxdy < [l ” ool dx dy = | 1]l )

w

It is elementary to see that the only way (9) can hold with ool = 1 1is for
1(2) = | 1]l @0 (2)l/@ol2) almost everywhere. (10)

Theorem 2. Suppose T(T, C ) is a finite dimensional Teichmiiller space. Then any v
in M() is equivalent to a Beltrami differential of form klol/@, where
0< k< ||, <1 and ¢ is an element of AT, C) with |@] = 1.

Proof. Given a v in M(I'), we construct a y in the same class as v and which
has minimal norm. This is done by taking a sequence of quasiconformal
mappings w,, with u,€ M(T) such that w, (x) = w,(x) for all x in R and such
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that | 4, | approaches the extremal value in the Teichmiiller class of v. Then bya
normal families argument, w,, has a quasiconformal limit w, in the same class ag
wyand k <[ gl < 1 ttnll o for all n,s0 | ull, = k. We have already shown that
such an extremal element must be of the form (10) and, obviously, k < V] .

6.3. TEICHMULLER’S THEOREM: UNIQUENESS

We now bring in the Reich—Strebel inequality (Theorem 3 of Section 2.4), which
is generalized to the setting of Fuchsian groups in Chapters 3 and 4. Suppose 4,
and v are equivalent Beltrami differentials in M (F) thatis, w,(x) = w,(x) for all x
in a [-invariant closed subset C < R. Then w, " ow, 1s trivial, and, if we apply
the Reich—Strebel inequality to w, = w, 'ow,, we get (using the result of
Exercise 6 of Chapter 2)

1-— 2 6 2
< [ Al g,

where 0 = (1 — uop/lol(1 — po/lp)) ™" and o] = 1.

Suppose w, is a Teichmiiller mapping. By this we mean u = k|p|/¢ for
some ¢ in A(T,C) with J¢]|=1 and O0<k<1 Then =1 and
1 — po/lel*/l —|uf* = K™ ', where K =(1+ k)/(1 — k). Therefore, (11)

becomes

2
f 0 ‘il+vw/!¢l! dx dy (12)

vI?

for every v equivalent to k|p|/p, where |@| = 1. From (12) we see that
K<+ [vilo)/(1 — vl ) which implies k < ||v|,, and, therefore, k|p|/¢ has
minimal norm among all equivalent Beltrami differentials v. Moreover, if

k = |v].., then (12) yields

j o YO oy < i (13

2

and so (13) is an equality and this obviously implies that v = k|p|/¢ almost
everywhere. We have proved the following theorem.

Theorem 3 (Teichmiiller’s Uniqueness Theorem). Let I" be a Fuchsian group and
C an invariant closed subset with A = C = R. Suppose u=klol/p, where
0 <k <1 and ¢ is an element of norm 1 in AT, C). Then any v in M(T) for
which w,(x) = w,(x) for all x in C satisfies |v| , = k. Moreover,if ||v| ., = k, then
v = klol/@ almost everywhere.
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Corollary. Suppose ¢, and ¢, are nonzero elements of A(T, C) and 0 < k; < 1.
Suppose also that ky|,|/¢y is equivalent to ko|@,|/@,. Then ki =k, and ¢, isa
positive multiple of ¢,.

Proof. We apply Theorem 3 to both Beltrami differentials k;|¢,|/¢, and
k,|02l/®2. We get ky <k, and k, < k;. The equation [¢,]/@, = [@.l/¢, for
holomorphic functions ¢, and ¢, implies ¢, is a positive multiple of ¢,.

6.4. INEQUALITIES FOR FUNCTIONALS OF BELTRAMI
COEFFICIENTS

Following Reich and Strebel [ReiS2], we introduce three functionals:

I[ 4] = sup |Re ” - ftlputz dxdy' (14)
H[u] =sup|Re Jf ue dx dy (15
2
Il = supf 2L g ay, (16)
1—|ul

where in all three integrals the domain of integration is @, a fundamental
domain for I', and the supremum is over all ¢ in A(T, C) for which

Hfolpldxdy = 1.
If we let v be extremal in its class and equivalent to g, inequality (11) yields

J " ,l xw/lwllzd &, an

— |ul?

where K, = (1 + ko)/(1 — ko) and ky, is the extremal value of [|v],. If we expand
the numerator of the integrand in (17) and simplify, we find that

1 @ |l
— —1< —2R dxdy + 2 dxd
Ko e”l X th”’-

which leads to

r 2
e ko (Iul!@l

R dxdy < dxd

ejjl—lulz g 1+ko+L1—!mz re
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and consequently

k
ITpl < +°k0 +J 1l (18)

To obtain an inequality of opposite type, let us temporarily assume that
T(I', C) is a finite dimensional Teichmiiller space. Thus, by Teichmiiller’s
existence theorem, within the equivalence class of v there is a Beltrami
differential of the form y = klg|/¢p, where 0 < k < 1. Substituting this value of U
in (11), we find that

2 .
f LRI )

lul?

To extend this inequality to the case where I" is finitely generated and T(T, C)
is infinite dimensional, we take a sequence of closed I'-invariant subsets C, of C
such that ( JC, is dense in C and such that T(T, C,)is finite dimensional. Let v be
an element of M(I') and assume k, = |||, is extremal among all Beltrami
coefficients in M(I") for which w,(x) = w,(x) for all x in C. Let y, be extremal
among all Beltrami coefficients in M(I') for which w, (x) = w,(x) for all x in C,
and let k, = | u, |. Clearly k, < k, and k, increases to k, because w, approaches
a quasiconformal mapping which agrees with w, on C and which has
dilatation < lim k,,.

Let Ko = (1 + ko)/(l — ko) and K, = (1 + k,)/(1 — k,). Formula (19) applied
to T(T', C,) implies

2
K, < f o 2 0, 0

~ where |g,|l =1, ¢, is in AT, C,), and k, is unique with the property that
kol@al/@, ~ v in T(T, C,). Since AT, C,) < AT, C), we see that

1+ vg/lo|?
KO(‘s sup H 1¢;L}L-%’Iﬁ;ilde dy, (21)

w0

where the supremum is over ¢ in A(I', C) such that |¢| = 1.
Expanding out the numerator in (21) and simplifying, we get

Ko —1<2(I[v] +J[v])

ko <I[v] + J[v] (22)




6.5 THE HAMILTON-KRUSHEAL CONDITION: SUFFICIENCY 123

This inequality can casily be extended to the case of infinitely generated
Fuchsian groups by the same method we used for the proof of Theorem 4 of
Chapter 4. From inequalities (18) and (22), the following theorem is an easy

consequence.

Theorem 4. Let T be a Fuchsian group and C a closed T'-invariant set with
A< C< R Letvand pbe Beltrami coefficients in M(I') and k, the minimum value
of Mlw for which w,(x) = w,(x) for all x in C. Then

k
ITp] —olu] <1—:0—k§ < I[pl + oLul, (23)

where 8[pu] = J[u] — k5 /(1 — ko)

6.5. THE HAMILTON-KRUSHKAL CONDITION: SUFFICIENCY

A theorem proved by Reich and Strebel states that (1) is also a sufficient
condition for extremality. Before proving this, we give an analogous theorem for

the functional I[ u].

Theorem 5. A necessary and sufficient condition for pin M(I') to be extremal in its
class relative to the closed T-invariant set C is that

(24)

k
1 =
(Wl =137

where ||pll, = k and where the supremum for I [1] in (14) is over all ¢ in AS(F, )
with || = L.

Proof. Suppose (24) holds. Then the left side of (23) gives

ko ko k? k3
{—k* 1—kt 1—k 1—ki’

which implies k/(1 + k) < ko/(1 + ko) and hence k < k. Conversely, suppose p
is extremal. Then ||, = ko and the right side of (23) gives ko/(1 — kZ) < I{pul.
Since the opposite inequality is obvious, we see that 1[u] = ko/(1 — k).

To prove the sufficiency of Hamilton’s condition, we must relate I[x] to
H[u]. We need the following lemma.
Lemma 1. Suppose @, is a sequence for which ||, = 1 and

r

H Quudxdy —k

@
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as n— 0, where k = ||u| . Then @, converges uniformly to zero on any set
= {zew: u(z) < k' < k}.

e [fose e

w w—E' E’

The second integral on the right side is bounded above by k' |l@,|lg. Thus

I

Since the left side of this inequality approaches k as n — oo and since k' < k, we
see that g, ||z — 0.

<K N@ulle + kl@llo-g = (k' — Olg, s + k.

Lemma 2. Suppose ¢, is a sequence for which ||@,| = 1 and

H Pupdxdy — k

[

as n— oo, where k = ||| ,. Then

P il k
Hl—w HEoT e

Proof. Letk’ <kand E' = {zew||u| < k’}. We know that |¢, | — 0. Thus

” Pt — k
w—E’

Pkt k
1—k2 1 — k%

w—FE

and ~

Since [u| > k' on @ — E', this implies {f,_p @,/1 — [u]? is a sequence whose
cluster points are between k/1 — k’? and k/1 — k2. Since || @, |z — 0, this implies

that
H 1 *lulz
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is a sequence whose cluster points are also between k/(1 — k'?) and k/(1 — k?).
gince k' is an arbitrary number with 0 < k' <k, we see that

. @l k
1 dx dy = .
ﬁiﬂuw X =TT

w

Theorem 6 (Hamilton’s Condition: Sufficiency). Suppose u is a Beltrami coeffi-
cient in M(T') and H[ ] = k. Then p is extremal. That is, any other vin M(I) for
which w,(x) = w,(x) for all x in C satisfies |Vl = 1l o-

Proof. Lemma 2 implies that I[p] = k/1 — k2. Thus Theorem 5 gives the
result.

Remark. We have already proved that this condition is necessary in Section
6.1.

6.6. VARIATION OF THE EXTREMAL VALUE

Inequality (23) in Theorem 4 is fundamental in consideration of the infinitesimal
form of Teichmiiller’s metric.

Theorem 7. Let p be a Beltrami differential for T (so tu is in M(I) for
t < 1/)ull.). Let ko(t) be the minimum value of ||v|,, where v is a Beltrami
coefficient equivalent to ty. Then for t > 0 and t approaching 0,

ko(t) =t sup|Re Jf U dx dyl + 0% (25)

(]

where the supremum is over all ¢ in A(T, C) for which |o| = 1.
g ,

Proof. We replace u by tu in inequality (23). Clearly I [ty] differs from H[tu]
by a term of order ¢. The same statement applies to the difference between k()
and ko(t)/1 — ko(£)2. Finally, the term 6[tu] is of order t? and (25) follows.

6.7. FINITE DIMENSIONAL TEICHMULLER SPACES ARE CELLS

We call a topological space a cell if it is homeomorphic to R" for some positive

integer n.
Let T(I', C) be a Teichmiiller space for which the space of holomorphic

quadratic differentials A,(I", C) is finite dimensional. Let B be the interior of the
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unit ball in 4T, C) and let M(I') be the Beltrami coefficients for I' (with L.-
norm less than one). Consider the sequence of mappings

B— M(D)—2 1T, ©), (26)

where @ is the mapping which assigns a Beltrami coefficient to its Teichmiiller
class and ¥ is given by ¥(¢) = ||¢|| |@(2)|/¢(z) when ¢ is not identically zero and

Y(0) =

Theorem 8. The mapping ® ¥ is a homeomorphism and, therefore, any finite
dimensional Teichmiiller space is a cell of dimension equal to the dimension of
AL, C).

Proof. The existence part of Teichmiiller’s theorem tells us that ®o ¥ is a
. surjection. The uniqueness part tells us that ® o ¥ is one-to-one. To show that
® -'¥ is continuous assume that ¢, is in B and ¢, — @,. If ¢, is identically zero,
the continuity is obvious and, if ¢, is not zero, then the Beltrami coefficients
(@) = @, || lo.(2)l/@,(z) converge in the bounded pointwise sense to
#o(2) = 0ol loo(2)l/@o(z). Then from the convergence principle (Lemma 5 of
Section 1.8) the quasiconformal mappings w,, converge uniformly on compact
sets to w,,. The mapping w,, gives a translation isometry of the Teichmiiller
space T(I', C) onto T(L',,, C,,), where T, =w, oTew, ! and C,, =w, (C).
This isometry is obtained by composition on the right with (w,,)”" and it maps
the point [1,] in T(I', C) to the point [0] in T(T',,, C,,). Note that w, ow,*
converges uniformly on compact sets to the identity. Because of finite dimen-
sionality and the Ahlfors—Weill coordinates (Lemma 7 of Section 5.4) this
implies the Teichmiiller class of w, ow,! converges to zero in T(T,, C,,)-
Hence the class of u, converges to the class of y, in T(T, C).

Thus we have a continuous one-to-one mapping from the unit ball B onto a
finite dimensional manifold. By invariance of domain the mapping must be a

homeomorphism.
RN

6.8. STREBEL’S FRAME MAPPING CONDITION

In this section, for the sake of simplicity, we treat only the case where I is a
torsion free Fuchsian group action on H and R is the Riemann surface H/I". We
will consider the Teichmiiller space T(R, o) of the Riemann surface R where ¢ is
the entire border of R.

In order to state Strebel’s frame mapping condition, we need to define the
boundary dilatation of the mapping f from R into f(R), which we will denote by
H(f). For every compact set S contained in R we let K(R — S, f) be the maximal
dilatation of f on R minus S. If R is compact, then S can equal R and, in that
case, we let K(R ~ S, f) = 1. We also let K (R — S, f) be the infimum of ail the
numbers K(R — S, f;), where f; is any quasiconformal mapping in the same
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equivalence class as f. Obviously, the numbers K¢(R — S, f) decrease as the set
s increases. The boundary dilatation H (f) of f is defined to be the direct limit as
< increases to R of the numbers KR — S, f). Note that if R is compact or
compact except for a finite number of punctures then H(w)=1 for every
quasiconformal mapping f. The following theorem is due to Strebel; he states
the theorem for the unit disk and applies it to plane domains.

Theorem 9 (The Frame Mapping Condition [St2]). Supposefisa quasiconformal
mapping from a Riemann surface R to a Riemann surface f(R). Suppose
H(f) < Ko(f). Then the Teichmiiller equivalence class of f is represented by a
quasiconformal mapping f, whose Beltrami coefficient has the form

ol
@

where k is a number between 0 and 1 and @ is an integrable, holomorphic, quadratic
differential on R. Moreover, k and ¢ (up to multiplication by a positive number) are -
uniquely determined by the Teichmiiller equivalence class of f, and klol/o is the
Beltrami coefficient of the unique extremal representative of the Teichmiiller
equivalence class of f.

Proof. We let f, and f; be equivalent mappings defined on R with Beltrami

coefficients p, and p,. Assume that [o] = [[xlo@)|dxdy = 1. Then it is
convenient to rewrite inequality (11) in the following form.

1 = k@@ o @I
ts ” @1 1 aP

R

1+ (V1/V0)#o°‘§0(2)/|§0(z)”2
dx dy. 27
(EmER xdy @)

where

L _(L—hoo/lo)
(1 — moo/leD)

and v, and v, are, respectively, the Beltrami coefficients of the mappings (f;)~*
and (f,)”!. In this inequality, it is important to note that |[v,{l, = el and
that po/v, and o are measurable functions whose absolute value is almost
everywhere equal to 1.

Assume f, is an extremal quasiconformal mapping in the class of f with
Beltrami coefficient y, such that Ko(f) = (1 + lizoll o)1 — ltollo)-

The first step in the proof is to show that the hypothesis H{f} < Kq(f)
implies the Beltrami coefficient y, of an extremal representative of the class of f
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cannot have a degenerating Hamilton sequence. A sequence ¢, is a Hamiltop
sequence for y, if |@, | = 1 and if

Re f f @u(2)io(z) dx dy converges to o]l (28)
jo.

The sequence g, is degenerating if, in addition, it converges to 0 uniformly on
compact subsets of R.

First notice that if R is compact, there cannot be any degenerating Hamilton
sequence, because normal convergence of the sequence ¢, would imply uniform
convergence. Thus, the assertion that Ho can have no degenerating Hamilton
sequence is interesting only when R is noncompact.

If H(f,) < Ko(fo) = K, then there exists a quasiconformal mapping f;
equivalent to f, which has dilatation H, off of a compact subset S of R, where
H,; < K, (f; is called a frame mapping for f,). Moreover, the maximal dilatation
of f; on the whole surface R is bounded by some constant K 1 (K is possibly
much larger than K,). Then inequality (27) yields :

: 1— 2
1<K,K, U lqo,,ldxderHlj | 1”°T;/1‘f"" dx dy. (29)
- 0
S

R-5S
If we assume ¢, is a degenerating Hamilton sequence, then the first term on the

right side of (29) approaches zero as n approaches infinity. Let ky = ||, and
Ko =1+ ko)/(1 — ko). Using Lemma 1 and Lemma 2, we see that

. “‘0[2 k% .
1 = 30
i [ 50 = 5 =0
R a
and —
. ®nllo ko
1 ——dxdy = ——— . 31
ni’i‘oﬁl—morz XY =TT GY
R

On the other hand, from (28), (30) and (31), one can show that the second integral
on the right side of (29) approaches K !. Putting this result together with the
fact that the first integral on the right side of (29) approaches zero, we see that
1 < H,Kq ", which contradicts the hypothesis that H, < K.

The second step in the proof is to show that a Hamilton sequence ¢, for u,
must converge in norm to a quadratic differential ¢ with norm equal to 1.
Obviously, the sequence ¢, with ||@,| = 1, which in local coordinates is a
normal family of holomorphic functions, must have a subsequence which
converges to a holomorphic quadratic differential ¢ with ||| < 1. Without
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changing notation, we denote the convergent subsequence by the same symbol
@,- We have just shown that the norm of ¢ cannot be zero because po cannot
have a degenerating Hamilton sequence. If ||| were strictly less than 1, then we
could construct another Hamilton sequence &, = (0, — o) (@. — ) which
would be degenerating. Since p, cannot have a degenerating Hamilton se-
quence, we conclude that |¢| = 1. On the other hand, there is the obvious

inequality
j 19, — @l < ll@.ll — el +2 ” 1<pl+2” o, — @l (32)

R R-S S

Since the norms of @, and ¢ are both equal to 1, this inequality implies that ¢,

converges to ¢ in norm.
From Theorem 1 we know that a Hamilton sequence exists. By the preceding

arguments, such a sequence must converge in norm to a ¢ with |o] = 1.
Therefore, on passing to the limit in (28), we obtain

” opodxdy = |Hollo = ko With JJ lpldx dy = 1. (33)
Q Q

This is possible only if so = Kol@l/@. Now, let p; be any other extremal Beltrami
coefficient whose Teichmiiller equivalence class is the same as that of pug.
Substituting o = kolol/@ into inequality (27), we obtain -

2
1+ 2k,

B
Ko < JJ || -ﬁr dx dy. (34)

Since p, is also extremal, we have ’ml lo = Villo = ko- Furthermore, since v, 18
the Beltrami coefficient of the mapping inverse to f,, the absolute value of vy is
constantly equal to k. Thus the right-hand side of (34) must be less than or
equal to K. The only way this can happen is for v, to be identically equal to vg,
which implies that g, is identically equal to o, and completes the proof of the

theorem.

Notes. Much of this chapter follows closely arguments given by Reich and
Strebel in [ReiS1] and [ReiS2]. The proof of the necessity of the Hamilton—
Krushkal condition is due to Hamilton [H] and, independently, to Krushkal
[Krul]. Bers adapted the same argument to the setting of Kleinian groups
[Ber7]. Teichmiiller’s existence theorem can also be proved by first obtaining
global coordinates for Teichmiiller space and then applying the uniqueness
theorem and invariance of domain. This is done by Bers in [Ber2].
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The sufficiency of the Hamilton—Krushkal condition was first proved by
Reich and Strebel [ReiS2]. In the same paper they gave the infinitesimal formulg
in Theorem 7.

There are many papers by Reich and Strebel on the subject of whether and
when a given Teichmiiller class contains nonuniquely extremal representatives,
We refer to only one of them [Rei3].

Section 6.7 contains the important result that finite dimensional Teichmiiller
spaces are contractible (in fact, homeomorphic to R"). The proof we give is quite
similar to the one given by Bers in [Ber2]. However, it differs from Bers’s proof
in an essential way because it does not depend on the introduction of other
coordinates for Teichmiiller space. Bers uses coordinates coming from gen-
erators for the Fuchsian group, the so-called Fenchel—-Nielsen coordinates. Our
proof avoids the necessity for these coordinates because we already know
Teichmiiller’s existence theorem. Bers’s method of obtaining Teichmiiller’s
existence theorem is via the Fenchel-Nielsen coordinates [FenN] combined
with invariance of domain and the Teichmiiller uniqueness theorem.

The fact that infinite dimensional Teichmiiller spaces are contractible has
been proved by Tukia [Tu2]. It is also a consequence of results in a paper by
Douady and Earle [DE]. Putting Douady and Earle [DE] together with results
in a paper by Earle and Eells [EE2], we know that the space of trivial Beltrami
coefficients M) is contractible and, in particular, connected. Thus, the
equivalence relation of homotopy which we have used to define equivalent
Beltrami differentials may be replaced by isotopy through quasiconformal
mappings. This fact is also a consequence of results in a paper by Reich [Reil]
and a paper of Earle and McMullen [EM]. The ideas developed in [EE2] lead
to results about the diffeomorphism group of a Riemann surface (see [EE1]).

There is a notion of extremal mappings whose Beltrami coefficients have
support on a fixed subset and also a theorem analagous to the necessity and
sufficiency of the Hamilton—Krushkal condition. This question has been studied
by Gardiner [Ga4], Fehlmann and-Sakan [Feh, Sa, FehS].

The main ideas for Section 6.8 on Strebel’s frame mapping condition come
from [St2]. Here the condition is generalized to the setting of Riemann surfaces.
The version of the main inequality given in formula (27) of Section 6.8 first
appears in a paper by Reich [Rei2].

A formula for the variation of Teichmiiller’s metric can be derived from
various forms of the main inequality (17), (21) and (27) (see [Ga3]).

EXERCISES

1. Let Q be a plane domain bounded by smooth curves and suppose the
Euclidean area of Q is finite. Let fy be the affine map: fi(z) = Kx + iy. We
call fy extremal if all other quasiconformal mappings from Q to f,(Q) which

agree with fy on 6Q and which are homotopic to f; by a homotopy with the
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same boundary values as fg have dilatation > K. Show that fx is uniquely

extremal.
2. Let Q be a domain of the same type as in the previous exercise but not

necessarily of finite area. Let
H w(Z)dxdyl,

Q

H(Q) = sup

where the supremum is taken over all functions ¢ which are holomorphic in
Q and for which [{ol@(2)l dx dy = 1. Show that fy is extremal if and only if

HQ) =1

3. [Reich and Strebel] In the same setting as the previous exercise, let K* be the

minimal dilation of a mapping in the same Teichmiiller class as fx- Show that
H(Q) <1 — 8 implies K* < K — (3/2)(K — 1/K) and H(Q) > 1 — 0 implies

K
K*;————(—s——————.
1+-(K*-1
+ 5K~ 1)

Conclude that

* _ 1
HEQ) =1 .
(€) Jim 25

4. Let Q be the complex plane with n points removed, n finite, and > 3. Show

that f, with K > 1 cannot be extremal for the domain Q.
5. Show that any finite dimensional normed space is homeomorphic to the

interior of its unit ball.
—
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TEICHMULLER’S AND
KOBAYASHI’S METRICS

We recall the definition of Teichmiiller’s metric given in Section 5.3. For two
elements [ u] and [v] of T(I", C),

d(Lpd, [v]) = inf 3 log K (w, o w, ") M

where the infimum is over all u and v in the equivalence classes [u] and [v],
respectively. Normally we will write d(u, v) instead of the more cumbersome
d([ul, [v]), if no confusion is possible. In particular,

1. 14k
=1
cf(ﬂ,u) e

where ky is the minimal value of ||u||,, where u ranges over a given Teichmiiller

- class.

Let ko = ko(t) be a differentiable function of t with k,(0) = 0. Then clearly

(d/de) k()] =0 = (d/dt)s log(l + ko())/(1 — ko(t))l,—o. Therefore, Theorem 7 of
the previous chapter tells us that d(0, tu) has a derivative from the rightatt =0

and, for small ¢ > 0,
Re J‘J oudxdy

where the supremum is over ¢ in A (T, C) for which le) = 1.

Formula (2) is the infinitesimal form of Teichmiiller’s metric at the origin. It
can be used to find the infinitesimal form at every point in Teichmiiller space. In
Section 7.1 we give the formula for the infinitesimal form and show that it is a

133

d(0, tu) = t sup + 0(t?), (2)
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completes the proof of Royden’s theorem that Teichmiiller’s metric equag
Kobayashi’s metric for finite dimensional spaces [Ko]. The argument uses the
infinitesimal form of the metric and a Curvature argument based on a lemma of

Ahlfors [Ah6]. _
Section 7.5 extends Royden’s theorem to infinite dimensiona] spaces.

7.1. THE INFINITESIMAL. METRIC ON THE TANGENT BUNDLE
TO T(T, )

L
ASCcR Let w be a_quasiconformal mapping of C to C with Beltrami
coefficient u such that W(z‘) =w(Z) and wo 4oy~1 jg a Mobius transformation
foreach 4inT. Let Ly =welow 1and et Cu = w(C). We have seen in Section
5.5 that w induces an isometric mapping between Teichmiiller spaces. Here, we
use the notation

a: (T, C)— nr, c,, (3)

where by definition, a[]) is the TFeichmiiller equivalence class of Woow, L
Notice that «([1]) = [0] and so

AL, [v]) = (o7, «([v])). )
We now will use (4) to calculate the infinitesimal length F([ ul,v) of a tangent

vector v at an arbitrary point [ #]. By definition F g the derivative from the right
of the function Al Tp + tv]) with respect to ¢ at t =0. On replacing v by

A, p + tv) = d(0, ey + tv))

Re ff toS(v) du dy

]

= sup + 0(t?),

where § is the derivative at pofaand u+ip=y= Wy, and the supremum is
over all ¢ in AT w C) with ||| = 1, Also, @, is a fundamental domain for I "

. ;,‘,mus‘szd

et reg . ey
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By the result of Exercise 16 of Chapter 1, one finds that

— T‘“.i 0w~ 1
a(T)_l:l"ﬁT 9:| W[.L H

where 0=p/p and p=(9/0z)w,. Letting T=p+1tv, We find

S(v) = V(1 — |u*)0) and so
!
Re ” o) [ﬂl et 5} dudv

where the supremum is over all ¢ in A(T',, C,) with o =1 and the integral is
over w, = w(w).

F([ul, v) = sup ; ©)

Lemma 1. The function F in (5) from the tangent bundle of T(L, C) to R is
continuous.
Proof. Since the translation mapping is an isometry, it suffices to show F is

continuous at u = 0. In other words, we must show [F(u, v;) — F(0,v)| < & when
lplle <6 and [[v—villo < 5. Since F is a seminorm in the variable v, it is

enough to prove the same inequality with v, replaced by v and for ||v]l, < 1. In
fact, it suffices to prove that for every ¢ > 0 there is a 6 > 0 for which

F(O,v) < F(i, v) + & ©)

whenever | ul, < & and [v]l,, < 1. For, if we show this, then by applying the
translation mapping « and letting o, denote the derivative of « at i, we find that

F(ug, %) < FO, 0,(0) + &,

where u, is the Beltrami coefficient of the inverse mapping to w,. Obviously
o = i1l - Moreover, by differentiating the formula for «(z), we obtain

/ — ____.v____.-l oW,
o, (v) = [1 e 9] w, i
1
o) = [v(l — ) E]"Wu_l-

1t is clear that the L-norm of the difference between the two quantities o, (v)
and ag(v) is bounded by a constant times ||| vl for small [jullo,. Thus, for
lull, < 6, from (6) we obtain the inequality F(uy, v) < F(0,v) + Ze.

Hence, we have reduced the lemma to proving (6). To accomplish this, we
must show that for every @ in A,(T, C) with [|@] = 1, there is Y in AT, Cu)
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with [|¥| < 1 such that

Reff@)dxdy fj dudv—i—e

]

for all u with ||u||, sufficiently small and all v with le < 1.

We construct the quadratic differential y by using theta series. Let ®, be the
theta series operator for the group I',. Thus, ®, = O is the theta series operator
for I'. By the surjectivity of the theta series operator (Theorem 3 in Section 4. 3)
there is a function G in A((C) such that ®G = ¢. Note that

ff v dx dy = ff Gv dx dy. (7
) H

Our candidate for ¢ is = ©,G/|©,G||. Note that ||| < 1 and

Jf ®, )[ SR —] w, ! dudv= ff Gw(@)w(z)v(z) dx dy.  (8)
H

It suffices to show that for 4l sufficiently small and for [|v],, <1 that the
difference between (7) and (8) is arbitrarily small and that 1©,G|| converges to
[®G||. Moreover, it suffices to show the inequalities for any partlcular
representative of the Teichmiiller class of u. Since we may take |u], < 4, weare
permitted to choose yu of the particular form which comes from the Ahlfors—
Weill section (Lemma 7 of Section’5.4). Hence we may assume that w, converges
uniformly to 1 on compact subsets of H and w(z) converges uniformly to z on
compact subsets of H. Let G(z) = G(w(z))w2(z), where w = w,. Itis easy to see
that G(z) converges uniformly on compact subsets of H to G and ||G|| - |G|,
where the norm is the L,-integral of the absolute value over the upper half plane.
For any compact subset D of H we have the elementary inequality

jj G — Gl < (IG] - IGI) + 2 ﬂ IGI+2I G -Gl ©)
H H-D D

Putting these observations together we see that (7) and (8) are arbitrarily close
for sufficiently small |ul| .

Clearly, to complete the proof of the lemma, it suffices to prove the following

lemma.

Lemma 2. Let G be in A(C). Then [{, |8,G| approaches {{,|9G| as |ull,
approaches zero.
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Proof. Let A} be an enumeration of I', and ©,,, be the truncation of ®, to the
first n elements of T',. Let ®, be the corresponding finite sum for I'. Clearly
[ |®, G| approaches [f,,[©,G] as [|l1]o — 0. In order to pass to the sum over
all elements of I', and T', we will show that for any & > 0, there exists ng and
§ > 0 such that, for |ull, <,

f f %o GUALDAL (P < & (10)

3
"

To simplify notation, let H be replaced by the unit disk A and assume the
groups 'and I, act on A. Pick r < 1sothat {{, ;<1 |Gl <é& and pick n, so that
D = | )i A"(w) contains the disk of radius (r + 1)/2. Now w, = w,(®) and,
hence, w,(D) = Uz Aj(w,). Since w, converges uniformly in A to the identity as
|ule converges to zero, Wwe Sc€ that for sufficiently small |p]lw,
w,(D) 2 {z: ]2l < r}. This implies (10) is bounded by [, <z <1 |Gl, which is less
than &. This completes the proofs of Lemmas 1 and 2.

73. INTEGRATION OF THE INFINITESIMAL METRIC

Let d be the integrated form of (7). This means d(p, q) = inf L(y), where y is a
piecewise smooth path joining p to g and L{y) = {8 Fiy(), y'(t)) dt and y(0) = p,
y(t,) = ¢. This integral is well defined because F is a continuous function on the
tangent bundle. It is an elementary fact that if F is the differentiated form of d

* and if F is continuous, then d < d.

Theorem 1. For any Teichmiiller space T(T, C), d =d, that is, Teichmiiller’s
metric is the integral of its differentiated form. :

By the remarks preceding the theorem, what remains to be shown is that
J<d Assume |pu|o=1 and kp s extremal so  d(0,[kul) =
Llog[(1 + k)1 — k)] Let y(®)= [t], 0<t<k We wil show that
L(y) = d(0, [kp]) and it will follow that d < d. Since y'(f) = y, we must calculate
F([tp], ). We know that w,, and (wy,) ! are both extremal. The Beltrami
coefficient of (w,,) " is —tuf ™", where 6 = p/p and p = (8/0z)w,,. Since —tuf~!
is extremal, Theorem 5 of Section 6.5 tells us that

tp 1 t
up e ﬂ@r-w'éd” = )

w
»

where the supremum is over all ¢ in AT, C,) with ku lp| = 1. From (11) and
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(5), one sees that F([tu], ) = 1/1 — t2), and, therefore,

x odt 1 14k
Fo@,y(@)dt = | —— =~log——.
L 0@, v (®) Ll_tz 5log—

7.3. THE KOBAYASHI METRIC

Let M be any complex manifold modeled on a Banach space. The Kobayashj
metric dg for M is defined in a way which depends on the family & of
holomorphic functions from the open unit disk A into M. Let P and Q be points
in M and let d,(P, Q) = log[(1 + r)/(1 — r)], where r is the infimum of the
nonnegative numbers s for which there exists a holomorphic function f in %
with f(0) = P and f(s) = Q. Obviously d(P, Q) = d,(Q, P) since for any f in &

we can consider fohin &, where h(z) = —(z — s)/(1 — sz).
Let »
d,(P, Q) =inf } d\(P; ;, P) (12)
i=1
where the infimum is taken over all points P,, ..., P,in M for which P, = P and

P, = Q. Obviously, d,,, < d, for all n.
Definition. The Kobayashi (pseudo)metric dg (P, Q) = lim,_, , d,(P, Q).

Aslong as M is connected, d is finite Vah\{ed. Obviously dy is symmetric since d,
is. Now dy satisfies the triangle inequality since d,,(P, R) < d,(P, Q) + d,(R, Q).
It is not always the case that dy is nondegenerate; for example, it is obvious that
if M = C, then dg = 0.

Observe that from (12), if d, satisfies the triangle inequality, then d, = d,, for
all n and so d, = dg. Ultimately, we will show that for all Teichmiiller spaces
with complex structure which are modeled on a Fuchsian group, d, = dy = d,
where d; is Teichmiiller’s metric.

Lemma 3. Let T(I', C) be a Teichmiiller space which has complex structure. Let dy,
and dr be Kobayashi’s and Teichmiiller’s metrics, respectively. Then dy < dy.

Proof. The assumption that T(I', C) has complex structure is tant‘é ount to
saying that C = R. This hypothesis is required because there is no Kobayashi
metric unless the space has complex structure. Let [u] € T(T, ¢) and let u be
extremal in its class and ||u||,, = k. We have already observed that every class
possesses at least one extremal representative. Then by definition (1),
dr(0, 1) = $log[(1 + k)/(1 — k)]. For such a y, let f(z) = [zu/k]. Clearly, f is a
holomorphic function from A into Teichmiiller space, f(0) = 0 and f(k) = [4].
Hence, dg(0, p) <dy(0, 1) <dp(0, ). Now the translation mapping
e([w.]) = [w,ow, '] is holomorphic, so obviously it is an isomelry in
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Kobayashi’s metric. We already know that it is an isometry in Teichmiiller’s
metric. Therefore, the inequality dg(p,q) < di(p,q) < dr(p,9) holds for an
arbitrary pair of points p and ¢ in Teichmiiller space.

The remainder of this chapter is devoted to showing the reverse inequality,
dr < d, for arbitrary Teichmiiller spaces with complex structure.

7.4. THE FINITE DIMENSIONAL CASE

The infinitesimal metric F defined by (5) is obviously dual to the infinitesimal
cometric G defined on the cotangent bundle to Teichmiiller space, where G is

given by the formula

lp(w) dudv (13)

G([u],cp)=f T

[
u

where p is in M(D), ¢ is in A(T',,C,), and w=u + iv =w,. We have seen in
Lemma 1 that the infinitesimal metric F is continuous. We have a much stronger
result for the finite dimensional case, namely, F is of class C! on the tangent
bundle except at the zero section. This statement is a consequence of the
following lemma. '

Lemma 4. Assume A(T, C) is a finite dimensional vector space. Then the cometric
G defined in (13) is C* except where ¢ = 0.

. - :

We postpone the proof of this lemma uintil Section 9.3. We note that since the
dual of a strictly convex C* cometricisa C ! metric (a fact which is also proved in
Chapter 9), this lemma implies F is CL ~

For the remainder of thism;v—\;(: assume the Teichmiiller space T is a
finite dimensional complex manifold. Therefore, by Chapter 5, it has local
coordinates in C" and, following Royden [Ro], we use coordinate notation. An
element of the tangent bundle to 7 is a pair (x; £), where x is in the base space
and ¢ is a tangént vector. Wo will write x = (x;, x;), where 2 <i < n, and,
similarly, & = (&4, §;), where 2 <j <n. Always, i and j will be integers ranging
from 2 to n.

Our objective is to write the Taylor series for F up to first order and then
adjust the coordinates (x; &) so that F has a special form. First of all, we pick the
first coordinate x; so that

i
F(x;, 0; 1, O)zm- (14)
i

i

This is achieved by letting x, correspond to a Beltrami differential of the form
x,|¢l|/@, where ¢ is a holomorphic quadratic differential of norm 1. Then
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(0/0x1)(x11l/p) = |l/p and to find F(x,, 0; 1, 0) we substitute 4 = x,|¢|/p and
v=|pl|/@ in formula (5). An elementary calculation [using formula 4) of

Chapter 6] for p = (9/0z)w,(z) yields

_ Ple@ _ Wo(w)
P o@  Yow

where Y, is the quadratic differential which corresponds to the extremal map in
the class of (w,)~'. Hence, formula (5) simplifies to

oWl .. dy,

Yo
Yo(w)

’ 1
F(Xl, O, 1, 0) =1—:—Wsup Re J\J\ {[/(VV)
1

where the integral is over a fundamental domain for I', = w,°ew, * and the
supremum is over all holomorphic quadratic differentials y for I' L With [[y/]] = 1.
This supremum is 1 and we obtain (14).

The Taylor expansion for F(x,, x;; 1, ;) is

F(xy, 0; 1, &) + Re 3 Ci(xy, &))x; + o(|x;)). (15)
Expanding F(x,, 0; 1, &;) relative to the variable ¢ ;» we get

F(xy, 0,1, &) = F(xy, 0; 1, 0) + Re 3, Bj(x,)&; + o(I€;)). (16)

~~

Here B; and C; are continuous functions and the error estimates o(|x;|) and o(|¢;|)
hold uniformly in a neighborhood of the origin in the variables x, and ¢; for
formula (15) and in the variable x, for formula (16). Now, make the change of

coordinates
Xy =y —Re Z Bi(O)yia

Xi = Yo (17)
which on the fibers of the tangent bundle yields

¢y =n—Re Z B;(0)n;,

‘fj =¥;- (18)

Notice that (14) is preserved for the (y, ) coordinates and 0F/dn;(x,,0; &y, &)
= (0F/0¢,(—Re By0)) + 0F/3¢;.  But  0F/0&(x;,0;1,0) = Re Bj(x,) and
OF[0&(x1,0;&,,0) = 1/1 — |x4]* Hence, dF/dn;(0, 0; 1, 0) = 0. This means that
for the coordinates (y, #) the functions B,(y,) satisfy B,(0) = 0.

Thus, we can assume (16) holds for coordinates (x, £) with B,(0) = 0. We now
make a second change of coordinates which does not alter these properties and
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for which C;(0,0) = 0. Let

X, =y, — Re Z Ci(0,0)y; y1,

Xi = Vi (19)
which on the fibers of the tangent bundle yields
& =n;—Re Y, C;0,0)y;1; —Re ), C(0, 00, ys,
(20)

éj:"'lj-

Again, notice that when x; = 0 and £; = 0, we have x; = y; and &, = n,,s0(14)
remains true in the new coordinates. In the (y, #7) coordinates we have

oF oF oF
— 0; 1, n;) = —Re(—C; — 21
571,- (yl, >+ 7”1) aél C( 1(05 O)yl) + a'fj ( )

When we evaluate (21) at (y, %) = (0, 0; 1, 0), we see that, because in the first
change of coordinates we achieved 0F/0£;(0,0;1,0)=0, we now have
0F/on;(0, 0; 1, 0) = 0. Furthermore,

oF OF oF OF
2 Re(—C,(0,0 OF OF o 0.0m.).
oy~ o, e(—Ci(0,0)y,) + ox. + 5 Re(— C;(0, 0)y;) 22)

Evaluating (22) at(y, n) = (0, 0; 1, 0), the first term on the rightfis\Zero, the second

is +Re C,(0, 0), and the third is —Re C;(0, 0). We have proved the following
lemma.

Lemma 5. Given any unit tangent vector ||/¢ to the finite dimensional complex
Teichmiiller space T, there is a choice of coordinates (x;, X;; €1, &;) for the tangent
bundle such that

@) (x1, 0) = [x1lol/@] for x| < L;

(b) F(xy,0;1,0) = 1/1 — [x4]?) for [x,| <1,
(©)B;(0) =0 for 2 <j < nin(16); and

(d) C,(0,0)=0 for 2<i<nin(15).

Lemma 6. For the coordinates of Lemma 5, Bi(xi) = o(|x,]) as x; = 0.

Proof. Let g(t) be a smooth function from [0, 1] into C"with g(0) =¢g{1)=0
and for which the first coordinate of g is identically zero. Let y(t) = e, where
e, =(1,0,0,...,0) and 0 <t <1 and [{| < 1. By part (a) of Lemma 5, y is a
geodesic path and the distance from 0 to (e, is less than or equal to the length of
the path y + eg. Thus if ¢ is'positive and small enough so that the path y + &g is
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in the same coordinate neighborhood, one has

0 < lim + % f C[F(tle, + eqlt), Loy + eg'(1) — Flley, te] di. (23
(4]

&0

By applying (15) and (16) and using the fact that F is positive homogeneous in ¢,
one finds that

0= fl Re(B;(t0)g;(t) + (C;(tl, 0)g,(t)) dt. (24)

0

Since g can be multiplied by an arbitrary complex number of absolute value 1,
we can drop the real part symbol in (24). Thus, for all C* functions g; with
g;0)=g;(1)=0, we have fé h(t)gi(tydt =0, where  h{t) = B(()
—¢ f 6 C(s{, 0) ds. Thus h(z) is constant. It is equal to zero because h(0) = 0 and
)

1
B0 =1 f G, 0)ds (25)

But (25) is o(|{]) since C; is continuous.

Lemma 7. F(x;, 0; 1, &) > F(x;, 0; 1, 0) + Re ¥ B,(x,)¢. !
Proof. Let h(t) = F(xy,0; 1, ¢&;). It is a convex C' function of t. Thus, the
lemma follows from (16).

Remark. This inequality is the starting point for constructing a supporting
metric referred to in Lemma 8, below. It is a different inequality for different
choices of local coordinate. By taking coordinates satisfying Lemma 5, we get
the required inequality. '

Lemma 8. Let f be a holomorphic function from the unit disk into T and suppose
f(0)=0. Let M) = F(f(); f'({). Then there exists a smooth function ()
defined for { in a neighborhood of 0 such that A,(0) = A(0) = 1, Ao(0) < AL) + o(( 2)
and —(Alog Ay)/A% < —4. :
Proof. The expression —(A log A)/A%, where A is the Laplacian, is called the
curvature of A()|dZ]. In Section 1.3 we saw that the curvature is invariant under
holomorphic changes of coordinates. Now suppose f(z) from the unit disk into
T is holomorphic and f(0) =0, f'(0) = kip|/¢, where ¢ is an integrable
holomorphic quadratic differential. Pick local coordinates satisfying the con-
ditions of Lemma S for the unit tangent vector |o|/o and'let f = (f1, fo,..., fn)
in these coordinates. Clearly, from (a) of Lemma 5, f{(0) # 0 and f;'(0) = 0. Now
alter the local parameter { at the origin of the unit disk so that f1({) = { and
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(0= a,t% + 0(%). Then Q) = F(C, £i(0) 1, £/(0) and from Lemma 7 and (15),
we have

MO = F( 0; 1, 0) + o({1?).
Since F(¢,0; 1, 0) = 1/ — [{|?) and this has curvature —4, the lemma is proved.

The following lemma is called Ahlfors’s version of Schwarz’s lemma. We
present a modified version due to Earle. If A|dz| is a conformal metric on the disk,
Ao is called a supporting metric for Aat pif A4(p) = A(p) and Ae(0) < AQ) + o(IC %)
for a local parameter { centered at p.

Lemma 9. Let Aldz| be a conformal metric on the u:it disk A such that at each
point p in A there is a smooth supporting metric for Ay which has curvature at most
—4. Then Az) < (1 — |2|%) 73, that is, A is bounded by the noneuclidean metric on

the unit disk.

The proof of this lemma can be found in Ahlfors’s book [Ah6]. For the
convenience of the reader we include a proof in the appendix to this chapter.

Lemma 10. Let [ be a holomorphic function from A into T Then F{f({),
Q) < 11 - 1P A

Proof. Let A0) = F(f(0); f/(0). Let p = f({o)- Then let the Teichmiiller space
T be constructed from the equivalence classes of Beltrami differentials on the
Riemann surface represented by the point p. With this basepoint the zero
Beltrami differential corresponds to the point p. Changing the local coordinate
in the unit disk via the mapping {—({ — {o)/(1 — {o{) does not change the
curvature of A. Hence, by Lemma 8, there is a smooth supporting metric for 4 at
{, with curvature <4. Hence, the result follows from Lemma 9.

Theorem 2 (Royden [Ro}). For finite dimensional Teichmiiller spaces which have
complex structure, dg(p,q) = di(p, @) = d(p, q), that is, Kobayashi’s and
Teichmiiller’s metrics coincide.

Proof. From Lemma 4, it suffices to show that dr < d, . Then it follows that
d, is itself a metric, and so d; = d, for all n, which in turn implies d, = dg.

Let f be a holomorphic function from Ainto T with f({,) = pand f((,) = ¢.
From Lemma 10, we know that F(f((); f'({) < 1/(1 — I(]?). Let o be the
noneuclidean geodesic in A joining {, to {;. From this inequality we see that the
Teichmiiller length of f(«) is less than or equal to the noneuclidean distance
from {, to {,. Thus, from Theorem 1, the Teichmiiller distance from f({,) to
(¢, is less than or equal to the noneuclidean distance from {, to {;. This shows
d{(p, g) < d,(p, q) and proves the theorem.
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7.5. THE INFINITE DIMENSIONAL CASE

Our objective now is to show that whenever T has complex structure, even when
T is infinite dimensional, Teichmiiller’s and Kobayashi’s metrics coincide. In
view of Lemma 3, what we must show is that whenever f: A — T'is holomorphic
and f(0) = 0 and f(r) = [u], where u is extremal and ||uf,, = k and r > 0, then
r = k. From Theorem 2, we know this inequality holds whenever T is finite
dimensional.

All Teichmiiller spaces with complex structure (with one exception) can be
viewed as coming from Beltrami differentials in the upper half plane H. The one
exception is the case.of a torus, but in that case the Teichmiiller space is
isomorphic to H and it is easy to see that for the torus dy and d; are both

identical with the noneuclidean metric.

Since we are assuming T = T(I', C) and C = R,  and v are equivalent (y ~ v)
if w,(x) = w,(x) for all x in R. It is clear that there exists a sequence of finitely
generated subgroups I, of I" and subsets C,, of R with the following properties:

@ Ir,cly,and I,=T;
(i) each I', contains eclements with fixed points in the intervals
L = ((k — 1)/n, k/n) for —n? < k < n? whenever I,,n A #;
(i) C, is invariant under I',, C, 2 A,, and (C, — A,)/T, is a finite set; and
(iv) C, < C,., and the closure of | ] C, = R.

Now, let Q, = Cu {0} — C,. We introduce a new set of Beltrami coeffi-
cients. It consists of complex valued measurable functions u with support in Q,
for which |ull,, < 1 and for which

WAZ)A'(2) = p(z)A'(2)

for all 4 in T',. The set of such Beltrami coefficients is denoted by M(I",, ,).
Let w = w” be the unique homeomorphic self-mapping of C U {0} satisfying

ow iw
iz Moz

and normalized to fix 0, 1, and co. Define u to be strongly equivalent to v and
write p =, v if w#(x) = w(x) for all x in C, and if w* is homotopic to w” in Q,.
Define T(T",, Q,) to be M(T,, Q,) factored by the strong equivalence relation.

Let m: M(I') - M(T,,, Q,) be defined by n(x) = u(z) for z in H and n(yx) =0
for zin L.

Lemma 11. If u ~ v, then n(y) =, 7(v).

Proof. The hypothesis tells us that w,(x) = w,(x) for all x in R, since in the
case under consideration C = R. This implies w™®(x) = w™)x) for all x in R
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and hence for all x in C,. For the proof see Lemma 3 in Section 5.4.
Furthermore, there is a homotopy hy: H — w™®W(H) for which ho(z) = w™¥(z) for
,in H and hy(z) = w)(z) for z in 1 and hy(x) = w(x) = w(x) for xin R and
ogt<l This homotopy extends to a homotopy h, from Q, to w™(Q,) by
setting h,(2) = w™®(z) = w(z) for z in the lower half plane. It follows that (1)

and 7(v) are strongly equivalent.

Lemma 11 implies that the mapping 7 induces a mapping from T(T') to
T(T s ) We denote this new mapping by the same letter 7. Since the complex
structures on T(I") and on T(T,, Q,)are inherited from M(I') and M(T,, ), this
new mapping is holomorphic. :

Now suppose p 1 extremal in its class in M(I'). By this we mean that
k= luleo < Vo for all vin M(I) for which v ~ p. Let

K11l /1 (26)
be extremal in the class of 7(p) in MLy, Q,) under the equivalence relation =,.
since T(T, Q) is isomorphic to a finite dimensional Teichmiiller space, from
Teichmiiller’s theorem it follows that the class of m(p) in M(I's, Q,) possesses a
unique extremal element of the form (26) where 0 <k, <1 and n, 15 a
holomorphic quadratic differential form on €2, except for at most simple poles at
points of C, — A, and 7, 18 integrable on Q.1 N

Obviously, k, < kn+1 S k for all n.

Lemma 12. The sequence k, monotonically increases t0 k.

Proof. Consider the mappings W™ where v, = K, \1/I1l: By hypothesis
wh(x) = w(x) for all x in C,. Let w’ be a normalized limit of some
subsequence of W' Such a limit exists because ||Vallo = Kn S k< 1 for all n.
Moreover, the Beltrami coefficient v of the limit satisfies v(Az)A'(2) = v(z)A'(2)
for all 4 in I'. From the fact that the closure of (JnCn is R, it follows that
w¥(x) = w™®(x) for all x in & Thus by Lemma 3 in Section 5.4,V restricted to the
upper half plane is equivalent to /L. [Actually, v restricted to the lower half plane
1 * is trivial in M(T, H*), butv might not be identically zero in H *] By the fact
that pis extremal in its class, the Lw-norm of v restricted to H is bigger than or
equal to [[ullo = Lk Butif k, <k—¢& for all n and some positive &, one would

have [vleo <k—62 contradiction. Hence, the lemma follows.

Theorem 3. For any complex Teichmuiiller space of a Fuchsian group, the
Kobayashi and Teichmiiller metrics coincide.

Proof. From Lemma 4, it suffices to show that given a holomorphic mapping
from A into T(I) with f(0)=0 and firy=Lud where 18 extremal and
0<r<1,thenrz=| - The mapping 7° f from A into T(C,, Q) 18 holomi-
orphic and takes 0 into 0 and maps into a finite dimensional Teichmiiller space.
Therefore, by Theorem 2, r = k,, where k, is defined in (26). From Lemma 12
this implies r > K and this concludes the proof of the theorem.
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APPENDIX: A Lemma of Ahlfors

Definition. Let A(z) be a nonnegative function defined in the unit disk and Jes
Mz)ldz| be a metric. Then Ay(2)|dz| is a supporting metric for Aldz| at a point 7, if
there is a neighborhood V of z,, such that

(i) Ao(2) is of class C? for z in V;
(i) Ao(2) < Az) + ol|z — z,)?); and
(i) Ao(zo) = A(zo).

Ahlfers’s Lemma: Suppose A(z)|dz| is a metric in the unit disk Jor which A(z) > 0
and for which '

(a) A2) is upper semicontinuous; and v

(b) at every point z,, in the unit disk with Mzo) > O there is a supporting metric
Ao at zo with curvature < —4 at z, (ie., —Ag 2 Alog A, evaluated at z, is
< —4).

Then Az) < (1 — |z1*)~! for z in the unit disk. N

Proof. We first prove the lemma in the case where A is positive and of class C?
in an open set containing the closed unit disk and the curvature of A is < —4at
every point. Then for p(z) =(1—|z*)"* we have Alogp = +4p? and
Alog A > 4% Thus, Alogp — Alog A < 4(p* — 42). The function logp —logl
tends to + oo when [z] — 1 and, therefore, has a minimum in the unit disk. At the
point of minimum, A(log p — log 2) > 0 and hence p*(z) > A%(z) for all z in the
unit disk.

To extend to the case where 1 is of class C2 only in the interior of the unit
disk, we replace A(z) by A(rz) for r < 1. Then this new metric is of class C2 in an
open set containing the closed unit disk and has curvature < —4. The above
result shows p(z) > rA(rz) and p(z) > A(z) follows by continuity.

Now assume (z) is not of class C? but satisfies only the weaker hypotheses of
the lemma. By the same device of replacing Mz) by rA(rz) and using upper
semicontinuity, we may assume A(z) satisfies the hypothesis of the lemma in an
open set containing the closed unit disk. Thus, we have log p — log 4 is lower
semicontinuous in the closed unit disk and this function tends to -+ oo as lz| - 1.
Thus, the existence of a minimum is still assured. The minimum cannot occur
at a point where 4 is zero because then p would take on the value — co. As-
sume the minimum occurs at a point z, where Mzo) > 0. Then let 4, be a
supporting metric to A at z, in a neighborhood V. Then
logp —log A <logp —logdy + oflz — z4|?) with equality when z = z,. Thus
logp —log Ay + o]z — 2z5|*) has a minimum in V when z = zo and so its
Laplacian is zero at z,. Obviously, the Laplacian of the term of|z — z,)?) is zero
at z,. Since A, is C? and has curvature < —4, we can apply the earlier result and
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we obtain plzo) — Aolzo) = plzo) — Mzo) 2 0. Thus the minimum oflog p — 108 A
occurs at Zo and is nonnegative there. We conclude that Az) < p(2) everywhere

in the unit disk.

Notes. The deepest part of this chapter is the theorem that Teichmiiller’s metric

equals Kobayashi’s metric in finite dimensional spaces, and this theorem is due
to Royden [Ro]. The statement that Teichmiiller's metric is the integral of its
inﬁnitesimal form is due to O’Byrne [O). O’Byrne’s proof depends on 2 general
theorem in Finsler geometry and a theorem OR fibrations over Teichmiiller
space due to Earle and Eells [EE2]. The proof given in Section 7.2 relies on
Hamilton’s condition for extremality and is due to Gardiner [Ga5].

Many of the details of Royden’s proof were clarified in unpublished notes of
Earle. Ahlfors’s lemma can be found in Ahlfors [Ah6]. The version presented in
the appendix to this chapter has 2 slightly modified definition of supporting
metric. This modification and formulation is due to Earle. The extension of
Royden’s theorem to infinite dimensional Teichmiiller spaces was first proved
by Gardiner in [Ga5]. ‘

The question of whether or not Carathéodory’s natural metric for a complex
manifold is equal to Teichmiiller’s metric is partially answered by Kra in [Kr8].

Another natural but distinct metric for Teichmiiller space is the Weil—
Petersson metric (see the article by Wolpert [Wob))- \\

In [Th2] Thurston has introduced yet-another important metric on Teich-
miiller space which is nonsymmetric and which 18 defined in a wWay which

depends on the hyperbolic structures.

EXERCISES

1. Let M, and M, be complex manifolds with Kobayashi metrics d, and d, and
suppose [ is a holomorphic mapping from M, to M Show that
(), FO) < dlx y)-
2. Define the Carathéodory (pseudo)metric dcona complex manifold M as
follows:

delx, y) = sup dalf (0, SO

where the supremum is taken over all holomorphic mappings f from M into
the unit disk and d, is the noneuclidean metric for the unit disk. Show that dc
is a pseudometric, (it can be degenerate). Show that dc has corrtraction
propetty; if fisa holomorphic function from 2 complex manifold M, to 2
complex manifold M, and d, and d, are the respective Carathéodory metrics,

then dy(f(0, fON < d,(fx), SO

3. Show that for any complex manifold the Carathéodory metric is 1ess than of
equal to the Kobayashi metric.
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4. (Open Problem) Let d be Teichmiiller’s metric on a finite dimensiong)
Teichmiiller space T. Let S, = {PeT: d(0, P) = R}. Determine whether the
sphere Sy is strictly convex with respect to Teichmiiller geodesics.




3

DISCONTINUITY OF THE
MODULAR GROUP

The modular group of a surface is the group of homotopy classes of orientation-
preserving homeomorphisms of the surface. This group, s also called the
mapping class group. It has a natural action ont Teichmiller space. In fact, it acts
as a group of biholomorphic mappings and a group of ;sometries in the
Teichmiiller metric. Except in a few low dimensional cases, the action 18 faithful.
Moreover, if the surface is of finite analytic type, then the modular grovp acts
discontinuously on Teichmiller space. The discontinuity of the action of the
modular group is the primary result of this chapter.

In Section 8.1, we define the modular group of a surface and the modular
group of 2 Fuchsian group and show that under appropriate assumptions the
two modular groups are jsomorphic. In Section 8.2, we define the action of the
modular group, describe its 1s0tropY groups, and show that the action 1s faithful
except in a few low dimensional cases. In Section 8.3, We show that knowledge of
the absolute traces of a sufficiently large finite, ordered set of words In the
generators determines @ Fuchsian group up to conjugacy. In Section 8.4, we
show that the length spectrum of a finitely generated Fuchsian group is a
discrete set. In Qection 8.5 we prove the modular group acts discontinuously,

and in the last section we show that isotropy subgroups of the modular type are
finite.

8.1. DEFINITION OF THE MODULAR GROUP OF A SURFACE

JetT bea Fuchsian group acting on the uppet half plane H. In this section, W€

make the following assumptions on I

(i I is of the first kind, that is, its limit set is the whole real axis;
Gi) T is finitely generated; and
(i) T is torsion free.
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These assumptions assure that the surface § = H/T"is of type (g, n), where g is the
genus and n is he number of punctures of S and 2g — 2 + 5 > 0.

Definition. The Teichmiiller modular group Mod § of the surface S is the group of
Sense-preserving quasiconformal homeomorphisms of S onto itself modulo the
normal subgroup of homeomorphisms homotopic to the identity. The extendeg
modular group Mod S is the same group except that one allows the homeomorph.-
isms which are orientation-reversing as well as orientation-preserving.

We now define Mod I" and Mod I in a parallel manner. Let QC(I" ) be the
group of quasiconformal (orientation—preserving) homeomorphisms w of H
onto itself which satisfy wo o1 = T Let QC(I) be the normal subgroup of
QC(I') whose extensions to the real axis satisfy w(x) = x for all x in R. From
Proposition 3 section 3.2 we know when T is torsion free that a mapping w in
QCo(I') is homotopic to the identity in H through a homotopy which is
compatible with I". The quotient group QC(IN)/QCy(T) naturally contains I" as 4
normal subgroup, since, for w in QCI), wellow™ 1 =T \

J
Definition. The Teichmiiller modular group of the Fuchsian group T is
[ocmy/Qcmyr. The extended modular group Mod I is obtained in the same
way except one replaces QC(I') by ocr ), the group of all quasiconformal
homeomorphisms w of H for whichwoT ow™! =T , but where w is not necessarily
orientation-preserving. '

By using the methods of Sections 3.2 and 5.2, one obtains the following
theorem.

Theorem 1. Let T be finitely generated, of the ﬁrs~t kind ami without elliptic
elements. Let S = H/T. Then Mod I'= Mod § and Mod '~ Mod §.

We leave the proof of this theorem as an exercise.

8.2. THE ACTION OF THE MODULAR GROUP ON
TEICHMULLER SPACE

Even when I contains elliptic elements, Mod I is defined in the same way as in
Section 8.1. The results of Theorem 2 in this section apply whether or not T
contains elliptic elements. ‘

Let a Beltrami coefficient #in M(T') and an element  in QC(I') be given. Since
heI'eh™' = I it is clear that the Beltrami coefficient ¢ of w, ° his an element of
M(T'), where w, is the normalized quasiconformal self-mapping of H with
Beltrami coefficient . Since o(z) = (w, o h)s/(w, ° h),, the formula for ¢ is

o) = 1O+ HBC)AC) "
T @)
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where v(z) = hs/h, and 0(z) = p/p, where p = 0h/dz. (See Exercise 16 of Chapter
1.) This gives an action of QC(I') on M(I') as a group of holomorphic mappings
because, for fixed h, formula (1) depends holomorphically on u. Using Sections
5.1 and 5.2, one sees that this action induces an action of ModI on T(I') as a
group of biholomorphic mappings.

_Ele sense-reversing elements h of C(T) induce an action on M(I') by letting
h*(u) = (w,°h)./(w,°h);. On working out the formula analogous to (1), one sees
that the dependence of h*(y) on p is antiholomorphic.

Recall that Teichmiiller’s metric is defined by

d(py, ) = § inf log K(wiow3 "), @

where K(f) is the maximal dilatation of a quasiconformal mapping f. Here w;
has Beltrami coefficient y; for i =1 and 2 and the infinum is taken over all
Beltrami coefficients p, in a given Teichmiiller class and p, in another given
Teichmiiller class. Since the action of h translates w, tow; °h angi w, to wy o by it
is clear from (2) that h induces an isometry. / :

_ Notice that if an element of Mod I' is represented by h in QC, then
[k]([0]) = [o], where o = h,/h,. Let w, be the unique quasiconformal self-
mapping of H with Beltrami coefficient o normalized to fix the points 0, 1, and
_oo. Then there exists a Mobius transformation B with h = Beow, and
woolow, 1=T1,,2 Fuchsian group, where BeI',© B~ =T.If [h]([0]) = [0O],
then [a] = [0], which implies w,(x) = X for all x in R. Thus w, o Aew, ' = Afor
all 4 in T and, therefore, hoAoh t=BoAoB ! for A in I. Thus the
automorphism of I induced by h is the same as the automorphism induced by B,
where B is a Mobius transformation in the normalizer N(I) of T. If Bis in I,
then from the definition of Mod I, k induces the identity in Mod I'". If Bis not in
T, then the element [h] of Mod I is induced by a nontrivial conformal self-
mapping of H/I. If " contains an elliptic element E with a fixed point at p in H,
then Be E o B~ 1is elliptic with fixed point at B(p). Since p and B(p) project to the
same point on the quotient surface S = H/T", the conformal self-mapping of S
induced by B fixes elliptic points of S. Since an arbitrary point in T(I') can be

translated from the origin in an equivalent Teichmiiller space by an isometry,
the preceding argument gives the following theorem.

Theorem 2. The isotropy subgroup of Mod I" which fixes the origin in T(T) is
isomorphic to N(I')/T, which is the group of holomorphic, sense-preserving
homeomorphisms of H/T which fix the elliptic points of W/T. The isotropy
subgroup of Mod I which fixes an arbitrary point [ ] in T(T) is isomorphic to the
group of holomorphic, sense-preserving homeomorphisms of the surface corre-
sponding to [ ] which fix elliptic points of the deformed surface H/I',, where
r,= wuorow;1=

Now assume T" is torsion free and H/I" has genus g with n punctures. The fact
that H/T" has hyperbolic structure {positive area in the Poincaré metric) forces
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2g — 2 +n > 1. It is an algebraic fact that groups corresponding to surfaces of
genus two with no punctures must all be hyperelliptic. As such, they all have 5
conformal involution. This conformal involution does not change Teichmiiller
class, and hence every point in Teichmiiller space for a surface of genus 2 with no
punctures has a nontrivial isotropy group in Mod I'. Therefore, the action of the
modular group is not faithful, by which we mean that distinct elements of
Mod I' do not necessarily induce distinct mappings of T(I'). The same remark is
true for any group I' for which the surface H/I" is obtained from a hyperelliptic
surface of genus two by pinching simple curves to punctures. We call such a
group a group of exceptional type, by which we mean (g, n) is either (2, 0), (1, 2),
(1,1), (0,4), or (0, 3). ,

On the other hand, assume I' is not of exceptional type and that Juf u]) = [ u]
for all [x] in T(I') and some element h of the modular group. In particular,
h([0]) = [0], and we have just seen that this implies the action of 4 is equal to the
action of a Mobius transformation B in the normalizer of I'. This means we may
take v =0 and & = B in formula (1), and the hypothesis therefore télls us that
u* = u(B)B'/B’ is equivalent to p for every u. Thus, for |t| < 1, tu — tu* is tangent
to a trivial curve and we conclude that g — p* is infinitesimally trivial in the
sense that

f f 12)p(z) dx dy = f f W(B()B(2)B'(z) " *¢(z) dx dy (3)
H/T .

H/T

for every holomorphic quadratic differential on H/I" and every Beltrami
coefficient u. By changing the variable of integration from z to B(z) in the left side
of (3), we find that ¢(Bz)B'(z)* = ¢(z) for every holomorphic quadratic dif-
ferential ¢ on H/I'. Whenever there are sufficiently many quadratic differentials,
this is impossible unless B is in I'. Using the Riemann—Roch theorem, one finds
that the only cases in which such a B not in I' can exist for all integrable
holomorphic quadratic differential on H/I" are the cases where T  is of
exceptional type. For the part of the proof depending on the Riemann—Roch
theorem we refer to the book of Farkas and Kra [FarK].
These facts are summarized in the following theorem.

Theorem 3. Let I be a finitely generated Fuchsian group of the first kind. Then
Mod T acts as a group of holomorphic, invertible isometries of T(T'). Mod I acts
as a group of invertible isometries, each element acting either holomorphically or
antiholomorphically. When I is torsion free and not of exceptional type, then Mod
I" acts faithfully.

Remark. From a theorem of Bers and Greenberg, Theorem 1 of the next
chapter, it will follow that Mod T acts faithfully on T(I") even when I contains
elliptic elements provided that the covered surface with elliptic points removed
is not of exceptional type.
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§.3. MODULI SETS

In Section 1.5 we saw that a hyperbolic Mdbius transformation A has two fixed

points. If a, is its attracting fixed point and by its repelling fixed point, A 18
determined by the equation

A(z)—bo_/lz‘b0

_— = h A> 1 4
40— a P where 4> )

If A(H) = H, then the fixed points a, and by must lie on the real axis and the
semicircle with endpoints at ao and b, which neets the real axis orthogonally is
the axis of A. This axis is a geodesic in the noneuclidean metric for the upper half
plane.
At this point, it is convenient (and standard) to normalize the noneuclidean
metric differently from the way we normalized it in Chapter 1. We now let it be
|dz|/y instead of |dz|/2y. Then for a point p on the axis of A the distance from p to
A(p) is log A. See Exercise 7 of Chapter 1.1t is called the translation length of A
and we denote it by £(4). If A is an element of a Fuchsian group I, then the
geodesic segment which joins p to A(p) along the axis of 4 projects via T
H — H/T" onto a closed curve. If I is torsion free, this curve has minimum length
among all curves freely homotopic to it on the surface H/T.

Since there is a simple formula relating the trace of A to the multiplier of 4,

trace A)> = A+ AT+ 2,
(

there is also a simple formula relating the absolute value of the trace (hereinafter
called the absolute trace) to the translation length of A:

cosh (@) = 3jtrace(4)]. (5)

We need to know to what extent lengths of closed curves o1 H/T" determine
the group I'. The following theorem gives a partial answer to this question if the
lengths are associated with specific generators of . The theorem says that if you
know the absolute traces of a large enough but finite ordered set of elements of a
finitely generated group T, thenIis determined up to conjugation by a Mobius

transformation.

Theorem 4. Let I be a Fuchsian group which is generated by Ay, - - A,. Assume
A, and A, are hyperbolic and the axis of A, intersects the axis of A, from left to
right. Then there exisis d Mébius transformation D such that the group elements
DA ]-D‘1 forj=1,2,..., nare real analytic functions of the absolute traces of
finitely many words in Ay, .. .s An- If U'is normalized so that A; has attracting
fixed point at o0 and repellingﬁxed point at 0 and A, has attracting fixed point 1,

then D is the identity.
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Remark 1. This theorem is an extension of a result of Teichmiiller [T2].

Remark 2. We call the finite set S, of words in the generators, whose
existence 1s assured by the theorem, a moduli set.

Remark 3. 1f all that is known is the set of absolute traces, without knowing
with which words they are associated, the conjugacy class of I" cannot in general
be determined. However, for generic groups it can be determined. This has been
shown by Wolpert [Wol; Wo2].

The following corollary is an obvious consequence of the theorem.

Corollary. Suppose o is an‘isomorphism from a Fuchsian group T to a Fuchsian
group I'" and that o preserves the intersection of the axes of A; and A,, where A s
1<j<n, are a set of generators as in the theorem. Suppose further that
trace A| = |trace o(A4)| for every A in the moduli set S,. Then there exists a
M6bius transformation D such that «(A) = DAD ™! for every 4 in T.

Proof of Theorem 4. We may assume that the repelling and attracting fixed
points of 4; are 0 and oo, those of 4, are a negative number x, and 1. This
normalization can be achieved by a unique conjugation by a Mébius trans-
formation D. After this conjugation, A4, is conjugated into a Mobius trans-
formation represented by a matrix

A=(m 0), m> 1. (6)

0 m?

On the other hand, 4, will be conjugated into a Mobius transformation
represented by a matrix B satisfying the relation

B(z)—x;  z—x;
Bz —1  z-1"

« p
y O
for B can be selected so thata >0, § > 0,y > 0,8 > 0, as one can see by solving

(7) for o, B, v, and o. Since B(1) = 1, it is obvious that « + f =y + 6.
The number m obviously can be computed from

r>1. U

A matrix

[trace A| =m +m™!
and the numbers « and & can then be calculated from

o +6 = |trace B and ma +m~ 16 = |trace AB|.

T
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From the fact that 1 is the positive root of the quadratic equation B(z) =z, one
sees that 2y=o0—0+ . /(e+ 5)* —4. This determines 7 and thus
B=7+ 5 — a is also determined. Thus, we sce the matrices 4 and B are
determined from the absolute traces of A, B, and AB.

Next, let C be a matrix representing the element that any one of the
generators Aj, j = 3, becomes after the conjugation. We may choose C in
SL(2, R) so that

C=<‘c’ Z) witha+d>0, ad—bc=1

Now we need to use the identity

(trace P)(trace Q) = trace PQ + trace P 1Q, ) (8)

J
which is valid for any 2 x 2 matrices P and Q in SL(2, C). Suppose you know the
left side of (8) is positive. If you know the absolute traces on the right side of (3),
then you know the term with larger or equal absolute value on the right side of
(8) must be positive. From this knowledge, the only remaining unknown trace in

equation (8) is also determined. _

If a transformation is not elliptic of order 2, we know its trace is nonzero.
Therefore, from (8), it is possible to find the traces of AC, BC, and ABC from the
absolute traces of AC, A~*C, BC, B~'C, ABC, and A~ 'BC. To see this, you
merely substitute into (8) first P=A,Q=C,second P = B, Q = C, and finally
P = A and Q = BC. Finally, the entries in the matrix C are obtained from the

relations
a + d = |trace C|, Ja + A~ 'd = trace AC
aa + fec + yb + od = trace BC ©)
Aaa + APc + A~ 1yb + A710d = trace ABC.

Thus we can calculate the matrix C, where C is any of the group elements A;
conjugated by D, from absolute traces of certain words in the elements 44, ...,

A,.
If trace C = 0 but trace(4C) # 0 [or trace(BC) # 0], we compute as before

AC or BC and obtain C.
Finally, if trace C = trace(4C) = trace(BC) =0, then an easy calculation

shows that
0 Na )
C=+ . (10)
<— yg 0

In all cases, even when trace C =0, there is a solution for the entries of the
matrix C in terms of the absolute traces. This completes the proof.
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84. THE LENGTH SPECTRUM

Definition. The length spectrum of a Fuchsian group T is the set LS() of all
positive numbers log A, where ), is the multiplier of a hyperbolic element of T [as
defined in formula (4)].

From the discussion at the beginning of the previous section we know that
LS(T') is the set of all possible noneuclidean lengths of closed geodesics on the
surface H/T".

Theorem 5. Let T" be any finitely generated Fuchsian group. Then LS(I') is a
discrete subset of R.

Remark 1. We will prove a slightly stronger result. For 4 in T, let [ 4] denote
the conjugacy class of 4. We will show that if M is an arbitrary positive niimber,
then the set of [4] for which £(4) < M is a finite set. '

Remark 2. We prove the result for groups of both the first and second kind
since the proof easily covers both cases.

Proof. The Nielsen kernel of a Fuchsian group I' is a subset of H. It is
obtained by cutting away from H every half disk whose diameter is contained in
the part of the real axis where I" acts discontinuously. If an open interval in R
with an endpoint at co or — oo is in the set of discontinuity, then one cuts away a
half plane. We introduce the modified Nielsen kernel K by cutting away, in
addition, every horocycle tangent to a parabolic fixed point which has area one
on H/I". This horocycle is most easily described by applying a conjugation to I
which takes the given parabolic transformation into the element z — z + 1.
Then the horocycle one cuts away is {z: Im z > 1}.

From the result on cusp neighborhoods which we will prove in Lemma 1, no
two pointsin D = {z:Im z > 1,0 < x < 1} are identified by an element I as long
as the transformation z+ z + 1 is primitive. Therefore, the image of D in H/T is
a punctured disk whose area is the area of D in H. This area is 1 because
Jefay 2 dxdy =1

Let w be a fundamental domain for I'. Since I is finitely generated, w can be
selected so it has a finite number of sides which are geodesics in the hyperbolic
metric. Clearly, w n K is a compact subset of H. Let A be a hyperbolic element of
I'. The axis of 4 cannot be contained in any parabolic horocycle because then 4
itself would have to be parabolic. Thus the axis of 4 meets K. Since w is a
fundamental domain, for some element Bin I', BAB™~ ! has an axis which meets
wn K. '

Let A4, represent a sequence of distinct hyperbolic conjugacy classes and
select B, so that the axis of B,4,B, ! has nonempty intersection with w n K. Let
p, be a point in this intersection. Since the sequence p, is in a compact set, it has a
convergent subsequence. Without introducing a new index, we see there is a
sequence of distinct hyperbolic conjugacy classes represented by B,4,B, !t for
which p, converges to a point p, in the closure of o n K.
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If the distances log A(A,) are bounded by M, then the points
Gn = B,A.B: (p,) lie in the compact subset of points whose noneuclidean
distance from @ N K is less than or equal to M. By taking a subsequence, we may
agsume g, Converges to a point go. SINCe T acts discontinuously on H, go # Po-
Hence the sequence B,A,B;* would converge to the hyperbolic transformation
whose axis passes through po and 4o and which translates po t0 do: This is a
contradiction because it shows I is not discrete. Q.E.D.

The following lemma is due to Shimizu [Sh] (see also Leutbecher [Leul)- It
can be viewed as a special case of Jorgensen’s inequality [Jo] (see Exercise 4 of

this chapter).

Lemma 1. Let [ be a Fuchsian group containing @ parabolic element

A(z)-—=z+1.lf
B_(a b
“\¢ d)

element of T withad — be = 1 and withc # 0, then\c| = 1. Moreover, if

represents
ts of the domain

A is not equal to a power of any element of T, then no two poin
p={zy=1 and 0 < x < 1} are identified by any element of 1.

Proof. Assume that B is an element of T with le] < L. Form, inductively, a
sequence of parabolic transformations as follows:

A.1 = BABA!'
A, = A AAT

An+1 = A'nA/in_1

The sequence 4,18 2 sequence of distinct elements and we will show that A,— A,

thus contradicting the discreteness of the group I. Write

aHZ + bn

A"(Z):cz-l-d

where a,, B> Cns and d, are in R and a,d, — baCn = i. A computation gives
A = a, b\(1 1 d, —bu
net =\ 4 \0 L\—C O
B L — a,Cn ay | @nr1 by+ 1\
B FC& 1 + 0yCh B Cp+t dn+1/.
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Thus ¢, = —¢*" and lim,_ ¢, = 0 since |c| < 1. Let M be bigger than the
maximum of (1 —|c¢[)™! and |a|. Then lagl = la] < M and, if |a,| < M, then
i1l =11 —ac) <1+ lalle) <1+ M <1+ |c|M < M. Thus, by ip-
duction, |a,| < M for all n and so a subsequence of a, will converge. From the
equationa,, ; = 1 — a,c,, this implies lim, . ., a, = 1. From b, , , = az, it follows
that lim,, , b, = 1. Finally, from d" * ' = 1 + a,c,, we see that lim,_, . d, = 1.

Our next assertion is that I cannot contain any element with a fixed point at
oo except for elements of the form A"(z) = z + n, where nis an integer. We leave
this verification to the reader; it depends on the hypothesis that 4 is not a power
of any element of I.

We now know that any element

a b
B =
(£
of I" not in the cyclic group generated by 4 has lc] = 1. Thus B applied to the
part of the upper half plane lying above the horizontal line y = 1is the interior
of a circle of diameter equal to ¢~ 2 < 1 which is tangent to the real axis at the

point —d/c. We conclude that no two points of the strip domain D = {z:y > 1
and 0 < x < 1} are identified by any element of I".

8.5. THE DISCONTINUITY OF THE MODULAR GROUP

Our aim is to show the modular group acts discontinuously on Teichmiiller
space. By this we mean that if K is any compact subset of T(I'), then the set of
elements h in Mod I" for which h(K) n K is empty is a finite set. From Theorem 3
of Section 8.2, the modular group acts as a group of isometries. Therefore, to
show the modular group acts discontinuously depends on showing

(1) isotropy groups are finite; and
(2) orbits are discrete.

Here, we are applying Lemma 2 of Section 1.4. By Theorem 2 of this chapter we
know that to show isotropy groups are finite we must show that the group of
conformal self-mappings of H/T is finite. We will prove this result in the next
section if H/T" has genus g and n punctures and 29 —-2+n=>1.

To show that orbits are discrete we use three ingredients:

(a) the discreteness of the length spectrum as expressed in Theorem 5;

{b) the existence of a finite moduli set as expressed in Theorem 4 and its
corollary; and

(¢) an inequality for the distortion of the length of a hyperbolic geodesic
under the action of a quasiconformal mapping.




e

85. THE DISCONTINUITY OF THE MODULAR GROUP 159

The third ingredient is provided by the following lemma of Teichmiiller:

Lemma 2. Suppose A, and A, are hyperbolic M hius transformations each with
two fixed points and multipliers Ay and A, where Ay > 1 and hy > 1. Suppose W isa
quasiconformal homeomorphism of the complex plane with dilatation K and that
woA; = Az°W Then
K- log 1, <log A, < Klog Az (11)
Proof. Let T be the cyclic group generated by 4;. BY conjugation, we can
assume A, and A; both have attracting fixed points at © and repelling fixed
points at 0. The conjugation will not affect the dilatation of w. The curve family
F, which joins 0 to % and is invariant under multiplication by 4, is taken into
the curve family F, joining 0 t0 and invariant under multiplication by Ag-
Clearly, w transforms the family F, into the family F. Define the extremal
length of Fy relative to T’y to be the extremal length of the curve family which is
the image of Fy in the torus (C — {01y It is easy to show that the extremal
length of Fy is log 4,. Of course, the extremal Jength of F is log 4, and, since
quasiconformal mappings do not distort extremal length by an amount greater
than their dilatation, inequality (11) follows.

We are now ready to show that orbits of points in T(I") under the action of
Mod I are discrete. LetSobea moduli set for I, whose existence is guaranteed
by Theorem 4. For each log 4; in LS(So), let log A} be the least element of LS(T)
which is larger than log /; and let log A; be the largest element of LS(I') which is
smaller than log A;. If log 4; is the smallest element of LS(I), letlog i =0+

Let
 (log A7 log
K;= 08N = 12
§ = {bgli log A (12)

and K, = the minimum of Ki, where log 4; is 10 the finite set LS(So)-

Let h represent an element of Mod T'. Then h determines an automorphism of
T and, therefore, a permutation of LS(I'). From (11) we know that the dilatation
K(h) of the quasiconformal mapping representing h satisfies

log M4) log Ah(A))
K(l) > mex {mg TiA) log AA) }

for all Ain I But if K(h) < Ko» then since log Mh(A)) is in LS(I) for all A, we see
that log Ah(4) = log A(A,;) for cach A;in the moduli set So. BY Theorem 4, this
implies there exists a MObius transformation D such that his the automorphism
4 - DAD™ Y, and h fixes the origin in ().

We have shown that the origin in T(I')is not equivalent under Mod I to any
other point in T(T') whose Teichmiiller distance from the origin 18 iess than

1log Ko.
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The argument clearly translates to any point in T(I') and, thus, shows that the
orbits are discrete sets. Except for showing that isotropy groups are finite, we
have shown the following theorem.

Theorem 6. Let T" be a finitely generated Fuchsian group. Then ModT acts
discontinuously on T(I).

8.6. AUTOMORPHISM GROUPS

. To finish the proof of discontinuity as outlined in Section 8.5 we need to show
that isotropy groups of the modular group are finite. We know from Theorem 2
that this comes down to showing that, for the Fuchsian group T, and its
normalizer N(I') in PSL(2, R), the quotient group N(I')/T" is finite. This is true
when I'is finitely generated and contains noncommuting elements. The result is
classical and appears in many textbooks; we include the proof here for the
benefit of the reader. We first need an elementary lemma.

Lemma 3. If a Fuchsian group T is not cyclic, then N(I') is also Fuchsian.

Proof. T must contain two elements 4 and B which do not have common
fixed points, for if they had common fixed points, the discreteness of I" would
imply that 4 and B are in the same cyclic group. Assume the normalizer N(I') is
not discrete. Then we can find a sequence of distinct elements C, in N(I') such
that C, converges to the identity. Consider the sequence 4, = C,° A°C, ! and
B, = C,°B°C,*. We know that 4, and B, are in " and 4, > 4 and B, — B.
Thus, since I' is discrete, there is an integer n, such that n > n, implies 4, = A
and B, = B. Thus C,, commutes with 4 and with B. This implies that 4, B, and
C, all have common fixed points, and this contradiction proves the lemma.

Theorem 7. Suppose I' is a finitely generated Fuchsian group whose limit set has
more than two points. Then N(T')/T is a finite group. '

Remark. Although it is unnecessary in our proof, it is a fact that if the limit set
contains at least three points, then it automatically contains infinitely many
points.

Proof. First assume T" is of the first kind. Clearly N(I') is also of the first kind
and, by Theorem 2 of Section 1.4, H/N(I') has a Riemann surface structure.
Thus, there is a ramified covering mapping

m: H/T — H/N(T).

Since H/T" and H/N(I') are compact surfaces except for at most a finite number
of punctures, the analytic mapping 7 has finite degree, and the degree is the
order of N(I')/T".
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Next assume T is of the second kind. If we letQ=C-— {limit set of I'}, then
we can apply the same argument 10 the surfaces Q/T" and Q/N().

One can find an explicit bound for N(I')/T by comparing the Poincaré area of
H/T to that of H/N(I). Obviously,

order(N(D)/T) = area(!H /T)/area(H/N(F}).

For example, if T is a fixed point free group covering a surface of genus g Z 2,
then ;

area(H/I) = 2m(2g — 2

Now, if N(I) is not equal to T, it will have elliptic fixed points, put from the
Gauss—Bonnet theorem,

area(H/N (D)) = 27 (2@ —2+ ;(1 — 5{1}))) (13)

where v(p) is the order of an elliptic fixed point p, Of vp) = © ifpis parabolic,
and the summation runs over all ramified points p in H/N(). Also § is the genus
of H/N(D).

By elimination of cases, One finds that the smallest possible value of (13)1s
/21, and hence '

order(N(ID)/T) < 84(g — 1 (14)
For more details se¢ the books by Beardon [Beal and Farkas and Kra [FarK].

Notes. The first proof of the discontinuity of the action of the modular group
appears in Kravetz [Krav]. Bers also gives @ proof in [Ber8] and Abikoff gives
another proof in [Ab]. The proof given in this chapter is different and gives 2
way to estimate the Teichmiiller distance from 2 point to the nearest distinct
point in its orbit under the action of the modular group. 1 am indebted to L.
Keen for pointing out that the «exceptional type” Riemantt surfaces all come
from surfaces of genus two OF degenerations of such surfaces. A summary of the
types of Fuchsian groups for which the modular group does not act faithfully 1s
given by Earle and Kra [EK2] The result of Theorem 4 18 essentially due to
Teichmiiller. A similar result also appears in the book by Fricke and Klein
[FrK} The formulation given in Theorem 4 i8 due to Bers [BerGa].

Using a finite ordered set of lengths of closed geodesics 1O determine a
marked Fuchsian groupisa classical method used by Fricke and Klein in [FrK1]
and by Keen in [Ke2] and [Ke3l.

There is a famous problem called the Hurwitz—Nielsen realization problem.
1t concerns whether or not a finite subgroup of the modular group 18 always 2
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subgroup of the isotropy group of some point in Teichmiiller space. This
problem was believed to have been solved by Kravetz [Krav]. Later, ap
essential mistake in Kravetz’s proof was found by Masur [Masul]. The problem
was solved in the affirmative by Kerckhoff [Ker] by use of a theorem of
Thurston on earthquakes. Wolpert has obtained an independent proof involy-
ing the use of geodesics in the Weil—Petersson metric [Wo5].

The problem of deciding to what extent a compact Riemann surface can be
determined by its length spectrum is studied by Wolpert [Wol, Wo2]. This
problem is naturally related to questions about Selberg’s trace formula for
Fuchsian groups. A good introduction to these problems is given by McKean
[Mc]. Compactness conditions for spaces of Fuchsian groups are discussed by
Matelski in [Mat] and Harvey in [Hal]. :

Shimizu’s lemma (Lemma 1 of section 8.4) [Sh, Leu] can be regarded as a
special case of Jgrgensen’s inequality (see Exercise 4). Jgrgensen’s inequality
applies to a pair of transformations 4 and B in PSL(2, C) which generate a
discrete group and for which BAB ™! is not in the cyclic group generated by A.
The inequality says

ltrace(A)* — 4| + [trace(ABA™'B™1) — 2| > 1.

For an exposition of this result see Beardon [Bea, chap. V, p. 105]. Brooks and

Matelski have generalized Jgrgensen’s inequality to a whole sequence of

inequalities in the traces which are necessary conditions for the group generated

by 4 and B to be nonelementary and discrete [BM]. Important work on the

geometric meaning of Jgrgensen’s inequality for Fuchsian groups has recently
been done by Gilman in [Gil, Gi2].

EXERCISES

1. Let R be a Riemann surface of infinite genus which has a conformal
homeomorphism L such that R/(L) is a compact surface with genus >1,
where (L) is the cyclic group generated by L. Here R could be the biinfinite
periodic chain shown in Figure 8.1.

(a) Show that the length spectrum of R is a discrete set.

(b) Show that R is a point of discontinuity in T(R) with respect to the
modular group, in the sense that there exists ¢ > 0 such that dR,hWR)) = ¢
for all & in the modular group of R except the identity.

2. Let R =C — {n £ 1/2" n a positive integer}. Show that the origin of the
Teichmiiller space T(R) is not a point of discontinuity.

3. Let I be a finitely generated Fuchsian group and for each 4 in T let M4y =1
be the multiplier of 4. Show that ZA(4) % < oo, where the summation is over
a single representative of every conjugacy class in I,




EXERCISES

‘—,—4&"’“

L(x):x+a,

Figure 8.1

4. Let [AB] = ABA~'B7, the commutator of A and B. Assume A and B are

Mobius transformations represented by 2 x 2 matrices with determinant

one. Notice that whereas trace (A) is defined only up to plus or minus sign
trace, (LAB]) is well defined. Jgrgensen shows that if 4 and B generate 2
discrete subgroup of PSL(2, C), then

|trace(4)” — 4 + |trace(LAB]) — 2l =1

except when BAB!is in the cyclic group generated by A (see RIS [JpKD.
From Jgrgensen’s inequality prove Lemma 1 of Section 8.4.
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A theorem of Royden says that for compact surfaces of genus larger than two the
Teichmiiller modular group coincides with the full group of biholomorphic self-
mappings of Teichmiiller space. The case when the genus is two is exceptional
because every such surface has a conformal hyperelliptic involution. This

prevents the modular group from acting faithfully; however, even when the
genus is two it is still true that every biholomorphic mapping is realized by an
element of the modular group. Except for a few low dimensional cases occurring
when the genus is less than or equal to two, the same theorem is true when the
surface is of finite analytic type. The extension of the theorem to surfaces of finite
analytic type is due to Earle and Kra [EK1].

To prove the result we use another theorem of Royden, namely, Theorem 2
of Chapter 7, which tells us that for Teichmiiller spaces which have complex
structure the Teichmiiller and Kobayashi metrics coincide. From that theorem,
we know that any biholomorphic mapping must induce isometries of the fibers
of the tangent and cotangent bundles with respect to. the infinitesimal forms of
Teichmiiller’s metric and cometric [see formulas (5) and (13) of Chapter 7]. With
this as a starting point, Royden’s theorem is obtained by giving an analysis of
the differentiability properties of the cometric.

We prove that the cometricis of class C* but not, in general, C?. To show this,
we end up considering, for quadratic differentials ¢ and y, real valued functions
f(t) = |l@ + t¥/|, where the norm is the L*-norm. The function fis of class C* **
but & becomes smaller and smaller as the order of the highest zero of ¢ increases.
Similarly, a pole of i tends to make ¢ even smaller. A linear isometry of the space
of holomorphic quadratic differentials must preserve the Holder exponent ¢, and
Royden’s theorem comes from exploiting these observations.
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This chapter contains several auxiliary results. First, there is a theorem of
Bers and Greenberg [BerGr] (also proved independently by Marden [Mar])
which says that Teichmiiller space of a finitely generated Fuchsian group of the
first kind depends only on the type of the group and not on its signature. Second
there is a theorem of D. B. Patterson which tells when two Teichmiiller spaces
can be biholomorphically equivalent [P]. In fact, if g is the genus and n is the
number of punctures, then distinct ordered pairs (g, n) determine nonisomorphic
Teichmiiller spaces except in certain cases when g < 2 and n < 6. Earle and Kra
[EK1] were the first to observe that Royden’s technique could be used to prove
Patterson’s theorem.

9.1. SIGNATURE AND TYPE OF FUCHSIAN GROUPS: A THEOREM
OF BERS AND GREENBERG

Let I' be a finitely generated Fuchsian group of the first kind and let Hy be the
set of z in H which are not fixed by any elliptic element of I'. Then H/I" is a
compact surface of genus g with n punctures. The pair (g, n) is called the type of I
or of Hy/T". Let p,, ..., p, be the punctures of Hy/I". The ramification number v,
of p; is the order of the subgroup of I" fixing any point of H that lies over p; if
such a point exists. If no such point exists, p; is called parabolic and v; = c0. We
have seen in Chapter 1 that when v, = oo, p; is represented by a parabolic cusp.
(See also Lemma 1, Section 8.4.). The vector '

(g: n, V1’~"svn) (1)

is the signature of I'.
It is a known theorem [Leh] that there is a Fuchsian group I" with signature

(1) if, and only if,
2n [29 -2+ > 1= vil):’ > 0. 2
i=1

The quantity in (2) is the area in the noneuclidean metric of a fundamental
domain for I' and inequality (2) expresses the fact that H/I" must have positive
area.

We always assume that (2) is satisfied and consequently that 2g — 2 + n > 0.
The quantity 2g — 2 + n is the negative Euler characteristic of Hy/I". If Hp/T" is
cut along a maximal system of simple closed curves, none of which is homotopic
to a puncture or homotopically trivial, then the surface breaks up into
2g — 2 + n components each of which has genus zero and three boundary
contours. We prove this elementary topological fact in the next chapter, Section
10.1. Notice that for g = 2 or n = 5 inequality (2) is always satisfied.

The next theorem is true for any Fuchsian group and tells us that the
structure of Teichmiiller space depends only on the type of Fuchsian group and

not its signature.
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Theorem 1 (Bers and Greenberg [BerGr]). LetI'bea F uchsian group of the first
kind acting on H and let R = Hy/T, that is, the Riemann surface obtained by
deleting all of the elliptic fixed points from H/I'. Then there is a natural map from
T(R) onto T(') which is a holomorphic isometry.

Our proof also works for groups I" of the second kind in the following general
setting. Let C be a closed subset of R invariant under the action of I" and
containing the limit set. Let T(I", C) be the Teichmiiller space of I relative to the
closed set C, as defined in Chapter 5, and let T(R, o) be the Teichmiiller space of
the bordered surface R relative to the closed subset o of its border.

Theorem 1'. If R = H/T and ¢ = (C — A)/T’, then the natural mapping from
T(R, o) onto T(I', C) is an isometry. When C = R, this mapping is holomorphic.

Proofs of Theorems I and 1'. We construct the natural mapping from T(R, o)
onto T(T', C)just as we did in Lemma 2 of Section 5.2. The fact that a homotopy
of a self-mapping of R relative to the subset o of its border lifts to a homotopy of
H, relative to C, and conjugating I' to itself is proved in Proposition 2 of Section
3.2. Thus we have a surjective mapping ®&: M(R) - M(I") which induces a well-
defined, surjective mapping ® from T(R, o) to T(T, C).

Our strategy is to use the necessity and sufficiency of the Hamilton—Krushkal
condition (Chapter 6) to show that @ is an isometry. First we observe that @ is
functorial with respect to tramslation mappings between Teichmiiller spaces.
Specifically, let I'; and I'; be Fuchsian groups acting on H and let & be a
quasiconformal homeomorphism of H which conjugates I'; into I',, that is
hol';oh~! =T,. Moreover assume C, and C, are closed invariant sets of the
extended real axis containing the limit sets A; and A, of I’y and I';, respectively,
with k(C,) = C,.

Let o;=(C; — A)/L; for j = 1 and 2. The sets o; are closed subsets of the
borders of the surfaces R; = H/T;.

The mapping h induces an isometry S of T('y, C,) onto T(I'y, Cy) by
associating to a Beltrami coefficient v in M(I',) the Beltrami coefficient of w,°h
in M(T',). It also induces an isometry S from T(R,, 0,) onto T(R;,0,) in a
similar manner. The diagram in Figure 9.1 is obviously commutative where @
and @, are the mappings defined analogously to ®.

Let d, and d, be the Teichmiller metrics for T(R;, o;) and T(R,, 03),
respectively, and let dr, and dr, be the Teichmiiller metrics for T(I'y, C,) and
T(T,, C,). Note that if woh(z)=z and w has Beltrami coefficient p, then

T(T,, C3) —— T(T}, C,)
T(I% }@n
T(R,, a,) —S” T(Ry, g1)

Figure 9.1
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S[u] = [0]. Therefore,
dy(p, v) = dy(0, S(v)).

If we know that d,(0, S(v)) = d- (0, @, ° S(v)), then by the commutativity of the
above diagram we obtain

d,(0, S() = dr,(0, S° D,(v)) = dr,(§~(0), D,(v))
= dr,(@,(), (I)z(v))

We conclude that dz(p; v) = dr,(®(w), ©(v)). Thus, in order to show that @ is an
isometry, it suffices to show that

dr (0, ®(p)) = d(0, )

for every i in R.
Assume that p is extremal for its class in T(R, ¢). Then |u|., =k and
d(0, u) = +log((1 + k)/(1 — k)). From the necessity of Hamilton’s condition, this

implies
k = sup Re Jf ue dx dy,

where the supremum is over all holomorphic quadratic differentials ¢ on R
satisfying

ol =j lp(z)dxdy = 1
R

and ¢ is real with respect to real boundary uniformizers along any part of the
border of R in the complement of . However, from Theorem 1 of Section 3.1,

this supremum is the same as

sup Re jj ¥ (g dx dy,

H/T

where 7*(u) 1s the lift of the Beltrami coefficient u to H and where the supremum
1s over all holomorphic quadratic differential forms g for which

lgl =1 and g¢q is real valued on R — C.

From the sufficiency of Hamilton’s condition, this implies that z*(u) is
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extremal and, therefore,

1 1+ k
40, ®([ul) = 5 log T

Q.ED.

9.2. ROYDEN’S THEOREM ON ISOMETRIES

From the previous section, when Hy /I is of finite analytic type, the group of
isometries of T(I') depends only on the type of I and not on its signature. It is
fairly easy to see that if I' and I'" have the same type and if I' has no elliptic
clements, then Mod I'” is contained in Mod I in a natural way. However,
Mod I will, in general, be a proper subgroup of Mod I because elements of
Mod I’ can permute punctures on H/I'" only if those punctures correspond to
elliptic elements of the same order.

We observed in Theorem 2 of Chapter 8 that every element of Mod I" gives a
biholomorphic isometry of either of the Teichmiller spaces T(I') or T(I'').
Royden’s theorem gives a converse to this statement. Let aut T(I') denote the
full group of biholomorphic automorphisms of T(I'). When I contains no
elliptic elements and has type (g, n), often we will write Mod (g, n) in place of

ModT.

Theorem 2. Suppose T is a finitely generated Fuchsian group of the first kind with
no elliptic elements. Suppose further that I"is not one of the exceptional types (0, 3),
(0,4), (1, 1), (1, 2), or (2, 0). Then aut T(T') = Mod I'. In the exceptional cases we

have:

for (0, 3), aut T(T') = {id};

for (0, 4) and (1, 1), aut T(T") = PSL(2, R);

for (1, 2), aut T(I') = Mod(0, 5); and

for (2, 0), aut T(I') = Mod(0, 6) = Mod(2, 0)/Z,.

We will not complete the proof of this theorem until the end of Section 9.6.

9.3. THE SMOOTHNESS OF TEICHMULLER’S METRIC

Let ¢ be in M) and v in Lg(I) Form the quasifuchsian group
[ = wheo(w#) ™!, where w* has Beltrami coefficient 4 in the upper half plane
and zero in the lower half plane. The infinitesimal form F of Teichmiiller’s metric
can be written in a way which depends on the holomorphic quadratic differential
forms for the quasifuchsian group I'*:

v 1]
JJ ool =g e

; 3)

F([ul, v) = sup
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where the supremum is over all ¢ in A(I'*) with |l¢| = 1 and the integral is over
w#(H)/T"*. Here 6 = p/p, where p = 0w*/0z and w = w" = u + iv.

We assume I is finitely generated and of the first kind, which implies the
dimension of A(I'*)is 3g — 3 + n, where g is the genus and n is the total number
of punctures (either elliptic or parabolic) on Hy/T". From Section 9.1 we know
thatif I"and I'" have the same type, then T(T") is isometric to T(I''). Therefore, in
order to prove smoothness properties of the metric, we may assume the
punctures are elliptic or parabolic, whichever assumption works to our
advantage. In this section it is helpful to assume all punctures are elliptic and
hence that the group I has a compact fundamental domain.

The metric F in (3) is dual to the cometric G given by

601, 0= [[A8% [ oemicaranas @

H/T* H/T

where @ is in A(T'*) and w = w* = u + iv. Since Teichmiiller space is a manifold,
the cotangent bundle to Teichmiiller space lying over a neighborhood U of the
origin can be trivialized in the form U x A(I). This trivialization induces a
holomorphic family of complex linear isomorphisms L,: A(T') — A(I"*), where L,
depends only on the Teichmiiller class of x4 and L, is the identity.

If we let G be the cometric G expressed in terms of this trivialization, then for

[x]in U and for ¢ in A(I') we have

G, o) = f IL(@)W(2))W(2)] dx dy.

H/T

In order to show that the cometric is of class C' except at points on the zero
section (where ¢ = 0), we develop formulas for the partial derivatives

2 G+ eaud, oo g
and

{ ,

L6010, 0+ Ao )

and show that they are continuous functions of [ 4] and ¢, provided that [ u] is
in a sufficiently small neighborhood of the origin and ¢ is not identically zero.

We need two lemmas.

Lemma 1. Suppose ¢ and  are integrable quadratic differentials on a Riemann
surface R and suppose ¢(z) # 0 almost everywhere. Let

f(zf)-——”swzwdxdy
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Then f has a derivative at t = G and

f'(0) =Re JJ lpl—q([;—'dx dy.

R

Proof. We need to find lim,.,, (f(¢) — f(0))/t. Note that

lo + | —lol
o=l

and so by dominated convergence the limit for the derivative f'(0) can be taken
under the integral. Also

o+ tyl —lpl _lo+ 0 —lol’ _2Re gy +ll”
t o+l + 1) lo+ui+lol

and this quotient approaches Re(@y//|p| whenever ¢(z) # 0. The lemma follows.

We need another preliminary result concerning quasiconformal mappings
with harmonic Beltrami differentials. A harmonic Beltrami differential is a
Beltrami differential which can be written as the complex conjugate of a
holomorphic quadratic differential divided by the square of the noneuclidean

metric.

Lemma 2. Let yu and Ap be harmonic Beltrami differentials defined in the upper
half plane H. Assume that |ull,, < 1 and ||u + Apll, <1 and w"isa normalized
quasiconformal homeomorphism of the sphere with Beltrami coefficient y in the
upper half plane and zero in the lower half plane. Then wh A converges uniformly
on compact subsets of H to wt as ||Apll, = 0.

Proof. We assume w* and w**** have the same normalization. The result of
the lemma is independent of which normalization is chosen provided the
normalization for w¥ and w#*4# is the same. From the Ahlfors—Weill extension
lemma (Lemma 7 of Chapter 5), w” can be expressed for z in the upper half plane

as

_m@ + (= Dme)
1) + (2 — 2WalE)

w(2)

where n, and 7, are two solutions to the ordinary differential equation
"o__ 1 . & ot s . ! . 2 =

n" = —4on normalized so that 731, — 7211 = 1 and where p(z) = —2y%¢(2). A

simple calculation yields

wh(z) = (12(2) + (2 — 2>(@) >
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"The conclusion now follows from the fact that the solutions to the ordinary
differential equation n” = —1py depend continuously on the coefficient Q.

Tt is now possible to calculate the derivatives indicated in formulas (5) and
(3')- We need notations for derivatives with respect to ¢ at t = 0 of each of the
expressions L, ., w*" % and (w#*"%2 Each of these functions depends

holomorphically on t. We write

L# +tAp — Lu + L + O(IZ)’ (6)
WHTER = Wi L tF 4 O@2), , (7
(w;“L’A"/wf)2 =1+ tH + O(t?). ‘ &

In (6) the estimate is with respect to any norm for linear mappings between finite
dimensional vector spaces. In (7) the estimate is uniform on compact subsets of
the plane (if w* is normalized at 0, 1, and o) and F is a continuous function,
which, after composition with (w*), is the same as the function F in Theorem 5 of
Chapter 1. In (8), H is a continuous function determined by the Taylor
expansion of (w}**#)?, which is a holomorphic function of z. It is important to
note that the operator I and the functions F and H depend holomorphically on

.
The expression

(Lt au @Y WH AR Y (¥t 1y )2
can be written as

L,o + 1y + 0(t?),
where

¥ =Lo+(L,0)F + (L(p)H

and after a calculation one can see that the partial derivative

d .
e G(Lu + tAud, 9)l,=¢

is equal to

Re fj o(wH(z)) % dx dy. 9)
HT g

In this calculation, we need the basic formula from Lemma 1. We see that the
derivative is continuous in its dependence on w and @ provided that ¢ is not
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identically zero and [ ] stays in a sufficiently small neighborhood of the origin
in Teichmiiller space where it can be represented by a harmonic Beltrami

differential.
The calculation of the partial derivative in the variable ¢ of G([ 1, @) is

similar and we omit it. We proceed to the next theorem.

Theorem 3. Let " bea ﬁnitél y generated Fuchsian group of the first kind. Then the
metric F on the tangent bundle to T(T') and the cometric G on the cotangent bundle

to T(I') are both of class C' except at points of the zero section.

Proof. Since we have shown that the cometric is of class C ! this theorem is a
consequence of the following lemma from the calculus of variations.

Lemma 3. Let U be an open set in R" and G(x,n) a continuous function on
U x R" which for each x in U is a positive convex homogeneous function of nin
R". Define F(x, &) on U x (R™)*, where (R")* is the dual vector space to R", by

F(x, &) = sup{|é@l: Goe n) = 1) (10)

That is, F is the metric which is dual to G. Then F is continuous and, for each x, F
is a positive convex homogeneous function of &. If G is of class Clinnforn #0,
then F is strictly convex in & If G is strictly convex and has continuous first
derivatives with respect to x, then F(x, &) is C* except at & = 0. Moreover, G is the
metric which is dual to F.

Proof. The last statement is the most trivial, because a Banach space embeds
isometrically into its double dual and, for finite dimensional spaces, this
isometry is surjective. The assertion that it is an isometry is simply the statement

that the dual norm to F is G.
Tt is obvious that F is a positive convex homogeneous function, and our first

step is to show that F is continuous. Let $* ' = {# in R"™ )1, n? = 1} and let
folx, &) = Em)/G(x, m) (1

so that F(x, &) = sup{f,(x, £): neS"~*}. Given x in U choose 1, in S~ so that
F(x, &) = f,,(x, £). Then for x" in U and ' in S"~1, we have

F(x', &) = foox, &)
and therefore
F(X, 6) = fqo(x: E) = f;;o(xl7 él) + (fno<xs é) - Jf;,o(x,7 é’))

SF(LE) + sup [fi(x ) — S ¢ (12)

nesn—l
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On reversing the roles of (x, &) and (x/, ¢') and combining the two resulting
inequalities, we find that

1F(x, &) = F(x', &) < sup [fy(x, &) — f,(x, &) (13)

nest1

The joint continuity of f in #, x, and & and the fact that 1 varies over a compact
set imply that the right side of (13) can be made arbitrarily small if (x, £') is near
enough to (x, ¢). Thus, F is continuous.

Next suppose G is of class C* in # for # 0 but F (x, &) is not strictly convex.
In this part of the lemma, the dependence on x is unimportant and so we simply
write F(x, &) = ||&]| and G(x, n) = ||5|. If | €] is not strictly convex, we can find .
two linearly independent vectors ¢, and &, with |4 =1&) =1 and
€1 + &l = 2. This means there exists 7, with ||| = 1 and (£, + &,)(,) = 2.
Since £y(no) < 1 and &,(n,) < 1, we have £,(3,) = &,(10) = 1. Because we assume
finll is C* when # # 0, the set {5: ||| = 1} is a manifold and has a tangent plane
of dimension n — 1 at 5. Now &,(n) < 1 at every point on this manifold and
¢1(n0) = 1, and 50 £,(n) = 0 for every 7 in the tangent plane. The same statement
applies to £, and, since £, and ¢, are independent, this forces the tangent plane
to have codimension at least two. This contradiction shows that F is strictly
convex. '

Suppose G is strictly convex, that is, ||| is strictly convex. Let
el = lln, | = 1. The fact that these vectors are in a finite dimensional space
implies uniform convexity, by which we mean for every e >0 thereisa d >0
such that [, + #,]| > 2 — ¢ implies ||y, — #,|| < & By strict convexity we mean
that,for 0 <t < 1, |ltn, + (1 — t)y,|| < 1. We leave as an exercise the proof that
in a finite dimensional space strict convexity implies uniform convexity.

Our next step is to show that the dual norm ||&|| is smooth in the following
sense: For every ¢ > 0, there exists a § > 0 such that if ||¢, — &,|| < & then

160+ &l = 1800 + &0 — ellé, — &, (14)

solongas ;]| > 1 and ||&,]| = 1. To prove (14) let 5, and #, be elements of the
unit ball such that &,(y,) = |[£,]] and &,(7,) = ||&,]. It is then elementary to
verify that

161 + &l = 1€, + 1E20l = Ny — w12l 1S — &l (15)

To prove (14) let [|&; —&,]l < 8. Then clearly (€ — &)l < o6 and
(€1 — &a)m)| < 6. Since &1(n,) = 1 and &,(n,) = 1, this implies &(n,) > 1 — 5
and &,(n,) > 1 — 6. Consequently,

G+ &) (’“ . ’72) =1+ 3(n) +360) > 26
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Therefore, |5, + n,]| =2~ 6, which from uniform convexity implies
lny — 12l <e. Plugging this into (15), we obtain (14).
Qur next objective is to show the function

f@© = 1€ + th, (16)

where ||&]| = 1, is differentiable at the value ¢ = 0. Since it is a real valued convex
function of ¢, it has a derivative from the right and from the left. Let

H(r) = (I + thll — 1€/

We claim that lim, o(H(t) — H(—1)) = 0 and hence the right and left derivatives
agree. But

H@t) — H(—1) = (|& + th] + |& — th] — 2)/t. - (17)

By substituting &, — &, = hand &; + &, = £, inequality (14) can be recast in the
following form: For every ¢ > 0, there exists o > 0 such that (| =1 and

k. < a imply _
1€+ hll + 1€ — A} <2+ ¢lh. (18)_

Since the numerator on the right side of (17) is nonnegative, from (18) we obtain
0 < H(t) — H(—1t) < ¢|h].

Since ¢ > 0 is arbitrary, the differentiability is proved.
The next observation is that the function f(¢) in (16) satisfies

17 (0) = h(n), (19)
where 7 is the unique element of the unit ball for which
S =<l (20)

Moreover, the mapping which assigns to any ¢ with ||| = 1, the unique # for
which (20) holds is a continuous mapping. By strict convexity, this mapping is
well defined and continuity follows from the same argument used to prove (14).
To prove (19), let #, be the unique ¢lement of norm 1 such that

(& +th)n) = ¢ + thl. 21)

Let &) = 1. Now

() =TS S g, 2)
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We know lim,,, H(¢) and lim,_, A(y,) both exist and hence from (22)

lim
10

f(m)t —1 (23)

exists. Since the numerator is nonpositive in (23), the fraction is nonpositive for
t > 0 and nonnegative for ¢t < 0. Thus the limit must be zero.

We now know that || + h| is differentiable in the variable h and has
derivative h(y), where 5 is. the unique element in the unit ball for which
E(m) = €]l Moreover, n depends continuously on &, so this function is C*.

To conclude the proof, we return to the function F(x, ¢) and show that it is C*
in its dependence on both variables. Let |£| = 1 and 5| = 1. Since G(x, #) is
assumed to be C' in both variables, using the notation of formula (11) we have

Solx + Ax, &) = fi(x, &) + L, ,(Ax) + o(Ax) (24)

where L, , is a linear map acting on the vector Ax and L, , depends continuously

on x and .
A word of explanation concerning the meaning of the “little oh” notation is in

order. The quantity o(Ax) satisfies
lo(Ax)| < &l Ax||

and ¢ approaches zero as Ax — 0. In (24), the number ¢ approaches zero
uniformly for all £ and # in the unit sphere and all x in a compact neighborhood.
This follows from the assumption that G(x, #) is a C* function.

Let & with F(x, &) # 0 be given. Let n{Ax) be the unique vector  of norm 1 for
which f,(x + Ax, £) = F(x + Ax, ) and let 5, be the unique vector of norm 1
for which f, (x, ) = F(x, ). Clearly, n(Ax) — n, as Ax — 0. The reason for this
is that we know that #(Ax) has a limit point (since it varies on a compact sphere)
and if a limit point differed from #, we would get a contradiction of the strict

convexity of G(x, #).
Hence, the derivatives L, ,(Ax) in (24) converge uniformly and we have, for

<=1,

F(x + Ax, §) = F(x, &) + L, (Ax) + o(Ax), (25)
where 0(Ax) is uniform for |£|| = 1 and x in some co.mpact neighborhood and
L, ,, depends continuously on x and 7, depends continuously on ¢. Therefore,
the first derivatives of F(x, £) in the variable x are continuous jointly in x and ¢&.

For a vector #, let 7 be the image of # under the natural mapping of a vector
space into its double dual. So, by definition, 7(&) = £(). Observe that
F(x + Ax, &+ A8 — F(x, & + A + F(x, & + A¢) — F(x, &)

= Ly yo(8%) + (L g +ax = Ll 8%) + 0(Ax) + 715(AE) + o(AL).
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Since the linear map L., depends continuously on (x,#) and 75, depends
continuously on ¢, we finally end up with

Flx + Ax, &+ A) = F(x, &) + LypAX) + o(AE) + 0(AX) + 0(A)

and we see that F is C! in both variables as long as ¢ # 0.

9.4. THE NONSMOOTHNESS OF TEICHMULLER’S METRIC

We have seen that the smoothness properties of Teichmiller’s cometric depend
on the smoothness of the function

f = U lo + | dx dy.

From this point on we assume both differentials ¢ and i are holomorphic on the
surface R which is of finite analytic type. At the punctures, which are points of
the completion of R but not in R, ¢ and i may have poles. We shall see that f(t)
has a continuous second derivative if ¢ has only simple zeros; however, higher-
order zeros of ¢ cause the second derivative of f(¢) not to exist and the higher
the order of the zero the less smooth is the first derivative of f(z).

Select a conformal disk A < H/T" and a local parameter z such that
A = {z:|z| < 1}. Assume ¢ and ¥ are holomorphic in A — {0}, and let

g() = ” lo + ty| dx dy.

Clearly one can write f(f) as a finite sum of functions of the form g(t) defined
with respect to appropriately defined conformal disks. Thus smoothness
properties for g(¢) imply smoothness properties for f(t). We adopt the con-
vention that pole of order k is a zero of order —k.

Theorem 4. Let g(t) be the function defined above where @ and  are holomorphic
and nonzero in {z:0 < |z| < 1}. Let m = the order of the zero of ¢ at z = 0 and
k = the order of the zero of y at z =0 and assume k and m > —1. Then the

function g(t) is differentiable and

([ el
g'(0) = Rejj Y(2) o02) dx dy.
A
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Ifm —k <2+ k, then g has a continuous second derivative and

" _ 1 (N2
g@i”m$@W@WDﬁ@ 27)

A
Ifm—k>2+k, then
g(t) = g(0) + tg'(0) + ce(t) + o(e(t)), ¢ >0, (28)

where -
g(t) = (L TOTRIm= i — k> 2 4k,

dg_ﬁmﬁ% ifm—k=2—k (29)

Proof. We need the inequality

tod o _
AN A AN A (30)

1
Eli+w <+ Al —lol ~Re 3 p < W= 1B

The left part of inequality (30) is true for complex numbers o and f with |8} < |al.
The right hand part of inequality (30) is true for all « and §. Inequality (30) is a
consequence of Taylor’s formula with integral remainder term applied to the
function h(t) = |1 + tf]. One finds that

- ~ 1 (Im f)?
1 =1+R 1 —1)dt.

L+ fl=1Ref | (-0
The inequality follows by letting B = B/ and making obvious reductions which
follow from the assumption that |f| < |o| and the fact that ¢ is between zero and

one.
We also need the more elementary inequality

0<la+fl— Il —Re 2 p<aip (31)

In Lemma 1, we calculated the first derivative g'(0). A formal calculation of g"(0)
yields formula (27). The integrand in (27) is clearly bounded by [¥|*/|¢l.
Obviously, if m — k < k + 1, then [¥/|*/|¢| has at worst a simple pole at z =0
and has no singularities anywhere else in the unit disk A. In that case, the
integral (27) converges absolutely. It is then easy to see that g"(0) exists.

Next we treat the case where m — k > k + 2. By looking at a smaller disk and
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changing the local parameter at the origin, we may assume ¢(z) = z" and
y(z) = 2*h(z), where h(z) is nonzero everywhere. On letting I(t) =
g(t) — g(0) — tg'(0) we obtain

z(r)zﬂ |2f* I:}z’”"‘+th| 2"~ — tRe ' 'm kh] dx dy (32)

A

The hypothesis that k > — 1 and the assumption that m — k > k + 2 imply that
m—k>1

Let j=m—Fk and z=t"¢ and a=1t"'"9 Since |z <1, [{| <t =a
Letting A, = {{: |{| < a}, we have

1) = ﬁtl’“"““”ﬂlél"[lél‘ + b — ('] — Re (‘—g—')h} dedr.  (33)

Notice that a — oo as t — 0. For [{|/ larger than one and larger than an upper
bound for h, we see from (30) that I(¢)/t* T{**+2)1 has an integrand bounded by a
constant multiplied by [([*/ =|{|* ™ >|{|73 Hence, the integral
I(t)/t2 W&+ 2 converges absolutely for { near co. From (31) the integrand is
bounded for ¢ in any bounded region. Inequality (30) and the fact that h is not
zero show that the integrand is nonnegative everywhere. Thus

lim I(z)/¢" 6+ 2/m=h1 = C > 0,
t—=0
Finally, we consider the case m —k=4k+2. Then j=m—k=k+2>1
and we still have a — oo as t — 0 since a = ¢t~ /. We obtain

¢=2 _ k| jrk+2 P+ 2 |C! HZ
HOENE RS NGRS (G e T h | d¢ dn. (34)

We break down this integral into two parts, the first part over the domain
] < (M/8)'", where M is an upper bound for h and 0 < 6 < 1, and the second
part over the domain (M/8)'” < |{| < a. Then from (31) the first integral is
bounded by

2 M?
ff 2M|Clkdffd7?=(k+2)—5“-

1< (M/8)"

From (30) the second integral is bounded by

{‘ 2
JrJ i fM 5y 44 dn-

D | s
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where the integral is over the domain (M/6)*7 < |{| < ¢t~ '¥. This is equal to

M '1101 loM
200 =6 j\BT T %% )

The estimate t~2I(¢) < (const) log(1/1) follows. To get the other estimate needed
for (28), one uses the other half of inequality (30).

9.5. WEIERSTRASS POINTS

In order to construct the conformal mapping induced by an isometry of the
linear space of holomorphic quadratic differentials, we need some elementary

facts about Weierstrass points.
Let A be a finite dimensional vector space of holomorphic functions on a

plane domain D. Assume dim A = m and z is a point of D. Let ord, ¢ be the
value of k > 0 for which the Taylor expansion begins

W) =aw—z)+ -+  witha, #0.

A basis of 4 adapted to "z is a basis ¢q,...,0, such that

ord, ¢, < ord, ¢, <+ < ord, ¢@,,.
To construct such a basis, let ¢, be an element of A with smallest possible

order u,. Then let A, be the subspace of 4 whose elements have order larger
than-u,. Thus, dim 4; = dim 4 — 1. Now let ¢, be a nonzero element of 4,
with smallest possible order u, and 4, be the subspace of 4; whose elements
have order larger than u,. Evidently dim A, = dim 4, — 1 and we can continue
this process until we get elements ¢, ..., ¢,, which are a basis for 4.

Notice that 0 < py < py <+ < U and therefore u; > j — 1. To the point z,
we associate an integer 7(z) which we call the weight of z with respect to 4,

@)= 3 (= + 1 69

Definition. z is called a Weierstrass point for A if t(z) > 0.

Let {¢y,..., @,} be a set of elements of A. The Wronskian of this set is the
following determinant of derivatives:

91(2) T @u(z)
W(z) = det | @i(2) ()
oz o el Hz))
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It is obvious that if C is an m x m matrix of constants transforming {@y,-. > @m}
into {@4,... ®m}, then the Wronskian for the transformed set is

W(z) = (det C)W(2). (36)

Thus, the order of W(z) at z is invariant under change of basis.

Lemma 4. The weight of z with respect to A is the order at z of the Wronskian of
any basis of A, that is,

7(z) = ord, W(z). 37
Proof. Let @4,..., ¢, be a basis for 4 and we adopt the notation
W(Z) = det[@l(z)a AR qam(z)]

By the preceding remarks, we know it is sufficient to calculate the order of W(z)
using any basis for 4. We will use a basis adapted to z.
We leave as an exercise the proof that

det[f(pla"wf(Pm];fmdet[q)l:'-'acpm] (38)

for any holomorphic function f

Lemma 4 is proved by induction on the dimension of 4. The lemma is
k+1

obviously true if dimA4=1 From (38), det[@y,..., Pr+r1] = @1
det[1, @5/®1,- - -» Pr+1/@1]- Since the first column of this last matrix has a one

on top and zeros below, the expression becomes
Pkt det[(@2/01)s - (Par1/01)']
and, since order is additive, we see that
ord, W(z) = (k + Dpy + ord,(det[(p2/@1)- -+ (@1 /00 ]

We can apply the inductive hypothesis to this last expression and we obtain

kE+1 k+1

ord, W(z) = (k + Ly + _; (pj—p—H—(k=2)= 21 (nj—Ji+ 1)

j=

Lemma 5. Suppose A is a finite dimensional vector space of holomorphic functions
of dimension m on a domain D. Then a set of elements @y, ..., 0, forma basis for
A if, and only if, their Wronskian is not identically zero. Moreover, the set of
Weierstrass points in D for the space A is a discrete set.
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Proof. If there were a linear dependence, then one of the columns of the
Wronskian determinant would be a linear combination of the others, and hence

the Wronskian would be zero.

Conversely, let W, be the Wronskian of the set ¢y, ..., ¢ W, (2)=0, we
wish to show that ¢,,..., ¢, are linearly dependent. We may assume that
W,(z) # 0 because W,(z) = ¢,(z). Hence, we may take a largest value of k < m
. for which W,(z) # 0 and W, ,(z) = 0. Form the ordinary differential equation in
the unknown y given by

I/Vlc-i—l(qolr'-:(Pk:y)':—O' (39)

It is a homogeneous equation of order k in y and W,(z) is the coefficient of yt,
Since W,(z) # 0, the equation has a k dimensional vector space of solutions. The
functions ¢;, 1 <j < k, are solutions because one takes the determinant of a
matrix with two identical columns. Now ¢, is a solution because we know
that W, ,(z) = 0. We conclude that ¢, ..., @+ are linearly dependent.

To prove the last part of the lemma,, note that the Wronskian of a basis for 4
cannot be identically zero. Since the zero set of a nonconstant analytic function
is discrete, we see from Lemma 4 that the set of Weierstrass points is a discrete

set.

Lemma 6. Let A be a finite dimensional space of holomorphic functions of
dimension m defined on a domain D. Assume that no point of D is a Weierstrass
point. To each point z of D, let ¢, be the unique differential with order m — 1 at z
and with leading Taylor coefficient 1. (That is, @ (w)=(w — zy" "' + higher
terms). Then ¢, depends holomorphically on z. Moreover, the curve ¢, is not
contained in any proper linear subspace of A.

Proof. Let @q,..., ¢, be a basis for 4. We know there are unique constants
¢4(2), ..., cn(z) such that

1@ (W) + -+ + Cu(DPn(W) = @:(W).

From the definition of ¢, the function c;(z) are the unique solutions of the
following system:

c1(2)91(2) + 0+ Cp(2)pml(z) =0
ci(@ei(z)  + o+ w(@en(z) =0
q(z)%o‘f"’ o)+ + ca@elt ) = 1.

Since the Wronskian is nonzero and the functions ¢!(z) are analytic, clearly the
¢;(z) are also analytic. :
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If the family @,(w) is contained in a lower dimensional subspace, then one
could choose the basis so that c,,(z) = 0. Then the first m — 1 equations in this
system would force ¢;(z) = 0 to be identically zero for each z, which would be a
contradiction.

Our application of Lemmas 4, 5, and 6 will be to the space of quadratic
differentials on a surface R. If a surface has genus g > 2 and no punctures, then
the space of quadratic differentials has dimension 3g — 3 (see Section 1.11). It is
an easy consequence of the Riemann—Roch theorem that the space of
holomorphic g-differentials (for g >2) has dimension (2q — 1}(g — 1) (see
[FarK]). By a g-differential we mean a differential ¢ for which the expression
¢(z) dz%is invariant. An example of a g-differential can be obtained by raising a

 1-differential (abelian differential) to the gth power. Thus, the number of zeros of
a g-differential counted with multiplicity is 2q(g — 1).

Lemma 7. Suppose A is the space of holomorphic quadratic differentials on a
surface of genus g with no punctures and g > 2. Let W(z) be the Wronskian of a
basis of A. Then W(z) is a g-differential where q = 9g(g — 1)/2. Thus the total
weight of all Weierstrass points is given by the formula

Y ©(P)=9g — 1)’g.

PeR

Proof. To prove the Wronskian is a g-differential we begin with the identity
oi(f@f '(2)* = ¢,(z), where f is the transition function from a local coordinate
2 to a local coordinate 7 and then repeatedly apply identity (38) to the formula
for the Wronskian of @y,..., P3,-3- -

The value of g is merely the sum of the arithmetic progression
2 +3 4+ 3g — 2. The formula for the total weight is obtained from the
formula for the total number of zeros of a g-differential which is 2q(g — 1).

Lemma 8. Let A be the space of holomorphic integrable quadratic differentials on
a hyperbolic Riemann surface R of type (g, n) and assume (g, n) is not one of the
exceptional types (0, 3), (0,4), (1,1), (1,2), or (2, 0). Let R be the surface R with all
of the quadratic Weierstrass points removed. Let P(A) be the projective space of A
and let dim A = m. For each z in R, let a(z) be the line spanned by the unique
element @, which has order m — 1 at z and Taylor expansion

@,(w) = (w — 2"~ ' + higher terms

for some particular local parameter z. Let S be the image of « and define f: S — R

by letting f(@) be the point where @ has its highest order. Then o is injective, o and
B are analytic, and foa(z) = z.
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Proof. Since R is hyperbolic (i.e., has a Fuchsian universal covering group)
and since we are excluding the exceptional cases, we know that the dimension of

Aism=3g — 3+ nand

n=>s forg =0,
nz=3 forg=1,
nzl for g =2,
n arbitrary for g > 2. 40)

That o is analytic easily follows from Lemma 6. Once we know « is injective, it is
obvious that the image of « is a complex curve and its inverse mapping f is
analytic.

To show that o is injective on R, we first note that in all cases m > 2, and
hence the projective space of 4 has at least dimension 1. The hypothesis that a
point z of R is not a Weierstrass point and not a puncture ensures that there is an
element ¢ in A with order exactly m — .1 = 3g — 4 + n. Since the total number
of zeros counted with multiplicity of any element ¢ in A is 4g — 4 + n, we see
that the maximum order of any other zero of ¢ is g. But g < 3g — 4 + nin all of
the cases listed in (40). This shows that the mapping f which associates to an
element @ in S the point where ¢ has its highest order zero is well defined. This,
of course, is the same as showing that o is injective.

9.6. ISOMETRIES OF T(I')

By virtue of Royden’s theorem on the equality of Teichmiiller’s and Kobayashi’s
metrics, a biholomorphic self-mapping 0 of T(I') must be an isometry in
Teichmiiller’s metric and at each point p in T(I') the derivative ), must be a
linear isometry of the fiber of the tangent bundle at p onto the fiber of the
tangent bundle at 6(p). Since the dual of the metric F is the metric G, this means
that there is an induced complex linear isometry 8, of the fiber of the cotangent
bundle at A(p) onto the fiber of the cotangent bundle at p.

In the next theorem we will show that the linear isometry 6,* must be induced
by a conformal mapping from the surface represented by p to the surface
represented by 6(p) and multiplication by a constant of modulus 1. In particular,
for each p in T(I'), there must be an element h, of Mod T', possibly depending on
p, such that 6(p) = h,(p).

Assume H/T" is not of exceptional type so that the action of the modular
group on Teichmiiller space is faithful (Theorem 3 of Section 8.2). We claim that
for the given isometry 0, the clement of the modular group #, for which
6(p) = h,(p) must be constant with respect to p. First we show there is a positive
number J such that h,(g) = h,(q)if d(p, g) < 6. We know the modular group acts
discontinuously on Teichmiiller space, and thus there is a d > 0 such that




9,6. ISOMETRIES OF T(I) 185

d(p,q) <26 implies g is not in the orbit of p unless g =p. Now assume
d(p, q) <9. Then d(6(p), 6(g)) = d(h,(p), hy(q)) < because § is an isometry.
From the triangle inequality,

d(h,(q), hy(@)) < d(hy (@), hy(p) + By (p). hg(a))

The first term on the right is less than & because £, is an isometry. The second
term on the right is less than & because 6 is an isometry. Thus h, Yoh,(q) has
distance less than 26 from g and must be equal to 4. We conclude that
0(q) = h,(q) for every q with d(g, p) < 6. It is an exercise to show that the points
in Teichmiiller space with trivial isotropy groups form a connected, open, dense

subset. Thus, 6(q) = h,(g) for all g in T(I).
Except for the exceptional cases, we see that Theorem 2 is a consequence of

the following theorem.

Theorem 5. Assume L is a complex linear isometry from A(T') onto A(T"') and that
T and T are hyperbolic covering groups of compact surfaces with a finite number
of punctures and assume H/T" and H /T are not of exceptional type. Then the type
of T and the type of T" are the same and there is a conformal mapping
c:H/T" - H/T and a complex constant A with |A| = 1 such that

L(p) = c* o,

where c* (z) = ;p(c(z))c’(z)z.
Remark. A complete list of isomorphisms between Teichmiiller spaces of
different types was given by D. B. Patterson [P]. The list is

T(2, 0) = T(0, 6),
T(1, 2) = T(O, 5),
T(1,0) = T(1, 1) = T(0, 4).

Note that for each isomorphism pair at least one of the two is of exceptional
type. The fact that there are no other isomorphisms follows from Theorem 5and
the fact that a biholomorphic mapping of two Teichmiiller spaces induces

isometries on the fibers of the tangent bundles.
In order to begin the proof of Theorem 5 we give the following lemma. Let

(g, n) be the type of H/T andletd=3g -3 +n

Lemma 9. (Due to Earle and Kra [EK1]. Suppose d>3. Let f(t) = llo + t¥],
where @ and \ are in A(I'). Then  is holomorphic at every puncture of H/T if and

only if
£(5) = £0) + ££(0) + O(el* TP*%) (41)

for all @ in AX) with @ # 0.
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Proof. 1f  is holomorphic at every puncture, then from (29) in Theorem 4 we
can put k = 0 and m equal to the highest possible order of a zero, which, from
the Riemann-Roch theorem, is 4g — 4 + n = %d — in < 4d. Therefore, the
slowest possible convergence to zero as t—0 of the expression
J@ — f(0) — t/7(0) is O(l¢e]' /29,

Conversely, suppose i has a pole at some puncture. Then choose ¢ with the
highest possible order zero at that puncture, which is at least of order d — 2.
Plugging in k = —1 and replacing m by d — 2 in Theorem 4 we get

f(&) — f(0) — t£(0) = clg| *A/~ 1),

But since 1/(d — 1) < 3/2d for d > 3, the lemma follows.

Corollary. If H/I" and H/T" are surfaces of nonexceptional type and if A(I') is
isometric to A(I"), then H/T" and H/T", are of the same type.

Proof. First assume d = dim A(I') > 3. Note that if L is the isometry, then

J@ = llo+th] =ILe) + L)

Hence if f(¢) has a certain order of growth for ¢, ¥ it must have exactly the same
order of growth for L(p) and L{yy). We conclude from Lemma 9 that L must
preserve differentials which are holomorphic at the punctures. Since the
holomorphic quadratic differentials have dimension

0 ifg=0,
1 ifg=1,
3g—-3 ifg>1,

we see that H/I" and H/I™" have the same genus. And since dim A(I') = dim A(I"),
they must also have the same number of punctures.

Now suppose d < 3 and both H/I" and H/I" are nonexceptional. This means
d cannot be zero or one. If d = 2, the only nonexceptional type is (0, 5). If d = 3,
there are two possible types, (0, 6) or (1,3). To complete the proof of the
corollary, we must show these two types cannot have isometric spaces of

quadratic differentials. A quadratic differential on a surface of type (0, 6) is
expressible in the form

Co+ ¢z + cy2°
Pledz” = S

= dz?,
(z =Pz —py) (2 — pe)

where ¢, ¢y, and ¢, are arbitrary and p, through p¢ are the punctures. Such a
differential can have at most a double zero and for f(f) = ||@ + /|, with @ £ 0,
f"(0) exists unless either ¥ is nonzero at a double zero of ¢ or ¥ has a pole at
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some puncture where ¢ has a zero. In these cases, Theorem 4 implies
2 1 3/2
e(t) = t* log l?{ or |t]'- (42)

These are the possible rates of growth of f{t) — £(0) — tf'(0) for pairs ¢ and W
for which f”(0) does not exist.

On the other hand, on a surface of type (1, 3), we may select ¢ with a triple
zero at a point where ¥ is regular and nonzero. For such a choice

e(t) = |t
Thus, the two spaces of quadratic differentials cannot be isometric.

We now proceed with the proof of Theorem 5. Let A and A’ be the spaces of
holomorphic quadratic differentials on the surfaces R and R’ of nonexceptional
type. Assume L is a complex linear isometry of 4 onto A'. From the corollary to
Lemma 9, we know the types of both surfaces are the same. Let R be the surface
R with all of the quadratic Weierstrass points removed.

Let S be image of R under the mapping « described in Lemma 8. Repeat all of
the same definitions for the surface R’ and the space A". We obtain the diagram
shown in Figure 9.2. We must show that the mapping L takes S into §'.
Corresponding to any point z on R, we let @, be the nonzero differential with

highest possible order zero at z.

P(A) P(A)
() U
§——r — 8
I I
R R’
Figure 9.2

SteP 1. If 7 is a puncture of R (and R is a surface of nonexceptional type), then
L(p,) is a differential with its highest zero at a puncture of R'.
To show this, as usual we look at the function

f@=le.+ 0l
From Theorem 4 we know that f() = f(0) + tf'(0) + ce(t) + o{e(t)), where

¢ >0, where &(t) = t* for certain « with 1 <a < 2, and &(t) = t* log(1/t) for
o= 2.
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We will focus attention on o«. Smaller values of o correspond to less
smoothness in the function f and we will think of the smaller values as being
worse. When z is a puncture, the worst value of o is achieved by letting ¢, have a
zero of order at least 3g — 5 + n and we can make y have a pole at z. In

Theorem 4, this means m > 3g — 5+ nand k= —1, and
1
<l 4+
: +3g—4~1—n

Now consider the differential L(¢,). Let the worst value of o correspond to some
point z". If z' is not a puncture, the worst possible behavior of || L(¢p,) + tL(¥)||
has

2

>14+——
*z +4g—4—|—n

because 49 — 4 + n is the largest possible order of a zero and the differential
L(y) cannot have a pole at z'. These two conditions on « obviously show that
2g — 2 +n<2, and this inequality is satisfied precisely for the surfaces of
exceptional type (0, 3), (0, 4), (1, 1), (1, 2), or (2, 0).

When g =0 and n = 5 the application of Theorem 4 proceeds a little bit
differently. In that case the function || L(¢,) + tL{y)|| would be of class C* while
@, + t| would have &t) = ¢ log(1/1).

This step obviously implies that if ¢, has its highest possible zero at a
nonpuncture, then so does L(¢,), since we can just as well apply the argument to
LT
StEP 2: If z is a nonpuncture of R and ¢, has highest possible order zero at z,
then L(¢p,) has a zero of exactly the same order at some unique point of R'.

To prove this, we look again at the function

@) = llo. + |l = | Lie.) + tLY).

In the application of Theorem 4 we know that k > 0 at the nonpuncture z, and
by selecting  to be nonzero at z, we can make k = 0. Now the order of the zero
of ¢, at z is m>3g —4 +n and m>3g—4 +n precisely when z is a
Weierstrass point. Since the order of any other zero is at most g and since
g < 3g — 4 + nfor nonexceptional surfaces, we see that « = 1 4 2/m. This forces
L(¢,) to have a zero of the same order m at some unique point z" where L(}) is
nonzero. Thus z will be a Weierstrass point if an only if z’ is. We see that L
preserves the differentials ¢, corresponding to nonpunctures and non-
Weierstrass points.

STEP 3: Since L is complex linear, from Lemma 8, the mapping fo L' oo from
R’ to R is analytic with analytic inverse B'oLea. Moreover, this mapping
extends to a conformal map ¢: R’ — R because punctures are removable for
bounded analytic functions.
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STEP 4: Let @, be a differential with highest possible order zero at c(z) on R.
Evidently cpc(z)(c(v.)))c’(w)2 is a quadratic differential on R’ which has highest

possible order at z. Hence,
Luw) = A Peialcw))e' (9)*

Since L is an isometry |4, = 1. Since the dependence of ¢, on zis holomorphic
and L is complex linear, the mapping z — A, is holomorphic and therefore must
be constant. '

StEP 5: By Lemma 6, the differentials ¢,, for z in R, are not contained in any
proper linear subspace and we must have L{p)}w) = Ag(c(w))c'(wy* for all
quadratic differentials ¢. '

The proof is now complete.

Notes. The theorem of Bers and Greenberg appears in [BerGr]. Marden [Mar]
proved the result independently and by a different method. Kra gave a proof
based on Teichmiiller’s theorem for finite dimensional Teichmiiller spaces
[EK2]. The proof given in Section 9.1 differs from any that appear in the
literature in that it relies on the sufficiency of Hamilton’s condition for
extremality. I would like to thank Irwin Kra for pointing out an essential error
in the proof I originally gave. The Bers—Greenberg theorem has recently been
proved in a different way by Earle and McMullen [EM].

The contents of Sections 9.2 through 9.6 are contained in Royden’s paper
[Ro] and the papers of Earle and Kra [EK1, EK2]. Dual relationships between
convexity of a norm and smoothness of the dual norm in Banach spaces are
studied exhaustively in the book by Mahlon M. Day, Normed Linear Spaces
[D]. Theorem 4 is due to Royden [Ro] for compact surfaces and is extended to
surfaces with punctures by Earle and Kra [EK1]. The section on Weierstrass
points is classical. More exhaustive treatment of Weierstrass points can be found
in [FarK]. '

Theorem S on isometries is due to Royden. Earle and Kra extended it to
surfaces with punctures. Patterson’s theorem first appears in [P].

Royden’s technique of using the fact that Kobayashi’s metric equals
Teichmiiller’s metric and the nonsmoothness of this metric has been used to
study holomorphic fiber spaces over Teichmiiller space. See Earle and Kra
[EK2], Hubbard [Hul, Nag [N1], Kra [Kr7], and Krushkal and Kuhnau

[KruKu].

EXERCISES

1. Let f be a function from a domain U in R" to R whose derivative exists at
every point of U. Suppose farther that x and x + Ax arein U and that

|fx + Ax) = {f(x) + fx)(Ax)] < KfjAx|* e
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for some positive number ¢ and the same value of K for every x in the domain.
Show that f’(x) is H6lder continuous, in the sense that

177 () = f' W < Mlx — y|°

for some constant M and every x and y in an arbitrary compact subset of U.

2. By consideration of the example f(x) = x? sin(1/x) and f(0) = 0, show that
the result of Exercise 1 is false if one permits the constant K to depend on the
point x in the domain.

3. (Open Problem) Determine whether or not the Teichmiiller cometric
G([1l, @) is of class C1*e,

4. (Open Problem) Determine whether, for infinite dimensional Teichmiiller
spaces, the Teichmiiller cometric is of class C*.

5. Show that if a norm on R” is strictly convex, then it is uniformly convex. A
norm is uniformly convex if for every ¢ > 0 there exists a § > 0, such that if
[xl = lyll =1and {x + y|| =2 — 4, then ||x — y| <& A norm is strictly
convex if for every t with 0 <t < 1 and every x and y with ||x|| = || y|| = 1,

~one has |[tx + (1 — f)y] < 1. :

6. (Open Problem) For an infinite dimensional Teichmiiller space T(I')
determine whether it is possible to find a biholomorphic bijective mapping of
T(I') onto T(I') which is not an element of the modular group.

7. Show the following biholomorphic isomorphisms between Teichmiiller

sSpaces:
T(1,0) = T(1, 1) = T(0, 4),
T(2, 0) = T(0, 6),
(1, 2) = T(, 5).
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QUADRATIC
DIFFERENTIALS WITH
CLOSED TRAJECTORIES

Let R be a Riemann surface of finite analytic type (g, n). Assume the dimension
d =39 — 3 + n of the space A(R) of integrable, holomorphic, quadratic dif-
ferentials on R is positive. In the first section we show that d also ‘has a
topological meaning. It is the maximal number of simple closed curves on R
whose homotopy classes can be represented by nonintersecting curves which are
not homotopic to a puncture or to each other. A family of d or fewer such curves

on R will be called an admissible family.

Our objective is to show that corresponding to any such admissible family of
Curves, oy, ..., &, (k < d) on the Riemann surface R and to any set of positive
constants by, ..., b, there exists a unique quadratic differential ¢ in A(R) with the

following properties:

(a) The noncritical horizontal trajectories of ¢ are closed.

(b) The classes of homotopic horizontal closed trajectories of ¢ partition R-
{critical trajectories} into k annuli A, ..., 4.

(c) Any closed trajectory lying in the annulus 4, is homotopic to ;.

(d) The height of each annulus 4; measured along any vertical trajectory in
the metric |@(z)dz?|*? is b,.

We call differentials with these properties Jenkins—Strebel differentials. We
show that the existence of such differentials can be viewed either as a
consequence of Weyl’s lemma or of the theorem on the existence of trivial
curves, Theorem 6 of Chapter 5. The uniqueness comes from the length area
method or from the second minimal norm principle of Chapter 2.

191
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10.1. ADMISSIBLE SYSTEMS

A system of closed curves {o: 1 < i < k} on R is called admissible if

(a) each a; is simple and no «; intersects any a; for i # j;
(b) no «; is homotopic to any a; for j # i; and
(¢} no o; is homotopically trivial or homotopic to a puncture.

Lemma 1. Suppose d = 3g — 3 + n is the dimension of the space of integrable
holomorphic quadratic differentials, A(R). Assume that when the genus of R is zero,
the number of punctures is four or more, when the genus is one, the number of
punctures is one or more, and, when the genus is two or more, the number of
punctures is arbitrary. Then the maximal number of elements of an admissible
curve system is d (i.e., k < d). Moréover, given any admissible curve system {a;
1 <i<k}withk < d, one can find d — k additional curves, «, , 1r e -, 0y, sSuch that
{o; 1 <i<d} is an admissible curve system.

Proof. First check that the hypothesis d > 0 ensures that there is a simple
curve not homotopically trivial and not homotopic to a puncture. Given the
system {a; 1 < i<k}, cut the surface R along each one of the curves in this
system. After R is cut along these curves, it breaks up into components. If any of
these components is not homeomorphic to a sphere with three punctures, we
may cut them up along additional curves oy, ..., a, none of which is
homotopically trivial or homotopic to a puncture until every component is
homeomorphic to a sphere with three punctures.

Let j, be the number of such components for which all three boundary
contours are holes. Let j; be the number of such components which have one
boundary contour which is a puncture and two which are holes. Let j, be the
number which have two boundary punctures and one boundary hole. If R is
reconstructed by sewing together boundary curves, the boundary curves are

paired together and, therefore,
3o + 2y +Jj2 =2m.

Moreover, the total number of punctures on Ris n = 2j, + j, and it is therefore
obvious that

2m+n =3j, (1)
where j = j, + j; + j, is the total number of genus zero components.

On selecting a triangulation of R whose vertices include the n punctures and
whose sides include the curves «,,.. ., «,, and on using the Euler characteristic

formula 2 — 2g = faces — edges + vertices, one easily finds that

2-2=—j+n @)

i
i
i
H
!
i
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Figure 10.1

Therefore, the number of components is j = 2g — 2 + nand, plugging this result
into 2m + n = 3j, we see that m = 3g =3 + n. QED.

Two admissible systems {oz | <i<k}and {&; 1 <j< k} on R are called
compatible if each «; is homotopic to one of the &; and if each &;is homotopic to
one of the «;. Compatibility of admissible systems is obviously an equivalence
relation. Notice that there are many incompatible systems on a given surface.
Even in the case when the type is (g,n) = (1,0) or (g,n) = (0,4) which lead to a
one complex dimensional space A(R) and for which the curve family can have
only one element, there are many incompatible systems. Figure 10.1 shows an
example of two incompatible systems when (g,n) = (0, 4).

10.2. AN EXTREMAL PROBLEM FOR ADMISSIBLE SYSTEMS

Let R be a Riemann surface of type (g,n) with d = 3g — 3 + n > 0 and let {o;:
1 < i < k} be an admissible system on R. We will call a J ordan curve contained
in an annulus a core curve for the annulus if its homotopy class generates the
fundamental group of the annulus. Let 4; be an open annulus embedded in Rin
such a way that a core curve of A4, is homotopic in R to ;. Given k such annuli
which do not intersect each other, we call the system {4;; 1 <i < k} compatible
with the system of curves {o;: 1 <i < k}.

Let the admissible system {oz 1 <i < k} and a set of k positive constants b;,
1 < i < k, be given. For any compatible system {4;; 1 <i < k} form the number

2

kP ,
P{A;} = __Zl ;;1- | 3)

where m; is the modulus of the annulus 4;. Recall from Section 1.9 that if an
annulus is uniformized to be a domain of the form {z: 1 <z <R}, then its
modulus is (log R)/27. :

We pose the following extremal problem. For a given admissible curve system
{o; 1 < i < k} and a given system of constants b, > 0,1 < i <k, find a compatible
system of annuli {A;; 1 < i <k} for which (3) is minimurm.

First, note that there always is a compatible system. One simply has to take
tubular neighborhoods of a given system of nonintersecting curves «; in such a
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way that the tubular neighborhoods are nonintersecting. Second, observe that
for a given simple curve o, which is not homotopic to a puncture or to a point,
the modulus m; of any annulus A; compatible with o; is bounded above.

To prove this fact, let p(z)|dz| be the noneuclidean metric for the surface R and
let p{z)ldz] be the noneuclidean metric for the annulus A4;. Then, by the
comparison principle for noneuclidean metrics (see Ahlfors’s lemma in the
appendix to Chapter 9), p{z) > p(z). Therefore, the noneuclidean length of the
core curve of A, in the metric p; is larger than the length of the geodesic ¢; on R in
the same homotopy class. Let #(a;) be the length of this geodesic on R. A simple
calculation shows that for an annulus, n/m, is the noneuclidean length of the
geodesic core curve on A; in the metric p;. Thus n/m; > £(e;) and m; < w/t (o).
Since #(«;) is assumed to be positive, m; is bounded.

The expression P{4;} in (3) cannot have zero as a minimum. In fact, each of
the terms b?/m; is bounded below by b?#(«;)/n and so each of the summands in
(1) is bounded away from zero. Let

¢ = inf P{4;}, @)

where the infinum is taken over all compatible systems of annuli.

Theorem 1. Let b; be a set of positive constants for 1 <i<k and let {a;:
1 < i <k} be an admissible system of curves on a Riemann surface R of type (g,n)
with Q0 < k < d = 3g — 3 + n. Then there exists a family of compatible annuli {4;;
1 < i < k} for which the infimum in (4) is achieved.

Proof. Select a sequence of compatible annuli {A;: 1 <i<k} such that
P{A,,} decreases to the number ¢ in (2). For each annulus 4,, select a conformal
homeomorphism z;, which maps A4, onto an annulus in the plane whose inner
boundary is the circle of radius 1 and whose outer boundary is the circle of
radius r;, where (1/2x) log r;, = modulus of 4;, = m;,. Since there is an upper
bound M for P{A,,}, we see that b}/m;, < M and thus m;, > b%/M. On the other
hand, we have already shown that m;, < n/#(a;). Thus any subsequence of m;,
has a subsequence which converges to a positive number. Let f: be the inverse
mapping to z;,. The region {z: 1 < |z] < b2/M} is contained in the domains of all
the functions f,. Thus the functions f;,, form a normal family of univalent
functions and have a subsequence which converges to a univalent function f;.
(The limit f; cannot be constant without having m;, converge to zero.) Let z; be
the inverse function to f;. By taking a subsequence, we may assume the numbers
r;,, converge to a number r; > 1 and the domain of the function f; is {z
1 < |z| < r;}. By taking further subsequences, we obtain the function f; for each
curve o;. Let 4; = the image of f;. It is a simple matter to show that the A, are
disjoint from each other, because, if not, one could find n such that the
intersection of A, and A, is nonempty for some i #j. By construction, the
annuli 4, achieve the minimum in (4) and are a system of annuli compatible with

the system of curves a;.
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10.3. WEYLS LEMMA

Ultimately, we wish to show that the extremal property 2) satisfied by the
family of annuli in Theorem 1 yields a holomorphic quadratic differential with
closed trajectories. It turns out that the extremal property forces an infinitesimal
condition which, by Weyl’s lemma [Ah1], causes 2 particular quadratic
differential to be holomorphic.

We first state Weyl’s lemma in local form and then give a corollary which is
adapted to Ll—quadratic differentials on 2 Riemann surface. The proof of Weyl’s
Jemma is relatively clementary and appears in many places. The reader is

* referred to Bers [Berl], Farkas and Kra [FarK], Kra [Kr5], and Springer [Spl

We need several definitions. Let D be a plane domain and suppose fisan L
function on D. If f is of class C!, then the complex derivative f; 18 defined by

YN
=7 (ax +i ay) )

and if @ is any C* function with compact support in D, then integration by parts
yields

ﬁ fA2)olz) dx dy = — H f(z)opz) dx dy. (6)

In order to avoid indication of the domain of integration, W€ assume the
functions ¢ are extended to the whole plane by letting them be identically zero
outside D. We adopt the convention that when the domain of integration is not
indicated it is assumed to be the whole complex plane.

If fisan L,-function (but not necessarily cY), wesay fz = hin D in the sense

of distributions if ‘
H he dx dy = ——” foo; dx dy ()

for all C!-functions with compact support in D

Theorem 2. (Weyl's Lemma). Suppose fisan L,-functionin a domdin D and fz = 0
in the sense of distributions. Then there exists a function f holomorphic in D such

that f = f almost everywhere.

Corollary. Let @ be an L,-quadratic differential on a Riemann surface R. Suppose
that every point p has a neighborhood N and a local coordinate z N = C such that

ﬂ o(z)giz) dx dy =0 )
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for all C'~functions g with compact support in z(N). Then ¢(z) is equal almost
everywhere to a holomorphic quadratic differential & on R.

Proof. Tt suffices to show that the expression for ¢ in terms of any local
coordinate z is holomorphic in the coordinate neighborhood where z is defined.
In that coordinate neighborhood the hypothesis of the corollary assures that
¢z = 0 in the sense of distributions. The conclusion follows.

10.4. EXISTENCE OF JENKINS-STREBEL DIFFERENTIALS WITH
PRESCRIBED HEIGHTS

Our objective is to show that the annuli A; which achieve the minimum in
Theorem 1 determine a holomorphic quadratic differential ¢ in A(R) satisfying
(a), (b), (c), and (d) listed in the introduction to this chapter.

Theorem 3. Let b; be a set of positive constants Jor 1 <j<k and let {a;:
1 <j < k} be an admissible system of curves on a Riemann surface R of type (g,n)
with 3g — 3 + n > 0. Then there exists a holomorphic quadratic differential ¢ with
properties (a), (b), (c), and (d) listed in the introduction to this chapter. The maximal
annuli swept out by homotopic noncritical horizontal closed trajectories of ¢ are
the same annuli that realize the minimum in (2).

Proof. We select a set of annuli A4, ..., A with moduli my, .. ., m, which are
given by Theorem 1. By the uniformization theorem, there are conformal
mappings z; from A jminus an arc f8; connecting the two boundary contours of
Ajonto a rectangle R; which has width a;and height b;, where b, is given and a;
is chosen so the modulus m; of A; is equal b;/a;.

In the domain 4; we define ¢(z)dz? = dz}. Since the domains A ; do not
overlap, we obtain an L,-quadratic differential @ on R by letting ¢ =0 on
R — [ Ji—1 4;. Thus, |¢| = Ys-1a;b;. We must show that ¢ is equal almost
everywhere to a holomorphic quadratic differential whose regular horizontal
trajectories sweep out the annuli 4 jand such that the set R — { Jk_; 4 ; consists
of a finite number of critical trajectories of finite length and a finite number of
critical points of ¢.

Select any point p on R and a neighborhood N of p and a local parameter
z:N — C. Let h be any C* complex valued function with compact support in N.
The function z—w = z + eh(z) in z(V) and extended to be the identity outside
z(N) is a quasiconformal homeomorphism for sufficiently small & since its
dilatation is

Ws eh;

wWz) = —L = ‘ . 9

( ) W 1 + Shg ( )
If we let N be simply connected, then the mapping z+— w is homotopic to the
identity. This mapping transforms the ring domains 4; into ring domains A;
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and, since these ring domains form an admissible and competing system, We
obtain an inequality from the fact that the A; achieve the minimum in (4).
Let 45 = w(A)) and zj A~ R;bea holomorphic mapping from the annulus
A}, cut along an analytic arc joining its two boundary contours onto the
rectangle K; with base aj, height bj, and modulus m) = b; Ja;.

Now zjow?° (z;) 1is a mapping from R;to R;.Ifwe viewvasa function of the

local parameter Zj, we see that
a',-sj \dz)\ :j \w, dz + wadZl = S it + o dxg, (10
wi{a) o o

where 18 3 horizontal line segment going across the rectangle R;. Integration of

(10) with respect to dy; from 0 to b; leads to

ab; < ‘“ wlll + vl dx;dy;-

R;
Summing over j yields
Y ajb; < Ej lwllL + vl dx dy. (11)
UR;

In the right-hand side of (11), introduce a factor of(1 — |v|?)}/? in the numerator
and denominator and apply Schwarz’s inequality. The result is

2 ' 1 N
(Z a}b,-) < (H o P — W12) d dy)(” ‘1 f\:‘P dx dy). 12)

UR; . UR

Each of the integrals {{z; lw* (1 — W) dxdy s equal to {1 z; 4% dy; = djb; and so
we obtain
14 v
Y ajh; < ” \,,_‘L dx dy. (13)
UR; ;

Over each part R; of the domains of integration in the right-hand sides of (11),
(12), and (13) the variable of integration 18 Z; = x; + 1Y and dxdy = dx;dy;-
The fact that Y. b} /m; i minimum among all admissible systems implies

Y ab; < Y dsb; and, therefore,

1 o2
S ap; < ﬁ L+ gy gy, (14)
UR;
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Recall that the quadratic differential @(z)dz* is defined by

dz? in 4, 1<j<k
Z} 7 ] (15)

2 k
e T U 45

Jj=1

Therefore, —in  R;, dz;=+./p()dz and  dx,dy, = (1/2) dz;dz; =
(1/20)](z)| dz dz = |@(z)| dx dy. Moreover, in R;

vz) =) () () = sy e
dz. dz

J J

= v(2)o(2)/|p(2)|.

Since ¢ is zero outside all of the annuli, inequality (14) can be rewritten in the
invariant form

[ toeraxas < [P HOOIOI ey,

1 —z)?
R

Rewriting the numerator in the right-hand side as
{1 =M? + 2 Re vo/lo| + 21v}e()

and simplifying yields

R + |v|?
Ogﬂi%ﬂ dx dy. (17)

Substituting (9) into (17), dividing by ¢, and taking the limit as ¢ — 0 we find that

0= Jf f 0(2)hlz) dx dy

N

for every C' complex valued function h(z) defined in the arbitrary simply
connected coordinate chart z(N). By the corollary to Weyl’s lemma, this shows
there is a holomorphic quadratic differential @ which is equal almost everywhere
to ¢(z) in (15). Thus @(z) = dz} in A; and the set R — Uj‘z 1 4; has measure zero.
Moreover, 4, is swept out by closed trajectories of @. If any boundary point of A;
lies on a horizontal ray of |p|-length more than a;, then that ray must be closed
and the ring domain 4 j would lie in a larger ring domain 4 ; which does not
intersect any of the other Ay, for k # j. This would contradict the fact that the
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sum for (2) is minimal. Thus all critical horizontal trajectories have finite length
and R — =14, consists of these critical trajectories and singular points of the
quadratic differential. It is clear that the annuli 4; and the quadratic differential

@ have properties (a), (b), (©), and (d) listed in the introduction to this chapter.

10.5. UNIQUENESS OF J ENKINS—STREBEL DIFFERENTIALS

Let the system of admissible curves ;s 1<j<k on R and the positive
constants b, 1<j<k, be given. Then every simple closed curve 7 OB

determines 2 height by the formula

k
h(y) = Y, by % (the number of points iny o)l (18)

j=1

Let
n[y] = inf h(y), (19)

where the infinum is taken over all curves y' freely homotopic to - It is clear that
for a curve ¥ (ransversal to the horizontal trajectories of the quadratic

differential ¢ constructed in Theorem 3 one has

hiyl = § im. /o dzl. (20)

In this way, the following theorem can be seen as a consequence of Theorem 8 of
Chapter 2. We prefer to prove it directly.

Theorem 4. The annuli obtained as solutions to the extremal problem (2) for the
admissible curve system &, - - = o, and for the positive constants by, - - b, are
uniquely determined. Moreover, the associated holomorphic quadratic differential
is uniquely determined by the curve system %is---> o, and the heights b; of the

annuli A;.

Proof. From Theorem 3, we know that if we have another system of annuli
Ay, Ak with core curves homotopic to &y, - > % and with modulimy, .- -» my

which realize the minimum in (2), then there is an associated holomorphic
quadratic differential ¢@". The height of each annulus A; measured in the metric

\\/—q? dz|is b;. The same is true for the height of each annulus 4; measured in the
metric \\/q; dz.

Let the modulus of A} bem;= b;/4; and the modulus of Ajbem; = b;/a;. 1et
o;and o oe horizontal closed trajectories for the quadratic differentials @; and
¢'; going around the annuli 4; and Aj. Since ¢ has the shortest width of any
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curve freely homotopic to it measured in the metric [Reﬁ dz|, we see that

a; =f [Re /o dz| <f IRe /o de. @21

Using a natural parameter 7/ = x"+ iy’ for the quadratic differential ¢’ and
integrating (21) over the region A, we obtain

ab; < Jf [Re /o(z)] dx' dy'. (22)
A

J

[The integral (22) is not invariant under changes of local parameter.] Since a
natural parameter 2’ is given by the formula

7= f NGGL 23)

one sees that ¢'(z')dz'? = dz’2. Thus (22) yields the following invariant form:

oty < [[IWee /ol as 24
4;
From (22) and (24), one deduces

k k
abi< 3 [[Re o ax ay < |[wovwiaa
Aj R

j:

([} ([

R
k 172/ & 1/2

= ( 2 a,bj) ( > a;-bj) : (25)
ji=1 j=1

r)

By hypothesis, we know that the minimum in (2) is achieved by both
Di=1b}m; =Yk ab; and by Yk b?/m = D%y db;. This implies
D aib;=Ya jb; and we have equality everywhere in (25). By the uniqueness part
of Schwarz’s inequality, we see that ¢ =cp for some ¢ +#0. Since
o'l = Za}bj = Zajbj = |lel, this implies |c| = 1. Moreover, [Re.,/¢(z) = 1
for any natural parameter 2’ for the quadratic differential ¢'. It is also obvious
from these inequalities that Im. / @(z') = 0. Since ¢'(z') = 1, we conclude that

' = 0.

|
|
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MEASURED FOLIATIONS

The main objective of this chapter is to solve a type of Dirichlet problem
associated to measured foliations on a Riemann surface of finite analytic type.
The data for the Dirichlet problem consists of the complex structure for the
surface and the heights with respect to a given measured foliation of the
homotopy classes of simple closed curves on the surface.

The associated Dirichlet problem is an extremal problem, namely, to find the
minimum possible L;-norm of a continuous quadratic differential y on the
Riemann surface subject to certain side conditions. The side conditions are that
for every simple closed curve y on R, not homotopically trivial and not
homotopic to a puncture, the height of the homotopy class of y with respect to ¥ -
is larger than or equal to the height of the homotopy class of y with respect to the
given measured foliation.

The Dirichlet principle states that there exists a unique extremal quadratic
differential ¢ which realizes the minimum. Moreover, that quadratic differential
is holomorphic except for possibly simple poles at the punctures of R and its
heights are exactly equal to the heights of the given measured foliation. The
uniqueness of the solution ¢ depends on the length—area method and the second
minimum norm principle as expressed in Theorem 8 of Chapter 2.

The existence depends on two important facts. The first is the existence of
Jenkins—Strebel differentials with prescribed heights, as expressed in the results
of Chapter 10. The second is a topological result due to Thurston which
indicates how the measure classes of measured foliations appear as a kind of
completion of the set of homotopy classes of simple closed curves on the surface.
By multiplying such a homotopy class by an arbitrary positive number there is a
natural way in which it becomes a ray of measured foliations. Thurston shows
that the set of such rays is dense in the space of all measure classes of measured
foliations. We do not prove the result in this book. It follows most naturally
after the introduction of local coordinates for the space of measured foliations,
the so-called MST-coordinates. This approach is described in complete detail in

203
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Travaux de Thurston sur les Surfaces by A. Fathi, F. Laudenbach, and V.

Poénaru [FatLP].
We point out here why the L;-norm of a continuous quadratic differential

is a generalization of the Dirichlet integral. On the surface R the L;-norm of y is

ol = U W(2)l dx dy.

In a neighborhood of any point where ¥ is not zero select a local square root

\/_l//' . Then \/x; is, up to plus or minus sign, a differential 1-form at points of R
where ¥ is not zero. Locally we can solve the equation

9. = V¥,

where g, = 3(g, — ig,) and g = u + iv. We see that

‘ ”itﬁ! dx dy = H lg.|? dx dy. (1)
R R,

This is the quantity to be minimized. The side conditions are inequalities for line
integrals over certain curves y. The inequalities take the form

J [Im(/¥(2) dz)| = % j (v, — uy) dx + (uy + v,)dyl > ) &)

where c(y) depends only on the homotopy class of y. Notice that when the locally
defined functions u and v satisfy the Cauchy—Riemann equations u, = v, and

u, = —u,, the integral (1) becomes

Jf (02 + v?) dx dy

(13

and the line integral (2) becomes

J v, dx + v, dy| = f |dv).

After establishing the Dirichlet principle we investigate how the quantity to
be minimized in the Dirichlet problem varies over Teichmiiller space. In
particular, we find a formula for the first variation which contains as a special
case certain formulas for the variation of extremal length as a function on

Teichmiiller space.
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11.1. DEFINITION OF A MEASURED FOLIATION

Let R be a compact Riemann surface of genus g. Fix once and for all a set of n
distinct points {qy,..., ¢,} on R and let R = R — {qy,...,q,}- We allow, as a
special case, the set {q,,...,q,} to be empty. The points g, . .., g, are called the

punctures of R.
A measured foliation |dv| on R with singularities p,, ..., p,, of order ky,..., k,

at points of R is given by an open covering {U,} of R — {py,...,p,} and C' real
valued functions v; on U, such that

(a) |dv}| = |dv;| on each U,nU;;

(b) at each point p of R there is a neighborhood V of p in R and a local C'-
chart (u,v): ¥ — R? such that, for z = u + in,

ldv,| = |Im(z¥? dz)l on U;nV  for some integer k,

(c) the integer k in (b) depends on the location of the point p in the following
way:
If p is not a singularity of the measured foliation, then k = 0.
If p is one of the singular points p; but not one of the punctures
{q4,.-.. 4.}, then k =k; > 0.
If p is one of the singular points p; and p; coincides with some g;, then
k=k;> —1andk #0.

The leaves of the foliation are curves along which v is constant. The height of
an arc y with respect to the foliation is defined by

ho(y) = f [dv].

The height of a homotopy class [y] of simple closed curves is
h,[y] = inf b)),

where the infimum is taken over all simple closed curves " homotopic to y. Two
measured foliations |dv,| and |dv,| are called measure equivalent if
h, [y] = h,,[v] for all simple closed curves y on R which are not homotopically,
trivial and not homotopic to a puncture of R.

We denote the space of measure equivalence classes of measured foliations on
R by MF(R), or simply by M.F, if there is no possible ambiguity. Let & be the
set of homotopy classes of simple closed curves on R which are not homotopi-
cally trivial and not homotopic to punctures. Any measure class of measured
foliations in MMF represented by a measure |dv| determines a function from &%
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into R by
[yl h,[7].

Thus h, is an element of the product space R” and the mapping
h* MF — R

given by |dv|+— (y— h,[y]) is injective because of the equivalence relation which
defines MF . Therefore, the product topology on R” induces a topology on
97 . We shall call the mapping h* the heights mapping.

A nonzero holomorphic quadratic differential ¢(z)dz? on R which has at
most simple poles at the distinguished points {41,...,4,} yields a measured
foliation in a natural way. In a sufficiently small simply connected neighborhood
V of any point p of R we define the natural parameter

Up) = f " o) d.

Of course, this can be a multivalued function when ¢ has a zero in the
neighborhood ¥ but in any case { is well defined up to plus or minus sign. On
letting { = u + iv, the absolute value |dv| = |Im(,/¢(z) dz)| is well defined and
gives a measure for a measured foliation. The leaves of the foliation are the
horizontal trajectories of the quadratic differential ¢. We denote by h,[y] the

infimum of the integrals

ﬁ Hm(,/ o(z) dz),
¥

where 7 can be any curve homotopic to y.
Let A(R) be the vector space of all holomorphic quadratic differential on R

which have at most simple poles at the distinguished points gy, ...,q,. The
above construction defines the mapping

: (A(R) — {0}) > MF(R), 3)

which associates to any nonzero holomorphic quadratic differential ¢ the
measured foliation [Im(\/q; dz)|. One of the objectives of this chapter is to show
that @ is a homeomorphism and to prove, in particular, the following theorem
first proved by Hubbard and Masur for compact Riemann surfaces ((HuM]).

Theorem 1. Given a measured foliation |dv| on R and a complex structure on R,
there exists a unique holomorphic quadratic differential in A(R) — {0} such that

the foliation given by the horizonial trajectories of ¢ and the measure lIm(\/7 dz)]
is measure equivalent to |dv|. Moreover, the mapping @ in (3) is a homeomorphism.
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The next theorem is the Dirichlet principle described in the chapter
introduction. Let the complex structure on R be given and let |dv| be a measured
foliation representing some equivalence class in MF (R). For each continuous
quadratic differential y on R and each y in & let h,[y] be the infimum of the

numbers
J m /(@) el
7

where 7 is any simple closed curve homotopic to 7. Let

M(|dv]) = inf {” W(z)| dx dy: hy[y] = h,[y] for all y in #}. (4)

R

Theorem 2. Given any measured foliation |dv| on a Riemann surface R of finite
analytic type, the infimum in (4) is realized by a unique quadratic differential
@(z)dz*. That quadratic differential is holomorphic on R and has at most simple
poles at the punctures of R. For any homotopy class of simple closed curvesy in¥,

one has h,[y] = hly].

The proofs of Theorems 1 and 2 will be given in Sections 11.2 through 11.6.

11.2. INJECTIVITY OF THE HEIGHTS MAPPING
Theorem 3. (The Heights Theorem). The mapping
®: A(R) » RY
which assigns to a holomorphic quadratic differential ¢ in A(R) the element
(ol Dyes

of the product space R is injective.

Proof. Apply Theorem 8 of Chapter 2. Suppose V¥ is another element of A(R)
and hy[y] = h,[v] for all y in &. Then, on the one hand, |e| < [[¥l. On
applying the same theorem to the holomorphic quadratic differential y, we
obtain [¢| < |¢l. But the theorem also says one can have equality only if

¢ =y. QED.
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11.3. CONTINUITY OF THE HEIGHTS MAPPING

Our objective in this section is to show the mapping ® in Theorem 3 is
continuous. A much stronger result is true as has been pointed out by Strebel
[St4]. For the benefit of the reader we state Strebel’s result without proof and
then go on to give a direct method for proving the continuity of the mapping @
defined in Theorem 3.

A Theorem of Strebel. Let ¢, be a sequence of holomorphic quadratic differentials
on an arbitrary Riemann surface R which converge locally uniformly to a quadratic
differential @. Then, for every homotopy class of closed loops y on R,

lim h, [y] = h,[y].

n—*oo

We point out that one part of this result is elementary, namely, to show that

ﬁh,pm[y] < h,[y]. To see this, choose ¢ > 0 and select y, in the homotopy class
of y such that

f lim,/o dz| < h,[y] + e
Y0

and such that y, does not pass through any singular points of ¢. Since ¢,
converges uniformly on y, to ¢, we see that

f Im./¢, dz| — f im. /¢ dz|.
Yo 70

Therefore lim h,, [y] < h,[y]. For the other half of Strebel’s theorem we refer to
Strebel [St4, pp. 162—-165]. The chief difficulty in proving Strebel’s result is
that the quantity h,[7] need not be realized by any curve in the homotopy class
of y. To see this, consider the most elementary example: R is the annulus
{z:1<|z] <2}, p(z)=1 (so the associated @-metric is the Euclidean metric) and y
is a curve which winds once around the annulus. As curves in the homotopy
class of y are selected so as to more and more nearly realize the infimum h,[7]
they must approach the inner boundary contour of the annulus R in such a way
that they lie between the horizontal lines y=1+4¢and y= —1 —e.

For the proof of Theorem 4 this is not a difficulty because in any homotopy
class of & for the surface there always exists a geodesic (which, however, may

not be unique).

Theorem 4. Let R be a Riemann surface which is compact except for a finite
number of punctures. Let ye & and ¢, € A(R) and suppose ¢, — @. Then

lim hy, (3] = B[]

n—>w
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Proof. The proof is divided into several steps which we only outline.

Step 1. In any homotopy class y in & and for any nonzero holomorphic
quadratic differential ¢ in A(R), there exists a geodesic y, with respect to the
metric |@|*/2|dz|, where y, is homotopic to y. The curve y, is simple and is made
up of straight line segments in the ¢-metric. If y, has any vertices, they can occur

only at the singularities of ¢.
Step 2. For the ¢-geodesic y, constructed in (1) and any curve y; homotopic to
Vs

J Im. /¢ dz| > J Im. /¢ dzl.

That is, a ¢-geodesic y;, realizes the height of y.

Step 3. For ¢, converging to ¢, there exists a sequence of @,-polygons y, which
are homotopic to y, which realize the ¢,-height of y, and which converge to some
p-geodesic y, in the homotopy class of y.

SteP 4. The uniform convergence of ¢, to ¢ in a tubular neighborhood of y,
implies

J Im. /@, dz| — J Im./¢ dz),
¥n Yo

which from step 2 shows that lim &, [y] = h,[7].

11.4. CONVERGENCE OF HEIGHTS IMPLIES CONVERGENCE OF
QUADRATIC DIFFERENTIALS :

From the previous two sections we know that the mapping
®: A(R) » RY

is injective and continuous, where R? is assumed to have the product topology.
We now show that ® %, defined on the image of @, is also continuous. Although
the continuity of @ does not depend on the finite dimensionality of A(R), for the
continuity of ® !, compactness of the unit ball in A(R) is essential.

Lemma 1. Suppose @, is a sequence of quadratic differentials in A(R) and suppose
for every y in & the sequence h, [y] converges. Then @, converges.
Proof. We first show that if for every y in & there exists a constant M(y) for
which
h, [y] < M(y) for all n,
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then ¢, is a bounded sequence. If not, one could find a subsequence (which we
may also denote by @,) such that ||@,|| — co. Then ¢, = ¢, /|| @, 1s a sequence of
vectors of norm one. By taking a subsequence (for which we again use the same
subscript) we obtain @, — @, where ||¢| = 1. Since [|¢] = 1, there must be at
Ieast one curve y for which hg[y] > 0. For that curve, we have kg [y] - hg[v]

and

1 M(y)
h =——h < .
al7] = Bl <5

Thus lim ||@,|| < M(y)/h;{y], and therefore it is not possible for [¢,] to
approach oo.

The hypotheses of the lemma imply that {||@,[} is a bounded set. Thus, any
subsequence of ¢, has a subsequence which converges to some holomorphic
quadratic differential. If two such subsequences have limits ¢’ and ¢”, then since
h, [v] converges for all y in ¥, both ¢’ and ¢” must have the same heights. By
Theorem 3, the “heights theorem,” this implies ¢’ = ¢” and thus the original
sequence ¢, CONverges.

11.5. INTERSECTION NUMBERS

Definition. For any two elements « and B in & the intersection number o, f) is the
minimum number of points that any two simple loops o and [’ homotopic,
respectively, to o and B have in common.

As usual, we assume R is realized as the upper half-plane H factored by the
universal covering group I'. We know that every element of & has a unique
representative which is a Poincaré geodesic in H/T. This geodesic is the image
under the covering group I of the axis of a hyperbolic transformation in I.

Lemma 2. Suppose o, and B, are closed Poincaré geodesics on R representing
elements of &. Then i(a, B) is the number of points in o N fo.

Proof. By a choice of normalization we may select the covering group I for R
so that R = H/T" and a, is the image of the axis of the hyperbolic transformation
A(z) = Az with A > 1. In particular, the segment [i, iA) on the imaginary axis
projects to the simple closed geodesic «, on R and no two points in [i,i4) are
identified by an element of I'.

Let n be the number of points in ag N fo. Then B, lifts to n hyperbolic lines
Bots -, Bon which intersect the interval [i,i4) on the imaginary axis. Moreover,
since B, is simple, no two of the hyperbolic lines f,; and S, with j not equal to k
can intersect. Now suppose o is a simple curve on H/T" homotopic to «,. Then o
has a lifting & which is a simple arc in H approaching 0 at one end and
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approaching oo at the other end. Obviously, the curve & must intersect each of
the geodesics By, at least once.

Moreover, if § is simple and homotopic to f,, then § has liftings to simple
arcs f,..., B, in H such that each [)7] has the same endpoints as ﬁoj on the
boundary of H. Clearly, & must intersect each ﬁj, 1 <j < n, at least once. Let P ;
be a pointin an E, for 1 <j < n. Suppose there is a transformation in I which
identifies two of the points P, and P,. Then that transformation identifies two
points on & and must therefore be a power of the transformation A(z) = Az.
Thus, a power of A would identify a point on the curve B'J and with a point on
the curve f,.

Now, any transformation C in I which takes a point of f ; to a point of B,
must transform the whole arc B, into the arc JB.. The reason for this is that we
know the group T contains an element D such that D(f;) = fB.. Therefore,
Do C~! takes a point of §, to a point of B.. Now, B, is a simple closed curve on
H/I" and every transformation in I which identifies two points on f, must be
some power of a primitive hyperbolic transformation By which has the two
endpoints of f§, as fixed points and which preserves B.. We see that
DoC~! = B:. Thus, C = By "> D and so C also takes the arc f into B..

The transformation C must also take the hyperbolic line Bo ; into the
hyperbolic line o, because the endpoints of §; coincide with the endpoints of Bo;
and the endpoints of B, coincide with the endpoints of Box.

From the previous two paragraphs we conclude that if the points P, and P,
are identified by an element of I then a power of the transformation A(z) = Az
will identify the two nonintersecting hyperbolic lines Bo ; and Bo. which pass
through the segment [i,id). This is clearly impossible so all of the points
P,,..., P, determine distinct points on the quotient surface H/I". We conclude

that
i(ar, p) = card{oo, fo}

and the lemma is proved.

Recall that a set of Jordan curves a = {a, ..., &,}is admissible if no two a’s
intersect, no two o;’s are homotopic to each other, and none of them is

homotopically trivial or homotopic to a puncture.

Lemma 3. Let R be a Riemann surface of finite analytic type. Let o = {0y, s )
be an admissible system of k simple Jordan curves on R (k <3g —3 + n). Let
by,...,b, be a set of positive numbers and let @[a] be the Jenkins—Strebel
differential associated to o whose cylinders corresponding to o; have heights b;.

Then for every curve ¢ in &,

k
h(p[a][d] = ‘Zl bji((x], G)
i=
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Proof. Let ¢ = ¢[«]. For an arbitrary closed loop o on R, construct a
homotopic loop & which is a p-polygon (composed of horizontal and vertical
segments for ¢) and for which

ﬁ IIm. /¢ dz| < J m. /¢ dz|.

Let &; be a regular closed trajectory of ¢ in the cylinder A; for ¢ with &
homotoplc to «;. Any subarc &, m of & which is a crosscut of the cyhnder A; must
enter and leave A from the same side of 4; or from opposite sides. In the former
case ¢; can be replaced by a homotopic subarc which does not meet o;. In the
latter case g, can be replaced by a subarc which intersects o; only once. The

integral of [Imf dz| over a subarc of this type is >b;. Therefore,

f Im, /¢ dz| > f im/p dz| > XY | m/pdz
> ), bji(e;, o).

Since ¢ is arbitrary, h[o] > Y ;b;i(w;, o

To prove the opposite inequality we choose a ¢-polygon & in the same
homotopy class as o in R for which (o, o ;) = card G n «; for each of a previously
selected set of horizontal closed trajectories &; of ¢ in the associated cylinders
A;. This can be done by using Lemma 2 and constructing a homeomorphism
from R onto R which is homotopic to the identity and takes the curves &; onto
Poincaré geodesics in the same homotopy class. Every subarc &, im Of & Wthh'
joins two sides of 4, can be replaced by a homotopic subarc which is monotone
and intersects o; only once. Those subarcs which join the same sides may be
pushed arbitrarily near to one of the sides in such a way that & remains a simple
curve and the total height of all of these subarcs is arbitrarily small. For the

modiﬁed curve ¢, we obtain
h,[o] < J‘ [Im\/adzf < Z bj(card(c na;)) + .
& i
We conclude that
hole] < Z b;i(o, ®).

It is useful to enlarge the space & to allow finite unions of simple closed
curves which do not intersect each other. Accordingly, we make the following

definition.
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Definition. &' is the set of homotopy classes of finite unions of simple closed curves
of R with the following properties. If Vi,..->¥m G7€ the components of 7y
representing an element of ¥'then

(a) eachy;isa simple closed curve;

(b) no two of the curves y; intersect one another; and

(c) none of the curves y; on R is homotopically trivial or homotopic to a
puncture.

A representative y of an element of &' does not need to be an admissible
system since we permit different components of y to be in the same homotopy
class. Obviously an element of & is determined by an admissible system
oy, . . .0 Tepresenting k-homotopy classes (k < 3g — 3 + n) and a set of positive
integers my, ..., M. Each m; counts the number of components of y in the
homotopy class of a;.

It is useful to allow the integers my,..., M to be positive real numbers.
Accordingly, we make a further definition.

Definition. J.& is the set of all formal sums Sk _1bey, where b; are positive
numbers and a4, . . . , o4 are homotopy classes for an admissible system of curves on

R.

In an obvious way, ¥ < &' < JS.

By the theorem on the existence of Jenkins—Strebel differentials (Theorem 3
of Section 10.4), JZ is isomorphic to the space of all Jenkins—Strebel
differentials on R. The set J& determines an element of RY by the intersection

mapping i*:

i* (i bjrxj) = (m—» Zk; b;io;, a)).

To show that i* is injective, consider each of the curves o;. If «; divides R into
two components, it is possible to find a curve o with i(aj,0) =2 and i(¢,,,0) = 0
for m # j. If o;1s not dividing, it is possible to find a curve o with i(x;, 6) = 1 and
i(oty, 0) = 0 for m # . In either case, the constants b; are determined.

Lemma 3 asserts that under the identification of J& with the space of
Jenkins—Strebel, the inclusion i* of J.& into RY is identified with the heights
mapping from A(R) — {0} into RY. We have the commutative diagram shown in
Figure 11.1. Here, the heights mappings h* and h¥ are defined by

W) = (6 h,l0])
and
hi(|dv)) = (o> h,[0])

and all mappings in the diagram are injective.
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ey ey c AR-{0} cmg

Figure 11.1

11.6. PROJECTIVIZATIONS

The spaces J.&, A(R) — {0}, and MMF are preserved under multiplication by
positive real numbers. We define the projective spaces by specifying that two
vectors are equivalent if one can be obtained from the other by multiplication by
a positive real number. The diagram in the preceding section yields the diagram
in Figure 11.2 of injective mappings of the corresponding projective spaces.

At this point we invoke a result of Thurston concerning the relationships
between &, &', and IMZF. By introducing what he calls the MST-coordinates for
IMF [FatLP], it becomes transparent that the image of &' in PIRF is dense.
This is because the elements of &’ are realized as a set of points on an integer
lattice in the MST-codinates and the set of possible rays determined by this
integer lattice form a dense set in the space of corresponding coordinates for
elements of WF . The rays are dense even when some of the components in the
pants decomposition of the surface R have boundary components which are
isolated points.

Although it is not essential for the proofs of Theorems 1 and 2 of this chapter,
Thurston also shows that the image of & is dense in PIRZ. This is done by
creating a very long curve in & corresponding to a system of curves representing
an element of %’ which has approximately the same intersection properties up
to projective equivalence.

A corollary to the fact that the image of &’ is dense in PIRS is that any
projective class of measured foliations can be realized by a projective class of

pjy ———> P(A(R)-{0}) ———>pPmF

P(R7-{0})

Figure 11.2
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holomorphic quadratic differentials. For, given the projective class of a measu-
red foliation |dv|, we approximate it in the product topology on P(R” — {0}) by
a sequence of projective classes of elements of &'. From Lemma 3, we know that
each of these projective classes is represented by a Jenkins—Strebel (holom-
orphic quadratic) differential ¢, on R. Since the projective classes of the heights
of ¢, converge in the topology for P(R“ — {0}), by multiplying ¢, by the
positive number c, = ||@,|| !, we obtain a sequence §, = c,®, whose heights
converge. Then Lemma 1 tells us that @, converges to a holomorphic quadratic
differential ¢ and this differential must give the same projective class of heights
as the given measured foliation |dv|. Putting thlS result together with the helghts
theorem, Theorem 1 is now proved.

We remark that since the image of &' is dense in PR, it follows that space
of Jenkins—Strebel differentials is dense in A(R). Since Thurston shows that & is
dense in PIMZ, it also follows that the space of simple Jenkins—Strebel
differentials (those which have only one characteristic cylinder) is dense in A(R).

To prove Theorem 2, we start with a measured foliation |dv| on R and use
Theorem 1 to obtain a unique holomorphic quadratic differential ¢ which
realizes the same heights as |dv|. Then Theorem & of Chapter 2 shows that the
infimum M(|dv|) is realized uniquely by the holomorphic quadratic differential

Q.

11.7. THE HEIGHTS MAPPING BETWEEN QUADRATIC
DIFFERENTIALS ON DIFFERENT RIEMANN SURFACES
IN THE SAME TEICHMULLER SPACE

As usual, let R be a Riemann surface of finite analytic type. Consider the
Teichmiiller space T(R) of R. Corresponding to any point of Teichmiiller space
T(R) represented by a Beltrami coefficient [;], there is a mapping

w=u + iv = f#(z) where
f“R-R, (5)
and f = f* is a homeomorphism which satisfies the Beltrami equation

fz = e (6)

An arbitrary equivalence class [ 4] representing a point in Teichmiiller space has
a representative g which is C* on the surface R. This is easily seen by using the
Ahlfors—Weill section (Lemma 7 of Chapter 5) for u with ||u|| , < 3. Then f*can

be expressed as a composition f* = f#%o f#20 -+ o f# with each |g;ll, < i1t
follows from the theory of the Beltrami equation (6) that if s is C', then f*is also
Cl

Therefore, a measured foliation ldvI on R induces a measured foliation |d7| on
R Given an open covering U of R, we get an open covering U f{U;)of R
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The functions v; which determine the measure |dv| on R are taken into functions
9; defined on U; by §; = v;o f 1,

We leave as an exercise the task of showing that |d5| is a measured foliation
on R'ﬂ. Note that h;(f(y)) = h,(y) for every rectifiable closed curve on R, and

therefore h;[ f(y)] = h,[y] for every homotopy class in &.

If £, is any C' mapping from R to R, homotopic to f, then f(y) is homotopic
to fi(y) on Ru for every closed curve y on R. Therefore, the mapping induced by
f which takes |dv| on R into |dj] on R, induces a mapping between measure
classes of measured foliations which depends only on the Teichmiiller class of

the mapping f.

Since the space MF (R) of measure equivalence classes of measured foliations
on R is isomorphic to A(R), the homeomorphism

f:R— Ru
induces a correspondence between quadratic differentials,
f* AR) - A(R).
If we let f*(¢) =y, then y is determined by the conditions
holy1=h[f)]  forallyin &.

Here f* is a positive homogeneous homeomorphism.

The Dirichlet infimum problem of Theorem 2 yields a real positive value

M(|dv]) associated to the Riemann surface R and the foliation |dv|. Associated to
the induced foliation |d?| on Ru, there is the possibly different number

M., (|dv).
It is given_ by the extremal problem
M, (|dv|) = inf {jj]l//(w)l du dv}, N
Rn .

-where w = u + iv is a complex analytic coordinate on R'ﬂ and the infimum in (7)
is taken over all continuous quadratic differentials iy on the Riemann surface R,

satisfying the side conditions

h,[f(0)] = h,[y]

for all y in &. Clearly, the infimum in (7) depends only on the Teichmiiller class
of u.

e
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11.8. VARIATION IN THE DIRICHLET NORM

Theorem 5. Let R be a Riemann surface of finite analytic type. Let |dv| be the
measure for a measured foliation on R. Then M (|dv) is a differentiable function on

Teichmiiller space and

el

R

log M, (o))  log M(lds]) + 2 Re - J j uo dx dy + o1l o)

where @ is the unique holomorphic quadratic differential on R for which IIm\/q; dz|
is in the same measure class of measured foliations as |dv].

In order to prove this result we need yet another form of the minimum norm
principle given in Chapter 2. Given a holomorphic quadratic differential ¢, we
single out certain polygonal simple closed curves, associated with ¢. Define a
simple closed curve y representing an element of & to be allowable for ¢ if it is
one of the following types:

(a) 7y is a regular closed vertical trajectory of ¢.

(b) y consists of two regular segments « and f, where o is horizontal and f is
vertical and B departs from one endpoint of a and returns to the other
endpoint o from the opposite side,

‘(c). y consists of four segments &y, Xz, By, B, where the a’s and f’s are
horizontal and vertical and f; and f, emanate from the endpoints of each
&; on opposite sides of «;. (We permit either of the segments a, of o, to

degenerate to a point.)

Lemma 4. Set ¢ A(R), where R is compact except for a finite number of
punctures. Let Y be another quadratic differential which is locally an L-function
on R. Suppose that for almost every curve'y which is allowable with respect to ¢ we

have the inequality

f (/¢ dz)| < [ (¥ dz)l. (8)

Then ||| < [[x W@ /¥ | dxdy < ffz Wl dxdy.

Proof. The proof depends on looking at the decomposition of R induced by ¢
into spiral domains and ring domains. If R; is a ring domain, we may take the
curve y to be a closed vertical trajectory and it is straightforward to see that 8

implies

f Jr ()] dE dn < f Jr S dE dn,

Rj R;
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where ( is a natural parameter for . Passing to an arbitrary local parameter z,
we obtain

” lp(2)l dx dy < Jj WY/ e(2)| dx dy.

The case of a spiral domain R, is more difficult. We pick a short regular
horizontal segment lying in the interior of R, with the property that the line
integral

f W dz|

exists and is finite.
The existence of such an interval « is assured by Fubini’s theorem and the

hypothesis that  is a locally L, -function. Then, just as in Theorem 8 of Chapter
2, we construct a decomposmon of R, induced by ¢ and the horiontal segment a.
The inequality (8) leads to the following inequality:

fflfpl dx dy < JJI\/'J/(C)I d¢ dn + 2¢ (o) f WY (2) dzl,
Ry Ric

where f¢(oz) is the length of & with respect to ¢. Since we can let o shrink to a
shorter and shorter segment, we obtain

Hlfpl dx dy < ”-I\/!ﬁ(é)l dg dn
Ry Ry

for a natural parameter {. The conclusion of the lemma follows by addipg up
over all ring domains and spiral domains in the decomposition of R and
applying Schwarz’s inequality in the same way we did in the proof of Theorem 9

of Section 2.6.

Lemma 5. Let K = (1 + [[ull )AL — llull ). Then
K™'M,(ldv]) < M(|dv]) < KM, (dv]).

Proof. Let ¢, be the unique holomorphic quadratic differential on R, for
which h,[y] = ho,[f(y)]. We know that M, (|dv]) = |@,||. Let y be an allowable
curve for ¢, let k = ||ul|,,, and let

Vl(z) =1+ B’e (/)7
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Then

r

f [Im./¢ dz| < o Im./¢, (f) df|

o

<

ST, (1 b gg) iz

r
J?

< | WY () dzl.

o/

Thus, from Lemma 4, |||l < ¥, and so

r

ol <+ k? || 1o f@) I fl* dx dy
N QJRU
1+k2 ([
< (1 t k)z I(Du(w)t dudv = K”(Pu”
de

n

This yields M(jdv|) < KM ,(|dv|). The opposite inequality follows by applying the
same reasoning to f 1.

Remark. Lemma 5 shows that M ,(|dvl) is a continuous function on T(R) since
clearly :

KM, (dv]) < M, (ldv]) < KM, (|dvl)
where K is the dilatation of the mapping f7°(f =1

We are now ready to proceed to the proof of Theorem 5. Form the differential

V) = o, f)S? (1 e ﬂf)—)
lp(2)]

Here ¥ is a quadratic differential on R and note that for any segment vertical
with respect to ¢, we have the identity

( [imy/0.(f) df| = L Im/y(2) dz|.

.Jf(ﬂ)

Let y be an allowable simple closed curve for @. Since h,[y] = hy, LS (y)] for ally
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in &, we obtain

f m./¢ dz| < fﬂ im0 dz| = f Im. /¥ (z) dz| ©

Biupa

+(1+ k)zf We.f@)L.I.

By making the a-curves arbxtrarlly small and summing over ring domains and
spiral domains corresponding to ¢, we obtain

H lo| dx dygﬂ /ol dx dy. (10)

The last term in (9) can be made arbitrarily small because from Lemma 5 there is
a uniform bound on ||¢,[|. On multiplying the integrand on the right side of (10)
in the numerator and denominator by |f,|(1 — |u?)"/> and applying Schwarz’s

inequality [with the term |/¢, f (z ) f2(1 — |u|*)*7?| lumped together], we find

that
1 — 2 1/2
ol < g, 12 ( f PO LN dy) .
"
R

Squaring both sides and dividing by [l l|¢,l, we get

el _ 11 — plo/lo))? 2 U ;
lpull Hq)H f” 1— P dxdy <1 g Re || o dxdy

+O0(|lull%)

and so

loglle,ll = loglle] + 2R6HU B + O(llul2).

To get a reverse inequality we apply a similar argument to the inverse mapping
f1 of £ Here f,° f(z) = z and p is the Beltrami coefficient of f; related to u by
wi(f(2)) = —u(z)/6, where 6 = f,/f,. Note that 141l = 1] - The analogous
argument yields

leall _ ul o /oI
H i® H d d
lol <o J 0 R
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and so

1
logllo] = logle,ll + 2Re | U @, + Ol 1% (11)

o]
R

"

The integral on the right-hand side of this inequality transforms into

1

—2 R
ol

” e, (f(@)f7(z) dx dy- (12)

R

Let & =@, (f H(2N ) (2). Inequality (11) with the substitution from (12)
implies

1
log|@,l <loglel +2Re Todl ” pfp dx dy + O(lEl%)
u
R

We wish to replace the first order term in this inequality by

1
ZRem” Ko

R

and, in so doing, we are permitted to weaken the second order term to a term
which is o(]| ]l ) as lulle — 0. From Lemma 5, if we replace [|@,ll by loll, we
introduce a multiplicative error which has order [ull,,. We are left with the term
([ (@ — @)dxdy which.is o(lplle) if we can show that {f|p — @ldxdy
approaches zero as Il o — 0. From the theory of quasiconformal mappings,
f*(z) converges locally uniformly to z and f%(z) converges 0O 1 locally in
I7(p = 1). Moreover, ¢, may be viewed as a holomorphic differential form
defined on the unit disk and automorphic with respect to a Fuchsian covering
group I',,. Since from Lemma 5 the norms of ¢, over any compact subset of the
unit disk are bounded, they form a normal family (for il < ko < 1). Thus ¢,
converges to the differential ¢ as |ullo =0 (since any limit of ¢, must be the
unique differential with the same heights as the heights of ¢).
Let w, =wn{z: |zl < r}. The following inequality is elementary:

H 16 — ol < (191l — llel) +2 H ol + 2 ﬂl@ -9l (13)

) o~ 0r or

Tt is easy to see that |&| converges to el as llullo = 0 since from, Lemma 5,
@l — el The second term on the right-hand side of (13) can be made
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arbitrarily small by choosing r sufficiently near to 1 since {folol < oo. The third
term on the right can be made arbitrarily small since f*(z) converges locally
uniformly to z, f# converges locally in I2, and ¢ .(z) converges locally uniformly
to ¢{z).

Notes. Theorem 1 is due to Hubbard and Masur [HuM]. It was also proved
by Kerckhoff [Ker]. Both Kerckhoff and Hubbard and Masur proved the
theorem for surfaces without punctures. The Dirichlet principle for measured
foliations as stated in Theorem 2 is due to Gardiner [Ga6]. The proof of the
injectivity of the heights mapping given in Theorem 3 appears in the paper of
Marden and Strebel [MarS]. The continuity of the heights mapping and its
inverse (Theorem 4 and Lemma 1) is proved by Hubbard and Masur [HuM]
and by Strebel [St3]. The fact that integrable holomorphic quadratic dif-
ferentials with closed trajectories are dense in A(R) was proved by Douady and
Hubbard [DH] for compact surfaces without punctures. It was also realized by
Kerckhoff [Ker] as being an elementary consequence of the analogous theorem
for measured foliations. Masur [Masu3] improved the result of Douady and
Hubbard to show that differentials with only one characteristic ring domain are
dense. This result is also a consequence of the analogous theorem of Thurston
for measured foliations ([FatLP], [Ker]).

The open problem suggested in Exercise 5 in this chapter would generahze
the uniqueness of axis theorem for pseudo-Anosov diffeomorphisms, see

[FatLP] and [Ber9].

EXERCISES

1. Let R =C/{z—z + m + in), where m and n are arbitrary integers. R is
called the square torus because a fundamental domain for the lattice
L = {m + in: m and n integers} is the unit square. Let |dv| = |Im(e" dz)|. Then
ldv| is the measured foliation associated to the quadratic differential
@(2)dz* = ¢* dz%. Show that the parallel lines at angle — to the real axis
are the leaves of the foliation and show that M(|dv]) = 1.

2. Continuing with the notation of Exercise 1, let

\K}(z)=(f + i)z;;(‘c—i)z’

where Im ¢ > 0. Then W induces a mapping w from the square torus R to the
torus R,, where R, = C/{z+>z + m + nt). The mapping w and the measured
foliation |dv| induce a measured foliation |dv.| on R.. The measured foliation
|dv.| is determined by the condition that it has the same corresponding
heights on R, that |dv| has on R. Show that the measure class of |dv,| is

representable in the form

[dv.| = |Im(pe®®t dz)| = plsin 8, dx + cos 8, dy|.
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Let © = 1, + it, where 7, and 7, are real. Show that

7, tan 6

tan g, = ———
* 141, tand

psin g, =sin 6,

1
M _(|dv,]) = 7, sin0 4+ — (cos 8 + 1, sin 6).
T2

3. Continuing with the notation of Exercises 1 and 2, show that the locus in the
z-plane of solutions to the equation M (|dv[) = C, a constant, is a circle in the
upper half plane tangent to the real axis with center at (—cot 6,1C csc*6) and
radius 1C csc?6. '

4. Continuing with the notations of Exercises 1, 2, and 3, let |du| and |dv| be two
foliations on the square torus associated to the horizontal trajectories of the
quadratic differentials ¢2? dz* and €2 dz* with 6, # 0, and 0 < 6, < n and
0 < 6, < m. Assume that on the torus R,, |du| goes over into a foliation with
angle 0, and |dv| goes over into a foliation with angle 8. From Exercise 2 we
have the formula

tan 6, = 7, tan 0

1+ 7, tanf,
‘and the analogous formula relating 6,, and 6,. Find the minimum value of
M _(|dv]) subject to the constraint that M (|dul) = 1. Show there is a unique 1
solving this minimum problem and that 7 lies on the hyperbolic line with
endpoints at —cot §; and —cot 8, on the real axis. Moreover, the point lies
on the unique point of tangency of two horocycles determined by the
equations M_(|du,|) = 1 and M (|dv.]) = a minimum.

5. (Open Problem) Carry out the analogy to Exercises 1 through 4 for pairs of
transversal measured foliations on surfaces of finite analytic type.
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Properly discontinuous, 8, 11, 149, 158-160
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112
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Ray, see Trajectories (of quadratic differential),
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definition of, 2
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Sakan, see Fehlmann and Sakan
Sario, see Ahlfors and Sario
Schiffer and Spencer, 113, 201
Schwarzian derivative, 99
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Hawley and Schiffer formula, 112,113
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Schwarz’s inequality, 41, 45
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Signature of Fuchsian group, 166
Singerman, 1 13
Singular point, see Critical point of quadratic
differential
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Strebel, 46, 87, 130, 201, 208, 222. See also
Marden and Strebel; Reich and Strebel

Sullivan, see Mané, Sad, and Sullivan

Surface, see Riemann surface

T eichmuiller equivalence class, 93, 98, 117
Teichmiiller’s metric, 97
infinitesimal form, 34, 133-138
Teichmiiller space, 112
as deformation space, 93
of Fuchsian group, 94, 108
infinitesimal theory for, 105
manifold structure for, 103
as orbit space, 93
of Riemann surface, 92
variational lemma for, 107, 112
Teichmuller’s theorem:
existence, 119
uniqueness, 27, 120
Theta series (Poincaré theta series):
definition, 78, 80
surjectivity of, 84, 87
Thurston, 58, 147
interpretation of Ahlfors-Weill extension,
114
orbifolds, 28
Torus, 5, 48
Trace, absolute value of, 153-154
Trajectories (of quadratic differential), 34
critical trajectory, 37
horizontal, vertical, 3335, 46, 55
noncritical (regular), 37, 38
ray, positive and negative, 47
regular, 37, 38, 47
Transition mapping, 2, 35
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differentials
for groups of the first kind, 64
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Tsuji, 28
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113,130
Type, see also Signature of Fuchsian group
of Fuchsian group, 166
of surface, 166

Uniformization theorem, 3
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of Dirichlet norm, 217
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Variational lemma, see Teichmuiller space
Velling, 113
Vertical trajectory, see Trajectories (of

quadratic differential), horizontal, vertical

Virtanen, see Lehto and Virtanen

Weierstrass points, 180-184
Weill, see Ahlfors and Weill
Weyl’'s lemma, 195-196
Width of curve, 37
Wolpert, 147
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differentials, 112
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Hurwitz-Nielsen realization problem, 162
Wronskian, 180
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