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Abstract. We construct the dual Cantor set for a degree two
expanding map f acting as cover of the circle T onto itself. Then
we use the criterion for a continuous function on this Cantor set to
be the scaling function of a uniformly asymptotically affine UAA
expanding map to show that the scaling function for f descends
to a continuous function on a dual circle T∗. We use this repre-
sentation to view the Teichmüller space UAA as the set of scaling
continuous functions on this dual circle and to construct a natural
action of Thompson’s F -group as a group of geometrically realized
biholomorphic isometries for UAA. Finally, we use the dual deriv-
ative D∗(f) for f defined on T∗ to obtain a generalized version of
Rohlin’s formula for metric entropy where we take an integral over
the dual circle.

Introduction

The first idea presented in this paper is the construction of the dual
circle for an expanding circle map and the use of the space of scaling
functions defined on this circle to construct a faithful action of Thomp-
son’s group as a group of biholomorphic isometries of the associated
Teichmüller space. The second idea is the use of the dual circle to
give a generalized version Rohlin’s formula that expresses the metric
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2 DUAL CIRCLES

entropy of an invariant measure in terms of the derivative of the dual
shift with respect to the dual measure with support on the dual circle.

To explain what is a dual circle, we first explain what is the dual Can-
tor set C∗ of a linearly ordered Cantor set C marked by an heirarchical
planar tree associated to its gaps. We view C with its order topology
as being constructed by excising gaps from an interval following an
inductive procedure that also determines an heirarchical planar tree.
C is a compact Hausdorff space with a topology induced by a linear
ordering of the interval, that is, the topology is generated by open sets
of the form {x : a < x < b}. Since we are interested in the dynamics of
the iteration of degree two expanding circle endomorphisms, we view
the circle T as the unit interval I = {x : 0 ≤ x ≤ 1} with 0 identified
with 1. Of course, the neighborhoods of the point p = {0, 1} are sets
of the form {x : −δ < x ≤ 0} ∪ {x : 0 ≤ x < δ}.

The gaps in the tree form a set of disjoint connected open subsets of
I and the C is I minus the union of these gaps. We assume that each
gap in the tree has two descendants and the chain of all descendancies
describes the heirarchy of the tree. Also, the natural ordering of the
real numbers in I induces a coding of the gaps by words, which we
describe inductively in the following way.

(1) The top gap G is coded by the empty word. This gap forms the
0-th generation,

(2) The next two gaps, G0 and G1, lie on the left and the right sides
G are coded by 0 and 1. These gaps form the 1-st generation.

(3) The next four gaps, G00, G01, G10, G11, lie successively in the
four closed intervals comprising the set I minus the gaps of the
0-th and 1-st generations. These gaps form the second genera-
tion.

(4) Inductively, the 2n gaps in the n-th generation lie successively
in the 2n closed intervals that comprise the set I minus the gaps
in all of the previous generations.

So far we do not assume anything about the sizes of these gaps, and
with respect to certain measures they may have size zero. But we put
C equal to I minus the union of all of the gaps in all of the generations,
and if C has no interior we call it a Cantor set. Note that all of the
endpoints of gaps belong to C. Also, if we map every gap to its left
endpoint, we obtain a one-to-one map from every vertex in the tree of
gaps to binary numbers expressed as a finite sequence of 0-s and 1-s
and adding .00 . . . 01 using the ordinary rules of arithmetic modulo 1
moves in order from left to right across all of the gaps up to an (n−1)-st
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generation for the appropriate choice of n which is equal to the number
of 0-s that appear after the decimal point and before the digit 1.

The Cantor set C∗ dual to C has its own marked heirarchical tree,
which can be obtained by the following procedure. The position of
every gap Gw with code w = i0 . . . in−1 is moved to the position of the
gap Gw∗ , where w∗ = in−1 . . . i0. Here the symbols in the code for w∗

are the same as the symbols in the code for w written in reverse order.
Clearly, if the gaps have variable size, viewed as a subset of the same
interval I the set C∗ can differ from the set C, and certainly its marked
heirarchical tree will be different. More importantly, the natural order
topology on I differs completely from natural order topology induced
by the dual codes w∗ for C∗. However, C∗∗ and its marked heirarchical
tree will coincide C and its marked heirarchical tree.

The dual circle T∗ is constructed from the dual Cantor set C∗ by
attaching every gap on its left and on its right to the gaps that now
appear in adjacent positions and are in the same and previous gener-
ations. The attachments have the effect of identifying any two points
with codes of the form

. . . 00001w. and . . . 11110w.

To bring in dynamical systems to this discussion we view the gaps in
the above construction as generated by a degree two expanding map f
acting on the unit interval I = [0, 1] with 0 identified with 1. The class
of maps f we wish to consider take the form f = h ◦ f0 ◦ h−1 where
f0(x) = 2x mod 1, h is an orientation preserving homeomorphism of
I with some restrictions on h. The forward compositions fn of f have
degree 2n and induce the combinatorial structure of the heirarchical
tree of gaps that is conjugate to the combinatorial structure for the
tree generated by f0 : x 7→ 2x mod 1.

When the mappings f are C1+α, there are associated transfer oper-
ators and the theorems of thermodynamical formalism apply. In this
setting scaling functions on the associated dual Cantor set are defined
and these functions can be viewed as forming a parameter space whose
elements represent deformations in the given smoothness class. But the
dual circle is not introduced and its significance for Rohlin’s formula
and for a natural action of Thompson’s group is not realized.

In this paper we bring these topics into focus by working with a
larger class of mappings. We assume that the endomorphisms f are
uniformly asymptotically affine (UAA) in the sense that each forward
composition fn of f viewed at fine scales is approximately affine, and
degree of approximation does not depend on n.
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The paper is organized into eight sections. In section 1 we give a
canonical way to view a circle endomorphism as a homeomorphism of
its universal covering by x 7→ e2πix and interpret various smoothness
classes in this covering. In section 2 we give Rohlin’s formula for the
metric entropy of a smooth invariant measure for this system in the
case that f is C1+α, which is a formula expressed as in integral over
the circle T. In section 3 we explain the codings for the Cantor set and
the dual Cantor set that are generated by the forward powers f and
the forward powers of f ∗. In section 4 we introduce the dual dynamical
system and the scaling function on the dual Cantor set and in section
5 we invoke the necessary and sufficient condition for a continuous
function on the dual Cantor set to be the scaling function of a UAA
system to show that this function descends to a continuous function on
the dual circle T∗. In sections 6 and 7 we define Teichmüller’s metric
on UAA and exhibit the action of Thompson’s group on UAA. Finally,
in section 8 we show how the dual circle T∗ is the natural setting for
Rohlin’s formula.

1. Circle endomorphisms

Let T = {z ∈ C | |z| = 1} be the unit circle and π : R→ T defined by

π(x) = e2πix

be the universal covering with covering group Z. π determines an iso-
morphism from R/Z onto T, and any orientation preserving covering
map from T onto itself lifts via π to an orientation-preserving homeo-
morphism of the real line.

Let d be the topological degree of the circle covering map. In this
paper, we only consider two cases, namely d = 1 or d = 2. If the d = 1,
the map is a circle homeomorphism, and we usually use h to denote
this map and H to denote its lift. By assuming that 0 ≤ H(0) < 1, we
obtain a one-to-one correspondence between circle homeomorphisms h
and real line homeomorphisms H with H(x + 1) = H(x) + 1. Since
either h or its lift H uniquely realize the circle homeomorphism, we
refer to either as the circle homeomorphism.

Observe that any expanding circle endomorphism with degree 2 or
greater has one fixed point. By conjugating the endomorphism with a
Möbius automorphism of T, we may assume without loss of generality
that this fixed point lies at z = 1. We usually denote the endomor-
phism by f and its homeomorphic lift to R by F . By stipulating that
F (0) = 0, we obtain a one-to-one correspondence between degree 2
circle endomorphisms f with f(1) = 1 and their lifts F which satisfy
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F (0) = 0 and F (x + 1) = x + 2. We will refer either to f or to its
unique corresponding lift F as the circle endomorphism.

We denote the n−fold composition of f with itself by fn, and simi-
larly, F n is the n−fold composition of F with itself.

A circle endomorphism f is in the class Ck for k ≥ 1 if its kth-
derivative F (k) is continuous and Ck+α for some 0 < α ≤ 1 if, further-
more, F (k) is α-Hölder continuous, that is,

sup
x6=y∈R

|F (k)(x)− F (k)(y)|
|x− y|α

<∞.

A C1 circle endomorphism f is called expanding if there are constants
C > 0 and λ > 1 such that

(F n)′(x) ≥ Cλn, n = 1, 2, · · · , for all x.

A circle homeomorphism h is called quasisymmetric if there is a
constant K ≥ 1 such that

K−1 ≤ |H(x+ t)−H(x)|
|H(x)−H(x− t)|

≤ K, ∀x ∈ R, ∀t > 0,

and it is called symmetric (see [10]) if in addition there is a bounded
positive function ε(t) with ε(t)→ 0+ as t→ 0+ such that

1− ε(t) ≤ |H(x+ t)−H(x)|
|H(x)−H(x− t)|

≤ 1 + ε(t), ∀x ∈ R, ∀t > 0.

In this case f is called uniformly symmetric or uniformly asymptoti-
cally affine (UAA) if all its inverse branches for fn, n = 1, 2, · · · , are
symmetric uniformly. More precisely, fn is UAA if there is a bounded
positive function ε(t) with ε(t)→ 0+ as t→ 0+ such that

1− ε(t) ≤ |F
−n(x+ t)− F−n(x)|

|F−n(x)− F−n(x− t)|
≤ 1 + ε(t), ∀x ∈ R, ∀t > 0,

∀n = 1, 2, · · · .

Proposition. Suppose 0 < α ≤ 1. Any C1+α expanding circle endo-
morphism f is uniformly symmetric.

Proof. This fact follows from the näıve distortion lemma. For the proof
see [15]. �

Remark . The space UAA of uniformly symmetric endomorphisms is
much larger than the space C1+ of all expanding endomorphisms which
are C1+α for some 0 < α ≤ 1. On the other hand, it turns out that
UAA is the completion in Teichmüller’s metric (which we define in
section 6) of the C1+α endomorphisms for any 0 < α < 1. The UAA
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Teichmüller space is even the completion of the real-analytic endomor-
phisms (see [15]). Another important issue about the space UAA is
that it coincides with the space of all uniformly asymptotically con-
formal circle maps (see [8]). Here a circle endomorphism f is called

uniformly asymptotically conformal if there is an extension f̃ of f to a
small neighborhood of T symmetric about T with respect to the involu-
tion j(reiθ) = (1/r)eiθ such that the Beltrami coefficients |µ ef−n(z)| → 0
uniformly on n > 0 and z → T.

Suppose f is a circle endomorphism of degree d ≥ 2. A measure m
on T is called an f -invariant measure if

m(f−1(A)) = m(A), for all m−measurable sets A.

Given a measure m, the push-forward measure f∗m is defined by

f∗m(A) = m(f−1(A)), for all m−measurable set A.

Thus m is an f -invariant measure if and only if f∗m = m.
For any f -invariant measure m, its metric entropy hm(f) is defined

by the following procedure (see [2, 16, 19, 21]). Let D = {D1, · · · , Dk}
be a finite partition of (T,m) by m-measurable sets. Define

Hm(D) =
k∑
i=1

−m(Di) logm(Di).

If D and C are two partitions, their common refinement is defined by

D ∨ C = {D ∩ C | D ∈ D, C ∈ C}.

The metric entropy of f with respect to a partition D is defined as

hm(f,D) = lim
n→∞

1

n
Hm(D ∨ f−1D ∨ · · · ∨ f−n+1D).

From the invariance of m one shows that the positive sequence

un = Hm(D ∨ f−1D ∨ · · · ∨ f−n+1D)

is subadditive, namely, that

un+k ≤ un + uk

From this it follows that
un
n
→ inf

n

un
n

as n→∞.

So this limit exists and is finite, and the metric entropy of f is

hm(f) = sup
D
hm(f,D),
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where supremum runs over all finite partitions of T by m-measurable
sets. Since T is a metric space, for computational purposes, we may
use the following formula.

hm(f) = lim
n→∞

hm(f,Dn)

where {Dn}∞n=1 is any sequence of finite partitions for which diam(Dn)→
0 as n→∞.

2. Rohlin formula for smooth expanding circle
endomorphisms

The Rohlin formula for metric entropy gives an important relation
between several invariants of a dynamical system. For differentiable
dynamical systems, it relates the smooth invariant measure (or Sinai-
Rulle-Bowen measure), the metric entropy, and the derivative (or par-
tial derivatives).

Suppose f is a C1+α expanding circle endomorphism of degree d ≥ 2
for some 0 < α ≤ 1. Then it is differentiable and its derivative

D(f)(x) = f ′(x)

is an α Hölder continuous function.
Let ν0 be the Lebesgue probability measure on T. Then for each

integer k > 0 consider the push forward probability measure νk =
(fk)∗ν0. Then

νk(A) = ν0(f−k(A))

The partial sums

mn =
1

n

n−1∑
k=0

νk, n > 0.

form a sequence of probability measures on T satisfying

f∗mn = mn +
νn − ν0

n
.

Since the space of all measures on T is weakly compact, {mn}∞n=1 has
a convergent subsequence

mni
→ m as i→∞.

Clearly, f∗m = m and m is an f -invariant probability measure. From
the theory of transfer operators (see, for example, [13]), we know that
{mn}∞n=1 itself is a convergent sequence and the limiting measure m is
a smooth probability measure, that is,

m(A) =

∫
A

ρ(x)dx
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where A is any Borel set of T and ρ(x) is a positive Cα function on T.
The equation in the following theorem is the famous Rohlin formula
for metric entropy.

Theorem 1 (The Rohlin Formula [18]). Suppose f is a C1+α expand-
ing circle endomorphism of degree d ≥ 2 for some 0 < α ≤ 1. Suppose
m is the smooth f -invariant probability measure. Then

hm(f) =

∫
T

logD(f)(x)dm(x).

Proof. This formula is well-known and there are many proofs in the
literature (see, for examples, [2, 16, 19, 21]). For the purpose of the
completeness of this paper and for comparison to the proof of Theo-
rem 5, here we give another proof.

Since f(1) = 1, the preimage f−1(1) consists of d ≥ 2 points in T.
Let D0 be the collection of closures of intervals of T whose endpoints
are the set f−1(1). These intervals form a partition of T. The partitions

Dn = f−nD0

for integers n ≥ 0 form a filtration in the sense thatDn+1 is a refinement
of Dn. Since f is expanding, the diameter of D in Dn approaches 0 as
n→∞. Thus {Dn}∞n=0 generates the Borel algebra B on T, that is, the
σ-algebra generated by the open sets of T. So from Kolmogorov-Sinai
Theorem (see [2, 16,19,21]), the metric entropy

hm(f) = hm(f,D0) = lim
n→∞

1

n
Hm(f,Dn)

= lim
n→∞

1

n

∑
D∈Dn

−m(D) logm(D).

Put

pn =
∑
D∈Dn

−m(D) logm(D),

and

an = pn − pn−1,

and consider the Césaro means

σn =
a1 + · · ·+ an

n
=
pn − p0

n
.

Provided that the sequence an converges, the sequence σn has the same
limit as an, and we are led to the equality

hm(f) = lim
n→∞

(pn − p0)/n = lim
n→∞

an.
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But

an = pn − pn−1 =
∑
D∈Dn

−m(D) logm(D) +
∑

D∈Dn−1

m(D) logm(D)

=
∑
D∈Dn

m(D) log
m(f(D))

m(D)
.

Thus,

hm(f) = lim
n→∞

∑
D∈Dn

m(D) log
m(f(D))

m(D)

provided that the last limit exists.
On the other hand, from the mean value theorem,

m(f(D))

m(D)
=

∫
f(D)

ρ(x)dx∫
D
ρ(x)dx

=
ρ(f(ξ1))f ′(ξ2)

ρ(ξ3)
, for some ξ1, ξ2, ξ3 ∈ D.

We have that∑
D∈Dn

m(D) log
m(f(D))

m(D)
=
∑
D∈Dn

m(D) log f ′(ξ2)

+
∑
D∈Dn

m(D) log ρ(f(ξ1))−
∑
D∈Dn

m(D) log ρ(ξ3).

Since f ′(x), ρ(f(x)), and ρ(x) are all continuous functions on T, the
last three summations converge, respectively, to the integrals∫

T
log f ′(x)dm(x),

∫
T
ρ(f(x))dm(x),

∫
T
ρ(x)dm(x).

But the statement that m is f -invariant is equivalent to the statement
that ∫

T
φ(f(x))dm(x) =

∫
T
φ(x)dm(x)

for every continous function φ(x) on T. Therefore,∫
T
ρ(f(x))dm(x) =

∫
T
ρ(x)dm(x).

Thus limn→∞ an exists and

hm(f) = lim
n→∞

∑
D∈Dn

m(D) log
m(f(D))

m(D)
=

∫
T

logDf(x)dm(x).

This is the Rohlin formula. �
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3. The symbolic dynamical system

For the degree two endomorphism f with f(1) = 1, let

η0 = {I} and η1 = {I0, I1},
where I0 and I1 are the closures of the two intervals in T \ f−1(1).
We label them in counter-clockwise order so that both I0 and I1 are
joined at their common endpoints. These two intervals form a Markov
partition in the sense that

(1) T = I0 ∪ I1,
(2) the restriction of f to the interior of each Ii for i = 0 and i = 1

is injective, and
(3) f(Ii) = T for every i = 0 and 1.

We also have a sequence of Markov partitions

ηn,

where the dividing points between the closed intervals of ηn are the 2n

points of f−1(1). Furthermore, we can label each interval in ηn in the
following way. Let

gi(x) = f−1|(T \ {1})→ Ii, for i = 0, 1.

Each gi is a homeomorphism from T\{1} to the interior of Ii. Given
a word of length n, wn = i0 · · · ik · · · in−1 where each ik = 0 or 1, define

gwn = gi0 ◦ gi1 ◦ · · · ◦ gin−1 .

Let Iwn be the closure of gwn(T \ {1}). Then

ηn = {Iwn | wn = i0 · · · ik · · · in−1, ik ∈ {0, 1}}.
Note that gwn is the restriction of gwn−1 to gin−1(T \ {1}). Therefore,
Iwn ⊂ Iwn−1 where wn = i0 . . . in−1 is the n-th truncation of the word
w = i0 · · · in−1in · · · of infinite length, we have the following chain of
inclusions:

· · · ⊂ Iwn ⊂ Iwn−1 ⊂ · · · Iw1 ⊂ T.
Since each Iwn is compact,

Iw = ∩∞n=1Iwn 6= ∅.
Consider the space

Σ =
∞∏
n=0

{0, 1}

= {w = i0i1 · · · ik · · · in−1 · · · | ik ∈ {0, 1}, k = 0, 1, · · · };
Σ is a compact topological space with the product topology.
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If each Iw = {xw} contains only one point, then we define the pro-
jection π from Σ onto T by

π(w) = xw.

The projection π is 1-1 except for a countable set B, which consists
of all labelings w of all of the endpoints of all of the intervals in the
partitions ηn = {Iwn}, n = 0, 1, · · · .

If f is a uniformly quasisymmetric circle endomorphism, then there
is a fixed constant K > 0 such that

K−1 ≤ |F
−n(x+ t)− F−n(x)|

|F−n(x)− F−n(x− t)|
≤ K, ∀x ∈ R, ∀t > 0, ∀n = 1, 2, · · · .

For any interval Iwn ∈ ηn,

Iwn = Iwn0 ∪ Iwn1,

and there is an integer m > 0 such that

F n+1(Iwn) = [m,m+ 2], F n+1(Iwn0) = [m,m+ 1],

F n+1(Iwn1) = [m+ 1,m+ 2].

So

K−1 ≤ |Iwn0|
|Iwn1|

≤ K.

This implies that

|Iwn0|, |Iwn1| ≤
K

K + 1
|Iwn|.

Thus, if 0 < τ = K/(K + 1) < 1, we have that

max
wn

|Iwn| ≤ τn, ∀n > 0,

and so in this case Iw consists of only one point for every w ∈ Σ.
The points of Σ have a natural ordering induced by the ordering

of the digits, namely, 0 < 1. For two different sequences w1 and w2,
w1 < w2 precisely if the first digit where they differ, that digit for w1

is less than the corresponding digit for w2. To obtain the continuum
from Σ one identifies all the points of the form wn100 · · · 000 · · · with
points of the form wn0111 · · · 111 · · · . These are different points of Σ,
but if we make all of these identifications and also identify 111 · · · with
000 · · · , we obtain an ordered topological space together with an order
preserving homeomorphism to the unit circle T with its counterclock-
wise ordering.

If w = i0i1 · · · in−1in · · · , let

σ(w) = i1 · · · in−1in · · · .
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Then the system (Σ, σ) is called the symbolic dynamical system and σ
is the left shift map. From our construction, one can check that

π ◦ σ(w) = f ◦ π(w), w ∈ Σ,

and after the above identifications are made, the system (T, f) induced
by (Σ, σ) is a continuous 2-to-1 proper covering from T to itself.

4. Dual dynamical systems and scaling functions

For each interval Iwn at level n we have been numbering the symbol
wn from the left to the right, that is,

wn = i0i1 · · · in−1.

Now we are going to number this symbol from the right to the left,
that is, for the same wn we write it as

w∗n = jn−1 · · · j1j0.

We call it the dual labeling.
The dual symbolic space is

Σ∗ = {w∗ = · · · jn−1 · · · jk · · · j1j0 | jk ∈ {0, 1}, k = 0, 1, · · · }
with the topological basis of right cylinders

[w∗n] = [jn−1 · · · j0] = {w̃∗ = · · · j′nj′n−1 · · · j′0 | j′n−1 = jn−1, · · · , j′0 = j0}.
For the symbols wn ∈ Σn the intervals Iwn are laid out in order from
left to right so that Iwnadd one is the next interval on the right after
Iwn , where wn add one means add one to wn to the right hand digit of
wn and carry the addition to the left in the usual way that one does
arithmetic. In the symbolism for w∗n ∈ Σ∗n the same intervals Iwn that
appear for Σn are arranged in a different order. That is, if the digits
in wn and w∗n are identical, the two intervals Iwn and Iw∗n are the same
but the appear in different position. The next interval appearing to
the right of Iw∗n is Iw∗nadd one, where w∗n add one means add one to the
left hand digit of w∗n and carry the addition to the right in the opposite
way that one ordinarily does arithmetic.

Consider the dual shift map σ∗ that drops the first symbol on the
right of an element w∗ = · · · jn−1 · · · j1j0 in Σ∗ :

σ∗ : · · · jn−1 · · · j1j0 7→ · · · jn−1 · · · j1.

Then we call (Σ∗, σ∗) the dual symbolic dynamical system for f . For
an element w∗n ∈ Σ∗n dropping the symbol on the left of w∗n gives the
symbol of the interval in Σ∗n−1 that lies spatially above the interval Iw∗n .
The same interval Iw∗n is situated dynamically beneath Iw∗n−1

in Σn.
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There is a dual dynamical system f ∗ acting on symbols Σ∗n corre-
sponding to the partitions of intervals. We write

· · ·Σ∗n ≺ · · · ≺ Σ∗1 ≺ Σ∗0

if each partition η∗n is a refinement of the partition η∗n−1. f carries
the first 2n−1 intervals in Σ∗n in order to the intervals of Σ∗n−1, and
it carries the second 2n−1 intervals also in order to the Σ∗n−1. If there
is an invariant measure m for f, the statement that m is additive on
adjacent intervals in these partitions is equivalent to the statement that
m∗ is invariant for f ∗, that is, that m∗(f ∗−1(Iwn)) = m∗(Iwn), and the
statement that m∗ is invariant for f ∗ is equivalent to the statement
that m is additive. Also, in an obvious sense, f ∗∗ = f, Σ∗∗n = Σn and
Σ∗∗ = Σ.

For any w∗ = · · · jn−1 · · · j1j0 ∈ Σ∗, let w∗n = jn−1 · · · j1j0, then

Iw∗n ⊂ Iσ∗(w∗n).

Define

D∗n(f)(w∗n) =
|Iσ∗(w∗n)|
|Iw∗n|

.

We make the assumption that for every w∗ in Σ∗ that the limit as
n → ∞ of D∗n(f)(w∗n) exists, and with this assumption we make the
following definition (refer to [15]):

Definition. The dual derivative of f at w∗ is given by

D∗(f)(w∗) = lim
n→∞

D∗n(f)(w∗n).

And

S(f)(w∗) =
1

D∗(f)(w∗)

is called the scaling function.

If f is a uniformly symmetric circle endomorphism of degree 2, then
the dual derivative D∗(f) exists and is continuous on Σ∗, moreover, if
f is C1+α expanding circle endomorphism for some 0 < α ≤ 1, then
D∗(f) is a Hölder continuous (see [15] for the proof). By this we mean
there are constants C > 0 and 0 < τ < 1 such that

|D∗(f)(w∗)−D∗(f)(w̃∗)| ≤ Cτn

whenever the first n digits on the right of w∗ and w̃∗ are identical.
This is equivalent to the standard definition of a Hölder continuous
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map from a metric space into another metric space with respect to the
metric d(·, ·) on Σ∗ defined by

(1) d(w∗, w̃∗) =
∞∑
k=0

|jk − j′k|
2k+1

for any w∗ = · · · jn−1 · · · jk · · · j1j0 and w̃∗ = · · · j′n−1 · · · j′k · · · j′1j′0. This
metric (1) is the standard metric of Lebesgue measure if we assume
that each of the intervals Iwn has length 1/dn.

Two UAA circle expanding maps f0 and f1 are called Teichmül-
ler equivalent if there exists a symmetric self map s of T such that
s◦f0 ◦s−1 = f1. In [4], it has been shown that the set of all eigenvalues
of f determines the Teichmüller equivalent class of f . Using a relation
between the set of all eigenvalues and the scaling function in [12] it is
shown that the scaling function S(f) on Σ∗ determines the Teichmüller
equivalence class of f, (see [5] and [14]).

5. Scaling functions on the dual circle

In [5, 6], it is shown that the summation condition and the compat-
ibility condition on the scaling function of a degree two UAA circle
endomorphism f are necessary and sufficient for a positive continuous
function h defined on Σ∗ to be the scaling function of f.

Definition. Suppose a degree two circle endomorphism f has a scaling
function S defined on the dual Cantor set Σ∗. Then S satisfies the
summation condition if every finite code ω in Σ∗,

S(ω0) + S(ω1) = 1.

S satisfies the compatibility condition if there exists a number α with
0 < α <∞ such that for every code ω of finite length in Σ∗

CN(ω) =
N∏
n=0

S(ω10 · · · 0)

S(ω01 · · · 1)

approaches α as N approaches∞, where the number of zeroes and ones
in the codes of the numerator and denominator is equal to n.

The following theorem is proved in [5].

Theorem 2. Suppose f is a degree 2 expanding circle endomorphism
from T onto T and m is a smooth measure on T with respect to which
f is invariant. Then a continuous non-negative function h is a scaling
function for some UAA f if and only if f satisfies the summation and
compatibility conditions.
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Suppose An and Bn are the lengths (measured with respect to the
invariant measure for f) two neighboring intervals in the partition η∗n
at level n induced by the dual dynamical system f ∗ lying on left and
right sides of a gap. Let an+1 and bn+1 be the lengths of subintervals
of An and Bn in the next partition ηn+1, also lying in the left and right
hand sides of the same gap. Then the compatibility condition says that
An/Bn and an+1/bn+1 approach the same limit α as n→∞. Let ω∗(R)
be the code of the element of the dual Cantor set Σ∗ representing the
path that travels down the right hand side of this gap and ω∗(L) be the
code of the element of the dual Cantor set representing the path that
travels down the left side. In the dual circle T∗ these two codes are
identified, and to show that the scaling function is well defined on the
dual circle, we must show that it takes the same value on both codes,
ω∗(L) and ω∗(R).

The value on the left side is limn→∞ an+1/An and the value on the
right side is limn→∞ bn+1/Bn. But (an+1/An)(Bn/bn+1) → α/α = 1,
and therefore limn→∞ an+1/An = limn→∞ bn+1/Bn.

Theorem 3. The scaling function S(f) of a UAA circle endomorphism
descends from a continuous function on the dual Cantor set Σ∗ to a
continuous function on the dual circle T∗.

Proof. This follows because we have just proved that its values on either
side of any gap coincide and we already know that S(f) is continuous
on Σ∗. �

6. Teichmüller’s metric on UAA.

In [8] it is shown that any UAA degree 2 circle endomorphism f is
extendable to a neighborhood in the complex plane of the unit circle
T to a uniformly asymptotically conformal map f̃ defined in a neigh-
borhood of T.

Suppose we have two such UAA endomorphisms f0 and f1 with ex-
tensions f̃0 and f̃1. Let h be a quasiconformal map defined in a neigh-
borhood of the unit circle with h◦f̃0◦h−1 = f̃1. The boundary dilatation
BD(h) of a mapping h is defined in [9]. It is the limit of the maximal
dilatation of the extension of h to open neighborhoods U of T as the
neighborhoods U shrink to T. The Teichmüller distance between f0 and
f1 is the infimum of the numbers

logBD(h)

where h ◦ f̃0 ◦ h−1 = f̃1 and where f̃0 and f̃1 are any UAC extensions
of the UAA endomorphismsf0 and f1. This metric makes UAA into a
complete metric space. The complex structure on UAA is induced by
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the complex structure on the Beltrami coefficients of the conjugacies
h.

Definition. The Teichmüller space UAA consists of uniformly asymp-
totically affine degree 2 circle endomorphisms factored by an equivalence
relation. Two such endomorphisms f and g are equivalent if there is a
symmetric homeomorphism h of T such that h ◦ f ◦ h−1 = g on T.

Remark. Note that equivalency h necessarily carries the sequence
of Markov partitions ηn(f) induced by f to the sequence of Markov
partitions ηn(g) induced by g.

7. The action of Thompson’s F -group.

Before describing Thompson’s group we first introduce terminology
for the successive Markov partitions ηn induced by f acting on T. To
simplify the exposition we assume f has degree 2. If n = 0 no points
are marked and the first partition η0 consists of just one interval [0, 1].
If n = 1 only one midpoint is marked, namely the point a in f−1(1)
that is not equal to the fixed point 1. It determines a partition η1 of
[0, 1] into two subintervals, [0, a] and [a, 1]. The set f−2(1) consists of 4
points laid out in order on the unit interval, namely, 0, a(0), a, a(1), 1,
where 0 is identified with 1, and the associated partition η2 consists
of 4 intervals, [0, a(0)], [a(0), a], [a, a(1)], [a(1), 1]. We shall call a(0) the
relative midpoint of [0, a] and a(1) the relative midpoint of [a, 1]. The
set f−3(1) consists of 8 points laid out in order on the unit interval,
namely,

0, a(00), a(0), a(01), a, a(10), a(1), a(11), 1,

with 0 identified with 1, and these are the boundary points of a partition
η3 of [0, 1] into 8 intervals. Thus each partition ηk+1 is a refinement of
the partition ηk. Similarly, we use the same notation for the successive
refinements of the Markov partitions in the sets f−n(1). Note that in
general each of the Markov partitions ηn consist of dn intervals, where
d is the degree of f.

Now we describe Thompson’s F -group in much the same way that
it is done by Greenberg in [11] and by Cannon, Floyd and Parry in [3].
First we define an allowable partition of order n. It is a partition of [0, 1]
into n intervals whose marked endpoints are obtained inductively by
the following procedure. There is no choice for the first marked point;
it is necessarily marked at a. There are two choices for the second
marked point. It can be either at a(0) or at a(1), in other words, either
at the relative midpoint of [0, a] or at the relative midpoint of [a, 1].
Proceeding inductively the point marked at the n-th stage lies at the
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relative midpoint between any two of the points in the set consisting
of 0 and 1 and the n − 1 relative midpoints marked at the previous
stages.

An element of Thompson’s F -group is determined by two allowable
partitions both of the same order n. We denote these partitions by
(D ,F ), standing for domain and range. The element h(D ,F ) corre-
sponding to (D ,F ) maps [0, 1] to itself by piecewise continuous in-
creasing parts that map the intervals of D in order onto the intervals
of R and that preserve all relative midpoints of all succeeding inter-
vals. The piecewise continuous parts of h are patched together at the
endpoints of n intervals that partition the circle. The composition of
two such maps h1 and h2 of requires patching along an allowable par-
tition into a number of intervals no more than the sum of the number
of intervals required for h1 and the number required for h2.

To obtain the desired action of Thompson’s group on the Teichmül-
ler space UAA, we do something a little different. Suppose we are
given an element f in UAA and a pair of allowable partitions (D ,F )
representing an element of Thompson’s group. We let h = h(D ,F ).

The action of h on f, which we denote by (h, f) 7→ ĥ(f), requires three
steps:

Step 1. First construct the dual dynamical system f ∗ acting on the
dual circle T∗.
Step 2. Then construct a quasisymmetric map h = h(D ,F ) determined
by the partitions ηk for the dual dynamical system f ∗. f ∗ will usually be
only by UQC (uniformly quasiconformal) but not be UAC (uniformly
asymptotically conformal).

Step 3. Finally, dualize back to a system acting on T by putting ĥ(f) =
(h ◦ f ∗ ◦ h−1)∗.

To show that these steps give an action we must show that h is
quasisymmetric and that ĥ(f) is in UAA. Here we use the same letter
f to denote a uniformly asymptotically conformal extension of f to
a neighborhood Ω of T. So f is a proper 2 to 1 covering taking Ω to
f(Ω) with f(Ω) − Ω equal to an annulus with positive modulus and
whose restriction to the inner boundary of Ω − T is equal to f on T.
To show that h is quasisymmetric we need to show how to build a
quasiconformal extension of h from a long composition of the branches
of f ∗ and (f ∗)−1 together with a quasiconformal part determined by

the partitions D and F . The action of ĥ(f) at deep levels duplicates
the action of f, so it is also UAC.

Step 1. This step is described in detail in [7, pages 178-180].
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Step 2. A version of this step is described in [7] but the setting is
different and so requires explanation. We need to show how the quasi-
conformal map h(D ,R) defined in a neighborhood of T∗ is built from
the dynamical pieces of the UAC map f and from the given element
of Thompson’s group determined by the tree diagrams in (D ,R).

Imitating the trees D and R we draw two corresponding Riemann
surfaces D and R with front to back symmetry as shown in figure 1.
Both the trees and the surfaces have a marked “top.” The trees have a
certain number n of tips at the bottom and the surfaces have the same
number of holes at the bottom. The two illustrations in figure 2 show
examples with 3 and 4 holes at the bottom. Obviously there is only
one topological way to draw n non-homotopic simple closed curves in
D and R with front-to-back symmetry that separate the top from the
bottom. These curves separate D and R into n + 1 pairs of pants.
There is only one homotopy class of map from D to R with front to
back symmetry that preserves the tops and corresponding separating
curves and that carries pairs pants in D to corresponding pairs of pants
in R. We denote by h a quasiconformal representative of this class.

We now use the dynamical branches of f to define a continuous
quasiconformal map h at all the other points of Ω by replicating the
simplicial structure below the holes in D and R.

Step 3. Finally, ĥ(f) = (h ◦ f ∗ ◦h−1)∗ is also a UAC system because
at levels of the infinite trees lying below the holes on D and R the
action of ĥ(f) is the transported simplicial action of f to the different
levels lying below these holes. These actions are asymptotically affine
because by assumption f is asymptotically affine.

Theorem 4. For a degree two UAA circle endomorphism f, the action
of Thompson’s F -group on the scaling functions of elements of UAA
defined on the dual Cantor set represents F faithfully as a group of
biholomorphic isometries in Teichmüller’s metric.

Proof. That the action is faithful follows from the same arguments that
are given in [7, pages 182-185].

To see that the action of an element α in F yields an isometry, we
first introduce the space UQS of all uniformly quasisymmetric circle
expanding maps f of degree 2 acting on T. This is also a complete
metric space with the boundary dilatation metric and UAA is closed
subspace of UQS. The map f 7→ f ∗ is an isometry of UQS onto itself
with the boundary dilatation metric.

Since α̂(f) = (α◦f ∗ ◦α−1)∗, it is the composition of three isometries
and, therefore, an isometry. Since (α, f) 7→ α̂(f) is a group action
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0 1/4 1/2 3/4 1

Making the tree of pairs of pants from two sheets of paper

Figure 1

on UAA, this isometry is invertible and, therefore, α̂ maps UAA onto
itself.

The complex structure on UAA arises from its realization as all pos-
sible UAC deformations h ◦ f0 ◦h−1 of the fixed UAC circle expanding
map f0(z) = zd. Here h = hµ is a quasiconformal conjugacy were µ
is the Beltrami coefficient of h. The complex structure is induced by
the complex structure on UQC (the uniformly quasiconformal endo-
morphisms of the unit disc). And this complex structure is induced by
the complex structure on the open unit ball of Beltrami coefficients µ,
with ||µ||∞ < 1. Dualizing and precomposition are holomorphic opera-
tions. �
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Conjecture. Every holomorphic automorphism of UAA is represented
in this way by an element of Thompson’s F -group.

8. The dual Rohlin formula

Just as in the C1+α case described at the beginning of Section 2, we
can construct an invariant probability measure m, that is, a measure
for which f∗m = m. Such a measure m is obtained by taking a limit of
any convergent subsequence mni

of the sequence

mn =
1

n

n−1∑
k=0

νk,
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where νk = fk∗ ν0, and ν0 is Lebesgue measure. It is conceivable that dif-
ferent subsequences converge to different invariant measures. (See [15]
for more details about the construction.)

Since f is a uniformly symmetric, the distribution functions

hn(x) = mn([0, x])

for the probability measures mn are uniformly symmetric. Since the
space of all M−symmetric homeomorphisms of T for a fixed constant
M is weakly compact (see, for example, [1]), the distribution function
h(x) = m([1, x]) of m is symmetric. We call m a symmetric f -invariant
probability measure.

We now define the dual σ∗-invariant measure on Σ∗ in the same way
it was defined in [15]. For a cylinder [w∗n] let Iwn be the interval in ηn
with the labeling

w∗n = jn−1 · · · j0 = i0 · · · in−1 = wn.

Define
m∗([w∗n]) = m(Iwn).

We must prove that m∗ extends to a measure on Σ∗.
First, since

f−1(Iwn) = I0wn ∪ I1wn ∪ · · · ∪ I(d−1)wn

and since m is f -invariant,

m(Iwn) =
d−1∑
i=0

m(Iiwn).

This implies that

m∗([w∗n]) =
d−1∑
i=0

m∗([iw∗n]).

That is, m∗ satisfies the finite summability condition. Since the distri-
bution function ofm is uniformly continuous on T, if we have a sequence
of cylinders [w∗n] of positive length n > 0, since the Lebesgue length
|Iwn| tends to zero as n goes to ∞, we see that m∗([w∗n]) = m(Iwn)
tends zero as n tends to infinity. This property together with the finite
summability condition implies that the countable summability, and so
m∗ extends to a probability measure on Σ∗.

We claim that m∗ is σ∗-invariant. For any cylinder [w∗n],

(σ∗)−1([w∗n]) = ∪d−1
i=0 [w∗ni],

so
Iwn = ∪d−1

i=0 Iwni,
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and we conclude that

m∗((σ∗)−1([w∗n])) =
d−1∑
i=0

m(Iwni) = m(Iwn) = m∗([w∗n]).

Therefore m∗ is σ∗-invariant.
From the definition of the metric entropy, we see that

hm∗(σ∗) = hm(f)

and we denote it by hm∗(f).

Theorem 5 (The Dual Rohlin Formula). Suppose f is a uniformly
symmetric circle endomorphism. Then we have the following equality

hm∗(f) =

∫
T∗

logD∗(f)(w∗)dm∗(w∗),

where D∗(f) is the dual derivative of f defined in section 5.

Proof. The metric entropy

hm∗(f) = lim
n→∞

1

n

∑
w∗n

−m∗([w∗n]) logm∗([w∗n]).

Proceeding just as we did in section 2, this limit is equal to

lim
n→∞

∑
[w∗n]

m∗([w∗n]) log
m∗(σ∗([w∗n]))

m∗([w∗n])
,

provided the last limit exists.
Define

m̃∗(B) =
d−1∑
j=0

m∗(σ∗(B ∩ [j])),

where B is any Borel subset in Σ∗. Here m̃∗ is a measure on T∗ and on
each cylinder [w∗n],

m̃∗([w∗n]) = m∗(σ∗([w∗n])).

Note that one cannot define m̃∗(B) = m∗(σ∗(B)) since the latter ex-
pression may not be a measure. The measure m∗ is absolutely contin-
uous with respect to m̃∗. So the Radon-Nikodym derivative of m∗ with
respect to m̃∗

RN(w∗) =
dm∗

dm̃∗
(w∗), m̃∗ − a.e. w∗,
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exists and is a m̃∗ measurable function. But since m is a symmetric
measure, we have ,

RN(w∗) = lim
n→∞

m∗([w∗n])

m∗(σ∗([w∗n]))
= lim

n→∞

|m(Iw∗n)|
|m(Iσ∗(w∗n))|

= lim
n→∞

|Iw∗n|
|Iσ∗(w∗n)|

=
(
D∗(f)(w∗)

)−1

, m̃∗ − a.e. w∗.

This implies that RN(w∗) is a positive function on Σ∗ for m̃∗− almost
all w∗. Thus, it is a positive function for m∗ almost all w∗. Therefore,

1

RN(w∗)
=
dm̃∗

dm∗
= D∗(f)(w∗)

is a positive function for m∗ almost all w∗ and it is a m∗ measurable
function equal to the dual derivative D∗(f)(w∗) for m∗ almost all w∗.
Since D∗(f)(w∗) is a positive continuous function on Σ∗, logD∗(f)(w∗)
is a continuous function on Σ∗ and is thus m∗ integrable. Therefore,

lim
n→∞

∑
[w∗n]

m∗([w∗n]) log
m∗(σ∗([w∗n]))

m∗([w∗n])
=

∫
Σ∗

logD∗(f)(w∗)dm∗(w∗) <∞.

This implies our dual Rohlin formula,

hm∗(f) =

∫
T∗

logD∗(f)(w∗)dm∗(w∗),

and completes the proof. �
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MR 96e:57012.

[12] Y. Jiang. Renormalization and Geometry in One-Dimensional Complex Dy-
namics. World Scientific, Singapore, 1996.

[13] Y. Jiang. A proof of the existence and simplicity of maximal eigenvalues for
Ruelle-Perron-Frobenius operators. Letters in Mathematical Physics, pages
211–219, 1999.

[14] Y. Jiang. Function models for Teichmüller spaces and dual geometric Gibbs
type measure theory for circle dynamics. Ramanujan Mathematical Society
Lecture Note Series, 10:413–435, 2010.

[15] Y. Jiang. Teichmüller structures and dual geometric Gibbs type measure the-
ory for continuous potentials. http://arxiv.org/abs/0804.3104v3, 2011.
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