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Carathéodory’s and Kobayashi’s metrics on

Teichmüller space

Frederick P. Gardiner

Abstract. Carathéodory’s and Kobayashi’s infinitesimal metrics on Teich-

müller spaces of dimension two or more are never equal in the direction of any

tangent vector defined by a separating cylindrical differential.

Introduction

The infinitesimal form of Poincaré’s metric ρ on the unit disc ∆ = {z : |z| < 1}
satisfies the equation

ρ(p, V ) =
|dp(V )|
1− |p|2

,

where V is a tangent vector at a point p with |p| < 1. Integration of this form

yields the global metric

(1) ρ(p, q) =
1

2
log

1 + r

1− r
,

where r = |p−q|
|1−pq| . ρ has constant curvature and the choice of the coefficient 1/2

makes the curvature equal to −4. At p = 0, it coincides with the Euclidean

metric |dp| and it is defined at other points of ∆ so as to be invariant by Möbius

automorphisms of ∆.

In dual ways the infinitesimal form ρ on ∆ induces infinitesimal forms on any

complex manifold M. The first way uses the family F of all holomorphic functions

f from ∆ to M. It is commonly called Kobayashi’s metric and we denote it by

K. The second way uses of the family G of all holomorphic functions g from M

to ∆. It is commonly called Carathéodory’s metric and we denote it by C.

For a point τ ∈M we let G(τ) be the subset of G consisting of those functions

g ∈ G for which g(τ) = 0. Similarly, we let F(τ) be the subset of f ∈ F for which

f(0) = τ. Given a point τ ∈M and a vector V tangent to M at τ, the infinitesimal

form K is defined by the infimum problem
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(2) KM (τ, V ) = inf
f∈F(τ)

{
1

|a|
: df0(1) = aV and f(0) ∈ F(τ)

}
and the infinitesimal form C is defined by the supremum problem

(3) CM (τ, V ) = sup
g∈G(τ)

{|b| : dgτ (V ) = b and g ∈ G(τ)} .

When M = ∆ the metrics K∆, C∆ and ρ coincide. Schwarz’s lemma applied to

g ◦ f : ∆→ ∆ where f ∈ F(τ) and g ∈ G(τ) implies

|b| ≤ 1/|a|

and so the formulas (2) and (3) together imply for all complex manifolds M

(4) CM (τ, V ) ≤ KM (τ, V ).

In the case M is a Teichmüller space we can use the Bers’ embedding, [2,

5]. For any point τ ∈ Teich(R) that embedding is a biholomorhic map Φτ

from Teich(R) onto a bounded simply connected domain in the Banach space of

bounded cusp forms Bτ . Moreover, the image of

Φτ : Teich(Rτ )→ Bτ

in Bτ contains the open ball of radius 2 and is contained in the ball of radius

6, [2]. Assume V is a tangent vector ||V ||Bτ = 1. Then the complex linear map

V 7→ (1/6)V extends by the Hahn-Banach theorem to a complex linear map

L : Bτ → C with ||L|| ≤ 1/6. Then because Φτ (Teich(R) is contained in the ball

of radius 6, L(Φτ (Teich(R)) is contained in the unit disc and L ∈ G. Thus from

definition (3)

CTeich(R)(τ, V ) ≥ 1/6.

On the other hand, put f(t) = 2tV. Then since the image of Φτ contains f(∆)

from definiton (2)

KTeich(R)(τ, V ) ≤ 1/2.

Putting the preceeding two inequalities together we find

(5) (1/3)KTeich(R)(τ, V ) ≤ CTeich(R)(τ, V ),

and so we obtain from (4) and (5) the double inequality

(6) (1/3)KTeich(R)(τ, V ) ≤ CTeich(R)(τ, V ) ≤ KTeich(R)(τ, V ).

Inequality (5) has been pointed out to me by Stergios Antonokoudis and the same

argument is given by Miyachi in [27] to prove the parallel result for asymptotic

Teichmüller space.

If h is a holomorphic function from a complex manifold M to a complex

manifold N, the derivative dhτ of h at τ ∈ M is a complex linear map from the

tangent space to M at τ to the tangent space to N at h(τ). From Schwarz’s lemma
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it follows both CM and KM have the pull-back contracting property, namely, for

any point τ ∈M and tangent vector V at τ, C and K satisfy

(7) KN (h(τ), dhτ (V )) ≤ KM (τ, V )

and

(8) CN (h(τ), dhτ (V )) ≤ CM (τ, V ).

Any infinitesimal form on a complex manifold satisfying this pull-back contracting

property for all holomorphic functions h is called a Schwarz-Pick metric by Harris

in [17] and by Harris and Earle in [7]. They also observe that any infinitesimal

form with this property must necessarily lie between CM (τ, V ) and KM (τ, V ).

A global metric d satisfying mild smoothness conditions has an infinitesimal

form given by the limit:

d(τ, V ) = lim
t↘0

d(τ, τ + tV ).

(See [8].) When this is the case the integral of the infinitesimal form d(τ, V )

gives back a global metric d. By definition the metric d(τ1, τ2) on pairs of points

τ1 and τ2 is the infimum of the arc lengths of arcs in the manifold that join τ1

to τ2. In general d is symmetric, satisfies the triangle inequality, determines the

same topology as d and one always has the inequality d ≥ d. However, in many

situations d is larger than d. It turns out that when M is a Teichmüller space

and d is Teichmüller’s metric, then d and d coincide, [9] [28]. Moreover, for all

Teichmüller spaces Teichmüller’s and Kobayashi’s metrics coincide (see [30] for

finite dimensional cases and [12, 13] for infinite dimensional cases).

The main result of this paper is the following theorem.

Theorem 1. Assume Teich(R) has dimension more than 1 and V is a tan-

gent vector corresponding to a separating cylindrical differential. Then there is

strict inequality;

(9) CTeich(R)(τ, (V ) < KobTeich(R)(τ, V ).

To explain this theorem we must define a “separating cylindrical differential.”

From the Jordan curve theorem any simple closed curve γ embedded in a Riemann

surface divides it into one or two components and we call γ separating if it divides

R into two components. In that case we can try to maximize the modulus of a

cylinder in R with core curve homotopic to γ. If this modulus is bounded it

turns out that there is a unique embedded cylinder of maximal modulus. By

a theorem of Jenkins ([19],[20]) and Strebel [33] it corresponds to a unique

quadratic differential qγ which is holomorphic on R with the following properties.

Its noncritical horizontal trajectories all have length 2π in the metric |qγ |1/2, these

trajectores fill the interior of the cylinder and no other embedded cylinder in the

same homotopy class has larger modulus. If such a cylinder exists and if Teich(R)

has dimension more than 1 we call qγ a separating cylindrical differential.
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Inequality (9) is a feature that distinguishes between different tangent vectors.

In fact by a theorem of Kra [22] for some tangent vectors one can have equality

(10) C(τ, V ) = K(τ, V ).

Kra’s theorem states (10) holds when V has the form ∂V = |q|/q where q is an

integrable holomorphic quadratic differential and where q is equal to the square

of an abelian differential;

q(z)(dz)2 = (ω(z)dz)2.

If q is such a quadratic differential, then we call the locus of points

{[t|q|/q] : |t| < 1} ⊂ Teich(R)

an abelian Teichmüller disc. The study of abelian Teichmüller discs is equivalent

to the study of translation surfaces which is a large topic, see for example [18]

and papers referenced there.

Kra’s result is obtained by using the Riemann period relations and Rauch’s

formula for the variation of the entries in the period matrix [29] induced by a Bel-

trami differential µ, where ∂V = µ. A consequence of this infinitesimal result is

that for any two points τ1 and τ2 in the same abelian Teichmüller disc, C(τ1, τ2) =

K(τ1, τ2). However, this leaves the possibility that C(τ1, τ2) < K(τ1, τ2) when τ1

and τ2 lie in distinct abelian Teichmüller discs. In contrast to abelian tangent vec-

tors, any tangent vector V corresponding to a separating cylindrical differential

must originate from what are sometimes called F-structures [10] and sometimes

called half-translation structures [11]. In particular, when the dimension of the

Teichmüller space is more than 1, an abelian tangent vector can never correspond

to a separating cylindrical differential. Note that the usual simple closed curves

αj and βj , 1 ≤ j ≤ g taken as a basis for the homology group of a surface of

genus g are all non-separating and can in fact correspond to abelian differentials

ωj(z)dz.

The rough idea for the proof of Theorem 1 is to move in the direction of a

separating cylindrical differential towards thinner parts of Teich(R), that is, in

the direction where a separating cylinder becomes taller while constantly having

waist length equal to 2π. If there is a finite set of such nonintersecting cylin-

ders then in a part of Teichmüller space where all of these cylinders become

thin Teichmüller’s metric resembles a supremum metric and the metric does not

have negative sectional curvature, (see [26]). Also these are the parts where the

anamolous aspects of the extremal length boundary become interesting, see for

example [24] and [34]. For Theorem 1 we only need one such curve. By deform-

ing in this direction we are able to construct a canonical curve sequence of waist

curves βn(t) in the plane. For fixed n, t with 0 ≤ t ≤ 2πn parametrizes a waist

curve on an unrolled surface. This curve induces a plane curve βn that covers the

core curve of a cylinder in the unrolled surface. The modulus cylinder increases
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proportionately with n. By computing the length of each βn with respect to the

Teichmuller density λ, where

(1/2)ρ ≤ λ ≤ ρ

and ρ is the Poincaré density we arrive at a contradiction. On the one hand the

computation shows that this length is proportional to n/ log n, a number which

is unbounded as n→∞. On the other hand, the assumption that

(11) CTeich(R)(τ, V ) = KTeich(R)(τ, V ),

where V is the tangent vector corresponding to a separating cylindrical differen-

tial, implies that this length is bounded independently of n.

The assumption (11) provides the existence of a certain nonconstant function

holomorphic on Bers’ fiber space with special properties. This function restricts to

a non-constant holomorphic function on a Teichmueller disc that is embedded in

that space. A sequence of holomorphic functions constructed in this way provides

functions defined on the maximal cylinder which in the limit as n approaches ∞
realize the Carathéodory extremal value for the cylinder. On the core curve of

the cylinder that extremal value has order 2/r which, for large values of r, is

much smaller than 2/ log r. It turns out to be so much smaller that the length

of the plane curve βn would be bounded independently of n. This estimate gives

the contradiction.

The sections of this paper are organized as follows. Section 1 gives an im-

portant consequence of equality in (11). In section 2 Bers’ fiber space is defined

and it is shown that if CTeich(R) = KTeich(R) on a Teichmüller disc in Teich(R)

then the corresponding equality holds in the fiber space F (Teich(R)). Section 3

defines the Teichmüller density λU of a plane domain U and proves the metric

equivalence of λU and Poincaré’s metric ρU , [16]. Section 4 gives an estimate

for the ratio of Carathéodory’s and Kobayashi’s metrics for an annulus A along

its core curve. Section 5 explains the spinning map on an annulus and section 6

compares CTeich(A) with KTeich(A). Section 7 gives a review of key properties of

maximal embedded cylinders and section 8 explains the spinning map on a sur-

face and gives an estimate of how spinning changes the modulus of the maximal

embedded cylinder. Section 9 describes how the process of unrolling a maximal

cylinder induces a sequence of embeddings of Teich(R) into higher dimensional

Teichmüller spaces. At this point one uses in essential way Teichmüller theory

for surfaces with boundary, which is a large topic of current research, see for ex-

ample [3]. Section 10 gives two estimates of the lengths of the sequence of waist

curves. The assumption that Carathéodory’s and Kobayashi’s metric are equal

in the tangent direction of a separating cylinder leads to the contradiction.

Since writing this paper I have learned of a related paper by V. Markovic that

proves a related result [25] concerning the ratio of the global Carathéodory’s and

Kobayashi’s metrics.
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1. Teichmüller discs

Definition 1. A Teichmüller disc is the image D(q) of any map f : ∆ →
Teich(R) of the form f(t) = [t|q|/q] for |t| < 1 where q is an integrable, holomor-

phic, non-zero quadratic differential on R.

By Teichmüller’s theorem this map is injective and is isometric with respect to

the Poincaré’s metric on ∆ and Teichmüller’s metric on Teich(R). It is interesting

to note that any disc isometrically embedded in a finite dimensional Teichmüller

space in this way necessarily has the form f(t) or f(t) where f has the form

described in this definition, [4].

Turning our focus to the relationship between C and K, we see that if

C(τ, V ) = K(τ, V ) for a particular tangent vector V, then from the sufficiency

part of Schwarz’s lemma there must be a holomorphic function g : Teich(R)→ ∆

for which

(g ◦ f)(t) = t

for all |t| < 1.

Lemma 1. Suppose V is a vector tangent to Teich(R). Then C(τ, V ) =

K(τ, V ) if and only if there exist holomorphic functions f ∈ F(0, τ) and g ∈
G(τ, 0) for which (g ◦ f)(t) = t for all |t| < 1 and for which df0(1) is a complex

multiple of V.

Proof. By Schwarz’s lemma and a normal families argument the infimum

in (2) can be equal to the supremum in (3) if an only if such mappings f and g

exist. �

2. Bers’ fiber space

Over every Teichmüller space Teich(S) of a hyperbolic quasiconformal surface

S there is a canonical fiber space [6]

Ψ : F (Teich(S))→ Teich(S),

called the Bers’ fiber space. To describe this space assume S is a fixed quasicon-

formal surface in the sense that S is a topological Hausdorff space equipped with

a finite system of charts zj mapping into the complex plane defined on domains

Uj ⊂ S, 1 ≤ j ≤ n, such that
n⋃
j=1

Uj = S,

and for which there is an M > 0 such that for each j and k the dilatation K of

zj ◦ z−1
k satisfies

K(zj ◦ z−1
k ) ≤M.
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The Teichmüller equivalence relation is an equivalence relation on the set of qua-

siconformal maps f from S to variable Riemann surfaces f(S). This equivalence

relation makes quasisconformal maps f0 and f1 mapping to Riemann surfaces

R0 = f0(S) and R1 = f1(S) equivalent if and only if f0 and f1 have isotopy

representatives f̃0 and f̃1 for which the dilatation K(f̃0 ◦ f̃−1
1 ) = 1.

f1(S)

c

��
S

f0

//

f1
==

f0(S)

Figure 1. Equivalence of f0 and f1

To define Bers’ fiber space F (Teich(S)) one picks an arbitrary point p in S

and considers quasiconformal maps f to variable Riemann surfaces f(S−p). The

equivalence relation has a similar description: two maps f0 and f1 from S − p
to f0(S − p) and to f1(S − p) are equivalent if there is an isotopy gt connecting

f0 to f1 as described above. But now the isotopy gt must pin down the point p.

Thus the composition f1 ◦ f−1
0 keeps track of the variable conformal structure of

the marked Riemann surface f(S) and as well as the movement of the point f(p)

within that surface.

Since by definition a representative f of a class [[f ]] ∈ Teich(R− p) is quasi-

conformal on S − p, it extends uniquely to a quasiconformal map defined on S.

Moreover two such reprentatives isotopic through quasiconformal maps on S − p
are also isotopic on S. Therefore the

Ψ : F (Teich(S))→ Teich(S)

which forgets that the isotopy must fix the point at p is well-defined and by

definition Ψ([[f ]]) = [f ].

In general F (Teich(S)) is a complex manifold and for each point τ ∈ Teich(S),

and

(12) Kτ = Ψ−1(τ)

is a one-dimensional properly embedded submanifold of F (Teich(S)) which is

conformal to a disc. Bers explicitly describes F (Teich(S)) as a moving family of

normalized quasicircles. One side of each of these quasicircles determines a point

in Teich(S) and the other side gives a conformal image of the fiber Kτ which is

conformally and properly embedded in F (Teich(S)).

Now assume S is given an underlying complex structure which makes it into

a Riemann surface R. Then denote by Ṙ the punctured Riemann surface R − p
where p is one point of R. Bers shows that the fibration Ψ is isomorphic to the

fibration

Ψp : Teich(Ṙ)→ Teich(R),
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where Ṙ = R− p.
One system of global holomorphic charts for Teich(Ṙ) is given by the Bers’

embedding of a Fuchsian universal covering group Ġ that covers R(τ)− p at any

point τ ∈ Teich(R) and any point p ∈ R. Bers’ main theorem gives a second

global holomorphic chart for Teich(Ṙ). Assume τ = Ψ(τ̂) where τ̂ ∈ Teich(Ṙ).

One takes a Fuchsian universal cover Π : ∆ → ∆/G ∼= R with covering group

G that maps 0 to p and then one forms the quasi-Fuchsian group Gτ = wΨ(τ) ◦
G ◦ (wΨ(τ))−1. Here wτ has Beltrami coefficient µ supported on the exterior of

the unit disc and µ represents the point τ ∈ Teich(R). One uses the fact that

two Beltrami coefficients µ1 and µ2 are Teichmüller equivalent if and only if

wµ1(z) = wµ2(z) for all z ∈ ∆. Note that µ is identically equal to 0 in ∆ and µ

represents the marked Riemann surface R(τ) in the complement ∆∗ = C \∆.

Let QF (G) be the space of quasiconformal conjugacies wµ◦G◦(wµ)−1, where

it is assumed that

µ(γ(z))
γ′(z)

γ′(z)
= µ(z)

for all γ ∈ G. This implies that wµ ◦ G ◦ (wµ)−1 is a group of Möbius transfor-

mations. We say such a Beltrami coefficient µ is equivariant for G. If we take

||µ||∞ = 1, the mappings wtµ for |t| < 1 form a holomorphic motion of ∆ param-

eterized by {t : |t| < 1} and this motion is equal to the identity when t = 0. Bers

shows that the map

(13) Teich(Ṙ) 3 τ 7→ (wΨ(τ), wΨ(τ)(0)) ∈ QF (G)

is a global holomorphic chart for Teich(Ṙ).

By Bers’ theorem for a fixed point τ ∈ Teich(R) the range of values

(14) {w : w =∞ or w = wτ (z) where |z| > 1}

is conformal to Kτ defined in (12), the quasi-Fuchsian group Gτ = wτ ◦G◦(wτ )−1

acts discontinuhously on Kτ and the quotient space is conformal to Rτ .

In the following lemma we assume V is a tangent vector to Teich(R) of

the form ∂V = |q|/q, where q is a quadratic differential form supported in the

complement of ∆ and where ∂V = 0 in ∆. Note that if q is integrable and

holomorphic on R then it is also integrable and holomorphic on Ṙ. Without

changing the notation we view V as representing a vector tangent to F (Teich(R))

and at the same time a vector tangent to Teich(R).

Lemma 2. Suppose τ ∈ Teich(R−p) and ∂V = |q|/q where q is a holomorphc

quadratic differential on R. In the setting just described suppose

CTeich(R)(Ψ(τ), V ) = KTeich(R)(Ψ(τ), V ).

Then CF (Teich(R))(τ, V ) = KF (Teich(R))(τ, V ).

Proof. First observe that since q is holomorphic and integrable on R, it is

also holomorphic and integrable on R − p. This implies that V can be viewed
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both as a tangent vector to Teich(R) and to Teich(R− p). Let ĝ = g ◦Ψ where

Ψ is the projection from Bers’ fiber space F (Teich(R)) to Teich(R). We obtain

f̂ : ∆→ F (Teich(R)) and ĝ : F (Teich(R))→ ∆

where both f̂ and ĝ are holomorphic and

(15) f̂ ◦ ĝ(t) = t.

The result follows from Lemma 1. �

From this Lemmas 1 and 2 each point τ ∈ Teich(R) induces two kinds of

conformal discs in F (Teich(R)). The first is the fiber Kτ of the forgetful map

Ψ over the point τ. The second is a bundle of Teichmüller discs, Dq, defined

in Definition 1, one for each projective class of non-zero quadratic differential q

holomorphic on Rτ .

3. Comparing metrics on surfaces

For very τ ∈ Teich(R) the fiber Kτ = Ψ−1(τ) of the forgetful map,

(16) Ψ : F (Teich(R))→ Teich(R),

carries two metrics that are induced by inherent geometry. The first is the

Poincaré metric ρ defined in (1). It is natural because Kτ is conformal to a

disc. When viewed as a metric on Kτ we denote it by ρτ and when viewed as

a metric on R we denote it by ρR. The second metric is the restriction of the

infinitesimal form of Teichmüller’s metric on F (Teich(R)) to Kτ . Similarly, when

viewed as a metric on Kτ we denote it by λτ , and when viewed as a metric on

R = R(τ) we denote it by λR.

Definition 2. λτ (z)|dz| is the pull-back by a conformal map c : ∆→ Kτ of

the infinitesimal form of Teichmüller’s metric on F (Teich(R)) restricted to Kτ .

From the previous section we know that F (Teich(R)) has a global coordinate

given by Teich(R − p), where R is a marked Riemann surface and p is a point

on R. For any point [g] ∈ Teich(R − p) the evaluation map Ev is defined by

Ev([g]) = g(p) is holomorphic and, since the domain of Ev is simply connected,

Ev lifts to ∆ by the covering map Πp to Ẽv mapping Teich(R − p) to ∆. For

this reason we can interpret the inequality of the next theorem as an inequality

of metrics on R = R(τ).

Theorem 2. For any surface R with marked conformal structure τ whose

universal covering is conformal to ∆, the conformal metrics ρτ and λτ satisfy

(17) (1/2)ρτ (p)|dp| ≤ λτ (p)|dp| ≤ ρτ (p)|dp|.

Proof. For a point in F (Teich(R)) corresponding to a Riemann surface R

and a point p ∈ R, we choose the Bers coordinate with base point at the identity

[id] ∈ Teich(R − p). For each point τ ∈ Teich(R − p) there is a quasiconformal
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selfmapping of the Riemann sphere wt that maps ∆ holomorphically to a quasidisc

wt(∆) and that conjugates the covering for R by the complement of ∆ in C to

the covering of R(τ) by the complement of wt(∆).

Denote by Πt the universal covering for the group

Gt = wt ◦G ◦ (wt)−1

where G is the covering group of R and let W be the tangent vector to the motion

wt at t = 0. This implies that Πt = wt ◦Π ◦ (wt)−1.

This means that if

wtz = µtw
t
z,

then ∂W = µ0 where µ0 = limt→0(1/t)µt.

We know by Slodkowski’s extension theorem that wt extends to a holomorphic

motion of all of ∆ and

wtz = µtw
t
z.

Since Kobayashi’s infinitesimal form coincides with Teichmüller’s infinitesimal

form, we know from Schwarz’s lemma that

||W ||Teich(R−p) = 1.

That is,

W =
d

dt
|t=0 w

t =

(
d

dt
|t=0 Πµt(t)

)
= Π′(0)µ0.

If we put

W0 =
W

Π′(0)

then

(18) ||W0||Teich(R−p) = ρ(0)||W ||Teich(R−p) = ρ(0).

Fixing the quadratic differential q which is holomorphic on R, we let vt be

any normalized holomorphic selfmapping of the Riemann sphere with Beltrami

coefficient identically zero in ∆ with the property that vt has Beltrami coefficient

µt in the complement of ∆ and vt(0) = p(t). That is, vt is required to duplicate the

motion wt only infinitesimally at the point p and at the points of the complement

of ∆. Otherwise, we select vt so that the norm

||V ||Teich(R−p)

of its tangent vector V at t = 0 is as small as possible.

Putting

V0 =
V

Π′(0)

and carrying through the same reasoning we obtain

(19) ||V0||Teich(R−p) = ρ(0)||V ||Teich(R−p) ≤ ρ(0).
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On the other hand

||V0||Teich(R−p) ≥
|V0(ϕ̂)|
||ϕ̂||

for every integrable holomorphic quadratic differential on R− p.
Put

ψp(z) =
1

π

∑
γ∈G

γ′(z)2

γ(z)
,

where G is the covering group for a universal covering Π of R for which Π(0) = p.

By the Ahlfors-Bers density theorem ψp is the L1-limit of integrable holomor-

phic functions ψp in the plane with a finite number of simple poles located at p

and located on the boundary of the unit disc. Thus to evaluate V (ψp) we may

assume it has only a finite number of poles. Since Ṽ0 is tangent to a holomorphic

motion of the entire disc, it has bounded ∂-derivative and

V0(ψp) =

∫ ∫
∂Ṽ0ψpdxdy =

∫ ∫
∂Ṽ0ψp

dzdz

2i

(20) =

∫ ∫
d

(
Ṽ0ψp

dz

2i

)
= −π res(ψp, p),

The only residue of
(
Ṽ0ψpdz

)
is at p and this residue is equal to 1/πΠ′(0). Since

ρ(p) = 1/|Π′(0)|,

(21) |V0(ψp)| = ρ(p),

and we get

ρ(p) ≥ ||V0||T ≥
ρ(p)

||ψp||
which yields ||ψp|| ≥ 1.

On the other hand,

||ψp|| =
∣∣∣∣∫ ∫

ω

∑ γ′(z)2

πγ(z)

∣∣∣∣ ≤ ∫ ∫
ω

∑∣∣∣∣γ′(z)2

πγ(z)

∣∣∣∣ =

∫ ∫
|z|<1

1

|πz|
dxdy = 2,

where ω is a fundamental domain in ∆ for the covering group. This yields

λR(t)|dt| = ||V0||Teich(R−p) ≥
ρ(t)|dt|

2
.

�

The following alternative description of λR appears in [16].

Theorem 3. For ϕ ∈ Q(R− p) be the space of integrable holomorphic qua-

dratic differentials on R− p let ||ϕ|| =
∫∫
R |ϕ|. Then

λR(t)|dt| = sup
ϕ∈Q(R−p),||ϕ||≤1

{|π times the residue of ϕ at p|} .
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4. Comparing C and K on an annulus A

Let Kr and Cr be the Kobayashi and Carathéodory infinitesimal forms on

the annulus

A = Ar = {w : (1/r) < |w| < r},
which has core curve γ = {w : |w| = 1}. Since rotations through any angle θ

are conformal automorphisms of Ar, Cr(1) = Cr(e
iθ) and Ar(1) = Ar(e

iθ) for

every point eiθ in the unit circle. We first prove the following lemma which gives

an asymptotic estimate for Cr(1) for large values of r. Afterwards we give an

exact formula which is informative but which we do not need in our subsequent

application.

Lemma 3. Let Cr be Carathéodory’s metric on Ar. Then

(22) Cr(e
iθ) <

2

r
· 1

1− 9/r2
.

Proof. Since z 7→ eiθz acts biholomorphically on Ar, Cr(e
iθ) = Cr(1) for

every point eiθ. By definition the infinitesimal form Cr(1) is equal to

sup{|g′(1)| : g maps Ar into ∆, g is holomorphic and g(1) = 0}.

LetD be the disc contained inAr of radius (1/2)(r−1/r) and centered at the point

(1/2)(r+ 1/r) and let CD be Carathéodory’s metric on D. Since Carathéodory’s

metric has the Schwarz-Pick property [8] and D ⊂ Ar,

Cr < CD

and since D is a disc CD = KD. But for a disc of radius R centered at the origin

KR =
R

R2 − |z|2
.

Translating this disc to the disc D centered at (1/2)(r + 1/r) and making rough

simplifications one obtains inequality (22). �

The exact formula for Cr(1) is given [32].

(23) Cr(w)(V )|dw(V )| = 1

r

Π∞1 (1 + r−4n)2(1− r−4n)2

Π∞1 (1 + r−4n+2)2(1− r−4n+2)2
|dw(V )|.

It is interesting to compare this to Kr(1) which can be more easily shown

by using the logarithmic change of coordinates ζ = ξ + iη, ζ = i logw. Then the

formula for Kr is

(24) Kr(ζ, V ) =
π|dw(V )|

(2 log r) cos( ηπ
log r )

.

The annulus Ar corresponds conformally to the rectangle

log(1/r) < η < log r,−π ≤ ξ < πi.
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The core curve γ in Ar corresponds in the ζ-coordinate to η = 0, and we have

(25) Kr(|w| = 1, V ) =
π

2 log r
.

Of course from formula (4) for any tangent vector V and any point P in any

complex manifold M, the ratio CM (P, V )/KM (P, V ) ≤ 1. From formulas (25)

and (23) when M is the annulus Ar we have a stronger inequality for any point

P along the core curve, namely, the ratio

(26) Cr(|w| = 1, V )/Kr(|w| = 1, V ) =
4

π
· log r

r
· Π∞1 (1 + r−4n)2(1− r−4n)2

Π∞1 (1 + r−4n+2)2(1− r−4n+2)2
.

In particular, the ratio decreases as r increases and it approaches 0 as r ap-

proaches ∞.

Lemma 4. For r > 16, the ratio

Cr(|w| = 1, V )/Kr(|w| = 1, V ) < 1/2.

10 20 30 40 50
r0.2

0.4

0.6

0.8

1.0

ratio

Figure 2. metric ratio

Proof. This follows from formula (26). The Mathematica plot in Figure 5

(which was worked out for me by Patrick Hooper and Sean Cleary) shows that

when r > 16 the ratio is less than 1/2.

�

5. Spinning an annulus

We are interested in a particular selfmap Spint of the annulus

Ar = {z : 1/r < |z| < r}.

Spint spins counterclockwise the point p = 1 on the unit circle {z : |z| = 1} ⊂ Ar
to the point p = eit for real numbers t while keeping points on the boundary of

Ar fixed. The formula for Spint is easier to write in the rectangular coordinate

ζ where we put

ζ = ξ + iη = −i log z.

We call ζ rectangular because the strip

(27) {ζ = ξ + iη :,− log r ≤ η ≤ + log r}
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factored by the translation ζ 7→ ζ + 2π is a conformal realization Ar with a

fundamental domain that is the rectangle

{ζ : 0 ≤ ξ ≤ 2π and− log r ≤ η ≤ + log r}.

The covering map is Π(ζ) = z = e−iζ and the points ζ = 2πn for integers n cover

the point z = 1. In the ζ coordinate we make the following definition.

Definition 3. For ζ = ξ + iη in the strip − log r ≤ η ≤ log r, let

(28) Spint(ζ) = ξ + t

(
1− |η|

log r

)
+ iη.

Note that Spint(ζ + 2π) = Spint(ζ) + 2π and Spint shears points with real

coordinate ξ and with imaginary coordinate ±η along horizontal lines to points

with real coordinate ξ + t(1 − |η|/ log r) while fixing points on the boundary of

the strip where η = ± log r.

We let µt denote the Beltrami coefficient of Spint and let Ar(µt) be the

annulus Ar with conformal structure determined by µt. By the uniformization

theorem applied to the annulus A(µt) we know that there is a positive number

r(t) such that A(µt) is conformal to Ar(t).

Theorem 4. Assume t > 2π. Then the unique real number r(t) with the

property that Ar(µt) is conformal to Ar(t) satisfies

(29) t · (1− 2π/t)2 + ((log r)/t)2

(
√

1 + ((log r)/t)2)
≤ log r(t)

log r
≤ t ·

(
1

t2
+

1

(log r)2

)1/2

.

Proof. We begin the proof with a basic inequality valid for any pair of mea-

sured foliations |du| and |dv| on any orientable surface S with a marked conformal

structure τ. Actually, this inequality is true for any pair of weak measured folia-

tions,(see [14]). We denote by S(τ) the surface S with the conformal structure

τ. For any smooth surface the integral
∫ ∫

S |du ∧ dv| is well defined for any pair

of weak measured foliations |du| and |dv| on defined S. The Dirichlet integral of

a measured foliation |du| defined by

Dirτ (|du|) =

∫ ∫
S(τ)

(u2
x + u2

y)dxdy,

is well defined only after a complex structure τ has been assigned to S. τ gives

invariant meaning to the form (u2
x+u2

y)dx∧dy where z = x+iy is any holomorphic

local coordinate. The following is a version of the Cauchy-Schwarz inequality.

Lemma 5. With this notation

(30)

(∫ ∫
S
|du ∧ dv|

)2

≤

(∫ ∫
S(τ)

(u2
x + u2

y)dxdy

)
·

(∫ ∫
S(τ)

(v2
x + v2

y)dxdy

)
.
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Proof. Begin with the elementary inequality(
det

(
a b

c d

))2

≤ (a2 + b2)(c2 + d2).

By adding the terms indexed by pairs of integers j and k this leads to the gener-

alization

(31)

∑
j

∑
k

|αjδk − βjγk|

2

≤

∑
j

α2
j + β2

j

(∑
k

γ2
k + δ2

k

)
.

By taking limits of elementary functions to obtain Lebesgue integrals of L1-

functions, (31) implies (30). �

The measured foliations |dη| and |dξ| on the strip (27) induce horizontal

and vertical foliations whose corresponding trajectories are concentric circles and

radial lines on Ar. Correspondingly, |dη ◦ (Spint)
−1| and |dξ ◦ (Spint)

−1| are

horizontal and vertical foliations on Ar(µt). We apply Lemma 5 to these foliations

with S = Ar(µt) and S(τ) = Ar and we get

(4π log r(t))2 ≤ [4π log r]

[
(4π log r)(1 +

t2

(log r)2

]
,

which leads to the right hand side of (29).

To obtain the left hand side we work with the conformal structure on Ar(µt)

where the slanting level lines of ξ ◦ (Spint)
−1 are viewed as orthogonal to the ver-

tical lines of η. By definition the number r(t) is chosen so that Ar(µt) is conformal

Ar(t) and this modulus is equal to

2 log r(t)

2π
.

On the other hand this modulus is bounded below by any of the fractions

(infβ
∫
β σ)2

area(σ)
,

where β is any arc that joins the two boundary contours of the annulus and σ is

any metric on Ar(t).

From the definition of extremal length one obtains(
2
√

(t− 2π)2 + (log r)2
)2

4
(√

t2 + (log r)2
) ≤ log r(t)

log r
,

This lower bound leads to the left hand side of (41). �
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6. Comparing C and K on Teich(Ar)

Theorem 5. For every point τ ∈ Teich(Ar) and for the tangent vector V

with ∂V = |q|/q where q =
(
dz
z

)2
,

(32) CTeich(A)(τ, V ) < KTeich(A)(τ, V ).

Proof. By Teichmüller’s theorem the embedding

{s : |s| < 1} 3 f(s) = [s|q|/q|] ∈ Teich(Ar)

is isometric in Teichmüller’s metric and it lifts to an isometric embedding

{s : |s| < 1} 3 f(s) = [[s|q|/q|]] ∈ Teich(Ar − {1}).

T eich(Ar − {1})

Ψ
��

ĝ

((
{s : |s| < 1}

f
//

f̂
66

Teich(Ar) g
// {s : |s| < 1}

Figure 3. f̂ , ĝ, f and g

The map f in Figure 3 is defined by f(s) = [s|q|/q] and f̂(s) = [[s|q|/q]]
where the single and double brackets denote equivalence classes of Beltrami co-

efficients representing elements of Teich(Ar) and Teich(Ar − {1}), respectively.

The map g is any holomorphic map from Teich(Ar) into ∆ and ĝ = g ◦Ψ where

Ψ is the forgetful map. That is, Ψ applied to an equivalence class [[µ]] forgets

the requirement that the isotopy in the equivalence that determines elements

Teich(Ar − {1}) pin down the point 1 in Ar and looks only at the requirement

that the isotopy pin down every point of the innner and outer boundaries of Ar.

For the proof we need to derive a contradiction to the assumption that there

is equality in (32). From Lemma 1 equality implies there exists a holomorphic

function g mapping Teich(Ar) onto ∆ with

(33) g ◦ f(s) = s

for all s ∈ ∆.

Let ζ 7→ s(ζ) be the conformal map from the strip in (27) that carries ζ = 0

to s = 0, the horizontal line {ζ = ξ + iη : η = log r} to the upper half semicircle

on the boundary of {|s| < 1} and the horizontal line {ζ = ξ+ iη : η = − log r} to

the lower half semicircle. Then (33) yields

(34) g ◦ f(s(ζ)) = s(ζ)

for every ζ in the strip. In particular ,

g ◦ f(s(t)) = s(t)

for every t ∈ R.
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Since q is also integrable and holomorphic on Ar − {1}, f lifts to f̂ with

Ψ ◦ f̂ = f. If we put ĝ = g ◦ Ψ, then all of the mappings in Figure 3 commute

and so we also have ĝ ◦ f̂(s) = s for every |s| < 1. From the chain rule applied at

any point s ∈ ∆,

(35) (dg)f(s) ◦ (df)s(1) = 1 and (dĝ)f(s) ◦ (df̂)s(1) = 1.

Equation (33) implies the restriction of g to the image of f is the inverse

mapping of f. Thus for γ an element of the fundamental group of Ar, g restricted

to f(∆) satisfies g◦γ = g and so g factors to a holomorphic function on the factor

space, which is conformal to Ar. Moreover, noting that ∂
∂t is the vector field on

Ar that is equal to 1 at the point eit and zero elsewhere, we have

dgf(s)

(
∂

∂t

)
=
dg

dt

and so g restricted to f(∆) realizes the supremum in the extremal problem that

defines the Carathéodory metric on the annulus Ar(t). That extremal problem is

to find the supremum in

(36) CAr(t)(1) = sup
g
{|dg
dt

(t)|},

where g ranges over all holomorphic functions from Ar(t) onto ∆ with g(1) = 0.

Since Carathéodory’s metric on Ar(t) is less than or equal to

(37)
2

r(t)
· 1

1− 9/(r(t))2
,

we obtain
∣∣∣dgdt ∣∣∣ is bounded by the same quantity. But λAr(s)(s) ≥ (1/2)ρAr(s)(s)

and

(38) ρAr(s)(t) =
π

2
· 1

log r(t)
.

The inequalities obtained from (37) and (38) are contradictory for sufficiently

large t. �

It is of interest to note that the linear maps (dg)f(s) and (dĝf̂(s)) are repre-

sented by different quadratic differentials qs ∈ Q(Ar) and q̂s ∈ Q(Ar−{1}). From

Schwarz’s lemma we have

||qs|| = 1 and ||q̂s|| = 1.

Thus the value of the supremum in (36) can be calculated by

(39) dgf(s)

(
∂

∂t

)
=
dg

dt
= π times the residue of q̂s at t.
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7. Maximal separating cyclinders

Let R be a Riemann surface for which Teich(R) has dimension at least 2

and assume R is of finite analytic type, by which we mean that the fundamental

group of R is finitely generated. Consider a simple closed curve γ that divides

R into two connected components R1 and R2 and assume that both R1 and R2

have non-trivial topology in the sense that each of them has a fundamental group

generated by two or more elements. From a theorem of Jenkins [19] and also of

Strebel [33], there exists on R an integrable, holomorphic, quadratic differential

qγ(z)(dz)2 that realizes R in cylindrical form, in the following sense. A cylinder

realized as the factor space of a horizontal strip in the ζ-plane

(40) C = {ζ = ξ + iη : 0− log r ≤ η ≤ log r}/(ζ 7→ ζ + 2π)

with r > 1 is embedded in R with the following properties:

i) (dζ)2 = −(d log z)2 is the restriction of a global holomorphic quadratic dif-

ferential qγ(z)(dz)2 on R with
∫ ∫

R |q|dxdy = 2π log(1/r),

ii) the horizontal line segments in the ζ-plane that fill the rectangle {ζ = ξ+iη :

0 ≤ ξ < 2π,− log r < η < log r} comprise all of the regular horizontal closed

trajectories of q on R,

iii) the core curve γ = {ζ = ξ + iη : η = 0, 0 ≤ ξ ≤ 2π} separates R into two

components R1 and R2,

iv) the remaining horizontal trajectories of q on R, that is, those which run into

singular points of q, comprise two critical graphs, one lying in the subsurface

R1 and the other lying in the subsurface R2,

v) the critical graphs G1 ⊂ R1 and G2 ⊂ R2 include as endpoints all the

punctures of R as simple poles of q, and

vi) each of the graphs G1 and G2 is connected,

vii) for every closed curve γ̃ homotopic in R to the core curve γ
∫
γ̃ |qγ |

1/2 ≥∫
γ |qγ |

1/2.

Theorem 6. [Jenkins and Strebel] The condition that the embedded cylin-

der described above has maximal modulus in its homotopy class implies that

qγ is a global holomorphic quadratic differential on R whose restriction to the

interior of the cylinder is equal to (dζ)2. qγ is maximal in the sense that any qua-

dratic differential q holomorphic on R satisfying ||q|| = ||qγ || and the inequality∫
γ̃ |q|

1/2 ≥
∫
γ |qγ |

1/2 for every γ̃ homotopic to the core curve γ is identically equal

to qγ . Moreover, the critical graphs G1 and G2 are connected.

Proof. To see that G1 is connected take any two points in G1. Since R is

arcwise connected, by assumption they can be joined by an arc in R. If that arc

crosses the core curve γ, cuf off all the parts that lie in R2 and join the endpoints

by arcs appropriate subarcs of the core curve γ to obtain a closed curve α in

R1∪γ that joins the two points. Then use the vertical trajectories of the cylinder

to project every point of α continuously to a curve that lies in the critical graph
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G1 that joins the same two points. This shows that G1 is arcwise connected. Of

course, the same is true of G2.

That the two conditions ||q|| = ||qγ || and the inequality
∫
γ̃ |q|

1/2 ≥
∫
γ |qγ |

1/2

imply that q = qγ follows from Grötzsch’s argument or from the minimum norm

principle proved in [13]. Finally, if (dζ)2 failed to be the restriction of a global

holomorphic quadratic differential on R, it would be possible to deform the em-

bedding of the cylinder inside R in such a way as to increase the modulus of the

cylinder. �

Definition 4. We call a cyclindrical differential qγ with the properties of

the previous theorem separating and any simple closed curve homotopic to γ is a

separating curve.

8. Spinning

We extend the estimates for moduli of annuli given in Theorem 4 to moduli

of a maximal embedded separating cylinder C ⊂ R. Just as in Theorem 4 we let

µt be the Beltrami coefficient of Spint. It determines a new conformal structure

on R − p and measured foliatons |dξ ◦ Spin−1
t | and |dη ◦ Spin−1

t | on R − p(t),
where p(t) is a point on the core curve of a maximal cylinder C ⊂ R represented

by the point t on the real axis in the rectangular coordinate that represents the

cylinder defined in (27).

Theorem 7. Assume t = 2πn where n ≥ 1. Then the unique real number

r(t) with the property that Ar(µt) is conformal to Ar(t) satisfies

(41) (1/4) · t · (1− 2π/t)2 + ((log r)/t)2

(
√

1 + ((log r)/t)2)
≤ log r(t)

log r
≤ t ·

(
1

t2
+

1

(log r)2

)1/2

.

Proof. We apply Lemma 5 to the measured foliations |dη| and |dξ| on the

strip (27). Correspondingly, |dη ◦ (Spint)
−1| and |dξ ◦ (Spint)

−1| are horizontal

and vertical foliations on Ar(µt). Applying Lemma 5 to these foliations with

S = Ar(µt) and S(τ) = Ar and we get

(4π log r(t))2 ≤ [4π log r]

[
(4π log r)(1 +

t2

(log r)2

]
,

which leads to the right hand side of (41).

To obtain the left hand side we work with the conformal structure on Ar(µt)

where the slanting level lines of ξ ◦ (Spint)
−1 are viewed as orthogonal to the ver-

tical lines of η. By definition the number r(t) is chosen so that Ar(µt) is conformal

Ar(t) and this modulus is equal to

2 log r(t)

2π
.
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This is bounded below by any of the fractions

1

4
·

(infβ
∫
β σ)2

area(σ)
,

where β is any homotopy class of closed curve on R that joins the two boundary

contours of the annulus and has intersection number 2 with the core curve of

Ar(t) and σ is the flat σ(ζ)|dζ| on Ar(t) given by σ(ζ) ≡ 1. Then∫
β
|dζ| ≥ 4 log r(t).

From the definition of extremal length one obtains

(2
√

(t− 2π)2 + (log r)2)2

4(
√
t2 + (log r)2)

≤ log r(t)

log r
,

This lower bound leads to the left hand side of (41). �

9. Unrolling

Just as in the previous sections we let Cγ be the maximal closed cylinder

corresponding to a separating simple closed curve γ contained in R. Then

Stripγ/(ζ 7→ ζ + 2π) ∼= Cγ .

Moreover the interval [0, 2π] along the top perimeter of Cγ partitions into pairs of

subintervals of equal length that are identified by translations or half translations

of the form

ζ 7→ ±ζ + constant

that realize the conformal structure of R along the top side of Cγ .
Also the bottom perimeter of Cγ partitions into pairs of intervals similarly

identified that realize the local consformal structure of R on the bottom side.

We can use the same strip to define a sequence of Riemann surfaces Rn for

any integer n ≥ 1 where by definition R1 = R. We use the same identifications

along the top and bottom horizontal sides of

Stripγ

and denote by Cγn the strip Stripγ factored by the translation ζ 7→ ζ + 2πn.

Let An be the interior of Cγn so An is a conformal annulus of maximum

modulus contained in Rn.

Lemma 6. Assume γ is a separating closed curve in R. and let qn be the

quadratic differential (dζ)2 on An and ∆ = {t : |t| < 1}. Then

∆ 3 t 7→ [f t|qn|/qn ]Rn ∈ Teich(Rn)

is an injective.
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Proof. Since the domain An has extremal modulus in Rn the quadratic

differential qn on An is the restriction of an integrable holomorphic quadratic

differential on Rn. Thus the statement follows from Teichmüller’s theorem. �

We let p be a point on the core curve γ of Cγ corresponding to ζ = 0 in the

strip. Similarly, we let pn corresponding to the same point ζ = 0 in the strip but

in the factor space

Cγn ∼= Stripγ/(ζ 7→ ζ + 2πn).

With these choices by Bers’ fiber space theorem we identify the fiber spaces

F (Teich(Rn)) and F (Teich(R)) with Teichmüller spaces Teich(Rn − pn) and

Teich(R− p), that is, the Teichmüller spaces of the punctured Riemann surfaces

R− p and Rn − pn.

Lemma 7. Assume qn is the holomorphic quadratic differential on R whose

restriction to the maximal annulus An is equal to (dζ)2. Also assume Vn is a

tangent vector to Teich(Rn) for which ∂Vn = |qn|/qn and Rn is Riemann surface

with marked complex structure τn. If CarTeich(R)(τ, V ) = KobTeich(R)(τ, V ) then

for every integer n ≥ 1

CarF (Teich(Rn))(τn, Vn) = KobF (Teich(Rn))(τn, Vn).

Proof. Choose the point pn on Rn which corresponds in the ζ coordinate

to ζ = 0. The integrable holomorphic quadratic differential qn on Rn is also

integrable and holomorphic on Rn − pn and the Teichmüller disc [t|qn|/qn] in

Teich(Rn) lifts to the Teichmüller disc [[t|qn|/qn]] in Teich(Rn − pn). �

Lemma 8. Assume Teich(R) has dimension more than 1 and p covers a point

on the separating core curve of Cn. Then Spin2πn represents an element of the

mapping class group of Teich(Rn − p) that fixes the Teichmüller disc

D(qn) = {[[s|qn|/qn]] ∈ Teich(Rn − p) : |s| < 1}

and Spin2πn restricted to D(qn) is a hyperbolic transformation.

Proof. Spin2πn preserves D(qn) because on Rn it is homotopic to the trans-

lation ζ 7→ ζ + 2πn and qn(ζ)(dζ)2 = (dζ)2 is automorphic for this translation.

Since the dimension of Teich(R) is more than 1 the translation length of this

transformation is positive. �

10. The waist sequence

Fix the point p in a Riemann surface R lying on the core curve of a sepa-

rating cylindrical differential qγ . Assume p corresponds to ζ = 0 in the maximal

cylindrical strip Cγ which is covered by the horizontal strip Strip(qγ).

Definition 5. Let Cn be the cylinder conformal to

Strip(qn)/(ζ 7→ ζ + 2πn)
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and [[µt]] the equivalence class of Beltrami coefficient of Spint in F (Teich(Rn)).

Then we call

αn(t) = [[µt]] ∈ Teich(Rn − p)
for µt, 0 ≤ t ≤ 2πn the n-th spin curve.

The spin curve αn determines a waist curve βn(t) in C. To obtain βn we use

the Bers’ isomorphism that realizes Teich(Rn−p) as a fiber space over Teich(Rn).

In the normalization used by Bers Rn is covered by Fuchsian group acting on the

upper half plane and one assumes the point p on the surface Rn is covered by the

point i in the upper half plane. Then Bers isomorphism of Teich(Rn − pn) with

F (Teich(Rn)) is realized by the map

(42) Teich(Rn − pn) 3 [[µ]] 7→
(

[µ], w[µ](i)
)
∈ Teich(Rn)×∆µ.

Here ∆µ is by definition the unit disc ∆ with moving complex structures given

by the Beltrami coefficients µ that represent elements [µ] of Teich(Rn).

Definition 6. [the waist sequence] The n-th waist curve is the plane curve

βn(t) = w[µt](i)

given by the second entry in (42), where [µt] = Ψ(αn(t)) and αn(t) = [[µt]] ∈
Teich(Rn − p).

We call βn the n-th waist. It represents the curve that passes once around

the waist of annulus An which is the interior of the cylinder Cn. Note that An
is maximally embedded in Rn. We will use the upper and lower bounds from

Theorem 2 to estimate the length of βn(t), 0 ≤ t ≤ 2πn with respect to the

Teichmüller density λAn on the annulus An in two ways.

From Theorem 2 of section 3 we have for all Riemann surfaces

(43) (1/2)ρR ≤ λR ≤ ρR.

Although they are unnecessary for our proof of the main theorem we point out

the following facts. Except in cases when both metrics are identically zero, the

left hand side of (43) is equality only if R is simply connected and the right hand

side only if R is the four times punctured sphere, [16]. In the case where R is

the complex plane or a surface covered by the plane both metrics are identically

equal to zero.

We now apply (43) in the case that R is any of the annuli An. We use the left

hand side of (43) to estimate the asymptotic lengths λAn(βn) of βn from below

in their dependence on n. We have

(44) λAn(βn) ≥ (1/2)ρAn(βn) ≥ n

2 log n
,

because the annulus An = {z : 1/rn < |z| < rn} where from (37) and (38) rn is

asymptotic to log n.
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We use the right hand side to the estimate the lengths λAn(βn) from above

in their dependence on n under the asssumption that

CarTeich(Rn−pn)(τn, Vn) = KobTeich(Rn−pn)(τn, Vn).

This assumption implies the existence of a holomorphic function ĝn defined on

Teich(Rn − pn) such that

(45) ĝn ◦ f̂n(s) = s for |s| < 1.

Note that ĝn is defined on Teich(Rn − pn) and holomorphic with respect to the

parameter ζ in the strip. It is also automorphic for ζ 7→ ζ+2πn. Thus ĝn restricts

to a holomorphic function on the fiber over the identity of the forgetful map

Φ : Teich(Rn − pn)→ Teich(Rn).

In particular, ĝn restricts to a function holomorphic on the annulus An which

maps into the unit disc. Together with (45) this implies that for points p on the

core curve βn
cAn(p) = ρAn(p),

where cAn is the Carathéodory metric of An. So from the right hand side of (43)

λAn(p) ≤ cAn(p)

and from section 4 cAn is asymptotic to 2/rn, which is asymptotic to 1/n. Since

βn is comprised of n intervals of equal length in the interval [0, 2πn], this estimate

implies λAn(βn) is bounded independently of n, which contradicts (44) and proves

Theorem 1.
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