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Abstract

We present a brief exposition of Teichmüller’s theorem.

Introduction

An orientation preserving homeomorphism f from a Riemann surface X onto a
Riemann surface Y is given. Teichmüller’s problem is to find a quasiconformal
homeomorhism in the homotopy class of f with minimal maximal dilatation,
that is, to find a homeomorphism f0 whose maximal dilatation K(f0) is as small
as possible in its homotopy class.

Teichmüller’s theorem states that the problem has a unique extremal solution
provided that X is compact or compact except for a finite number of punctures,
namely, a Riemann surface of finite analytic type. Moreover, except when f0

is conformal, f0 is equal to a stretch mapping along the horizontal trajectories
of some uniquely determined holomorphic quadratic differential ϕ(z)(dz)2, with∫ ∫

X
|ϕ|dxdy = 1, postcomposed by a conformal map. It turns out that even for

arbitrary Riemann surfaces, whether or not they are of finite analytic type, this
statement is generically true (see [20], [27]).

The goal of this course is to present a brief proof of the original Teichmüller
theorem in a series of lectures and exercises on the following topics:

1. conformal maps and Riemann surfaces,

2. quasiconformal maps, dilatation and Beltrami coefficients,

3. extremal length,

4. the Beltrami equation,

5. the Reich-Strebel inequality and Teichmüller’s uniqueness theorem,

6. the minimum norm principle,

7. the heights argument,

8. the Hamilton-Krushkal condition and Teichmüller’s existence theorem,
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9. trivial and infinitesimally trivial Beltrami differentials,

10. Teichmüller space and Teichmüller’s metric,

11. infinitesimal Teichmüller’s metric,

12. tangent vectors to Teichmüller spaces.

The course is organized as follows. The minimal necessary background and
defining concepts in the statement of the theorem are introduced in the first four
lectures. The uniqueness part of Teichmüller’s Theorem is presented in lectures
5, 6 and 7 and the existence part and the expression for extremal mapping in
terms of a unique holomorphic quadratic differential are presented in lectures 8
and 9. Finally Teichmüller space, Teichmüller’s metric, the infinitesimal form of
Teichmüller’s metric, and the structure of the tangent space to the Teichmüller
space of an n-punctured Riemann sphere are explained in the lectures 10, 11
and 12.

There are many expositions of Teichmüller’s theorem in the literature. How-
ever, our approach differs from others in that it highlights the minimum norm
principle for measured foliations. [1, 19, 20, 23, 33, 35, 36]

These notes are meant merely to serve as a first introduction to the subject.
There are many topics we have omitted which, if put together, make a unified
subject. These include the equality of Kobayashi’s and Teichmüller’s metrics
[37] [18], a result which shows that the complex structure of Teichmüller space
determines its metric. There is also Royden’s result that for compact surfaces of
genus bigger than 2 the mapping class group is the full group of biholomorphic
isomorphisms of T (R). This result was extended by Earle and Kra to surfaces
of finite analytic type [15] and [16]. Though still unknown for many infinite
dimensional dynamical Teichmüller spaces, it has also been extended to Teich-
müller spaces of Riemann surfaces of infinite type in varying degrees of generality
by Earle, Gardiner [14] and Lakic [26] and by Markovic [17], [32].

One should add to these topics the theory of holomorphic motions, that
is, the theorems of Mañé, Sad and Sullivan [30], Bers-Royden [11], Sullivan-
Thurston [39] and Slodkowski [38]. There are also the beautiful results of Reich,
Strebel [35] [36] and Hamilton [21] which relate infinitesimal extremality to
global extremality and further result by Bozin, Lakic, Markovic and Mateljevic
[13] that relates infinitesimal unique extremality to global unique extremality.

Unfortunately, it would take a whole book to explore all of these topics. We
recommend [33], [23], [19] and [20].

For the most part, these notes were written while we attended the Harish
Chandra Research Institute in Allahabad India. We wish to express our gratitude
to all of the faculty and staff there for their hospitality and for making our visit
so pleasurable. In addition, we thank the National Science Foundation of the
USA and the Department of Science and Technology of India for supporting
the “Year on Teichmüller Theory, 2005-06.” We also owe special thanks to
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Krishnendu Gongopadhyay for his kind assistance in making the diagram that
appears in Figure 1 of exercise 10.

1 Conformal Maps and Riemann Surfaces

A map z 7→ w = f(z) = u(z)+iv(z) from a domain U in C onto another domain
f(U) in C is conformal if it is a holomorphic homeomorphism. Thus we assume
conformal maps are one-to-one and orientation preserving. In particular the
first order approximation of such a map at a point z0 ∈ U has the form

f(z) = a0 + a1(z − z0) + o(|z − z0|),

with a1 6= 0. This means that in a neighborhood of z0 the mapping f is approx-
imated infinitesimally by the complex linear map ∆z 7→ ∆w = a1∆z, where
a1 = reiθ, and eiθ effects a rotation by angle θ and r 6= 0 effects a magnification
by r. Such a linear map does not change shape. For example, the image of an
equilateral triangle by z 7→ a1z is still an equilateral triangle.

Definition. A Riemann surface is a connected Hausdorff topological space X
together with a system of charts zj mapping open sets Uj of X into the complex
plane. The system of charts is assumed to cover X and on overlapping charts
zj(Ui ∩ Uj) the transition functions zi ◦ (zj)−1 are conformal.

Any chart z is a holomorphic map from an open subset of X into C and
therefore dz = dx+ idy is a linear map from the tangent bundle to X into the
tangent bundle to C. From this viewpoint dx and dy are real-valued linear func-
tionals on the tangent bundle to X, and thus they are elements of its cotangent
bundle. Choose a basis { ∂∂x ,

∂
∂y} dual to the basis {dx, dy} in the sense that(

( ∂
∂x )(dx) ( ∂

∂x )(dy)
( ∂∂y )(dx) ( ∂∂y )(dy)

)
=
(

1 0
0 1

)
.

Exercise 1. By definition, the partial derivatives ∂
∂z and ∂

∂z are the basis dual
to dz = dx+ idy and dz = dx− idy. Show that{

∂
∂z = 1

2 ( ∂
∂x − i

∂
∂y )

∂
∂z = 1

2 ( ∂
∂x + i ∂∂y ).

Exercise 2. Show that if f = u + iv, then ∂
∂z f = 0 is equivalent to ux = vy

and uy = −vx.

Exercise 3. Using the notations ∂
∂z f = fz and ∂

∂z f = fz, show that uxvy −
uyvx = |fz|2 − |fz|2.

Exercise 4. Show that uxx + uyy = 4uzz. By definition the Laplacian of u
is ∆u = uxx + uyy. A C2 real-valued function f(x, y) is called harmonic, sub-
harmonic or superharmonic if ∆f = 0, ≥ 0, or ≤ 0, respectively. Show that
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the notions of harmonic, subharmonic and superharmonic are well-defined on
a Riemann surface. That is, show that if z and w are two charts defined on
overlapping domains in a Riemann surface X and if ∆z is the Laplacian with
respect to x and y with z = x + iy and ∆w is the Laplacian with respect to u
and v with w = u+ iv, then the Laplacian of f with respect to z or with respect
to w are simultaneously, zero, positive or negative.

2 Quasiconformal Maps, Dilatation and Beltrami
Coefficients

If one thinks of a conformal structure as a shape, on an infinitesimal level
conformal maps do not distort shape. Thus, in order to study maps that permit
distortion of shape on an infinitesimal level, one must extend the discussion to
maps that are not conformal. If at the same time one keeps the amount of
distortion bounded, one is lead to the notion of a quasiconformal map.

We shall first consider what it means for a real linear map to be quasi-
conformal. By definition quasiconformal maps are locally approximable almost
everywhere by orientation preserving real linear maps which that distort shape
by a uniformly bounded amount. To begin our discussion we consider a real
linear map given by (

x
y

)
7→
(
u
v

)
= T

(
x
y

)
where

T = df =
(
ux uy
vx vy

)
=
(
a b
c d

)
.

Since we assume quasiconformal maps are orientation preserving, ad − bc > 0.
The circle |z|2 = x2 + y2 = 1 is mapped by T to the ellipse whose equation in
the w = u+ iv−plane is |T−1w|2 = 1. Expressed in terms of the inner product,
this ellipse is the set of points satisfying(

T−1

(
u
v

)
, T−1

(
u
v

))
=
(

(T−1)tT−1

(
u
v

)
,

(
u
v

))
= 1.

The distortion K of T is the eccentricity of this ellipse, that is, the length of
its major axis divided by the length of its minor axis. This ratio is the same
as the square root of the ratio of the larger eigenvalue λ2 of (T−1)tT−1 to its
smaller eigenvalue λ1. Since

(
(T−1)tT−1

)−1 = TT t, this ratio is the same as
the corresponding ratio for

TT t =
(
a2 + b2 ac+ bd
ac+ bd c2 + d2

)
.

But K =
(
λ2
λ1

)1/2

implies K + 1/K = λ1+λ2√
λ1λ2

. The numerator is the trace of

TT t and the denominator is the square root of the determinant of TT t, which
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is the same as the determinant of T. Thus

K + 1/K =
a2 + b2 + c2 + d2

ad− bc
.

The complex distortion of a two-dimensional linear map is determined by
the eccentricity K and by an angle and these two pieces of information are
conveniently expressed in complex notation. Any real linear map from C to C
has the complex form

w = T (z) = Az +Bz,

with complex constants A and B. For orientation preserving T, the determinant
is |A|2 − |B|2 > 0 and the formula can be written as

w = T (z) = A(z + µz), (1)

where µ = B/A and |µ| < 1. In this form T is the stretch map S(z) = z + µz
postcomposed by a multiplication, which is conformal and consists of a rotation
through angle argA and magnification by the factor |A|. Thus all of the dis-
tortion of shape caused by T is expressed by the complex number µ. Here µ is
called the complex dilatation or the Beltrami coefficient. From it one can find
angles of directions of maximal magnification and maximal shrinking, as well as
the distortion. If we let µ = keiα and z = reiθ, then

S(z) = reiθ + kreiα−θ = reiθ(1 + kei(α−2θ))

and as θ moves from 0 to 2π, S(z) sweeps out an ellipse whose maximum distance
from the origin occurs when θ = α/2 or α/2 + π and whose minimum distance
from the origin occurs when θ = α/2 − π/2 or α/2 + π/2. The eccentricity of
the ellipse is equal to 1+|µ|

1−|µ| , we denote it by K(T ). Since it depends only on µ,
we also denote it by K(µ).

After applying the stretch map, multiplication by A rotates the direction
of maximal stretching by the angle argA. Consider the composition T2 ◦ T1 of
two such real-linear maps T1 = A1 ◦ S1 and T2 = A2 ◦ S2. The image by T1

of the direction of maximal stretching of S1 may coincide with the direction
of maximal stretching of S2. Because the direction of maximal shrinking is
orthogonal to the direction of maximal stretching, when the image by T1 of the
direction of maximal stretching of S1 coincides with the direction of maximal
stretching of S2, the similar statement is true for the image of the direction of
maximal shrinking. Thus these directions coincide precisely when K(T2 ◦T1) =
K(T2)K(T1) and otherwise K(T2 ◦ T1) < K(T2)K(T1).

Exercise 5. Let µ1 and µ2 be Beltrami coefficients of T1(z) = A1z + B1z and
T2(z) = A2z +B2z. Show that the Beltrami coefficient of T2 ◦ (T1)−1 is(

µ2 − µ1

1− µ1µ2

)
1
θ1
, (2)

where θ1 = A1/A1.
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Definition. A C1 orientation preserving homeomorphism w = f(z) of a Rie-
mann surface X onto another Riemann surface f(X) is quasiconformal if

K(f) = sup
z∈X

Kz(f) <∞,

where Kz(f) = 1+k(z)
1−k(z) and k(z) = |fz/fz|. If K = K(f), then f is called

K-quasiconformal.

Exercise 6. For a mapping f from a Riemann surface X to a Riemann sur-
face Y, show that Kz(f) and K(f) are well-defined independently of choice of
coordinate charts.

3 Extremal Length

Let Γ be a family of curves on a Riemann surface. Every γ in Γ is assumed
to be a countable union of open arcs or closed curves. The extremal length
of Γ, Λ(Γ), is a sort of average minimum length of the curves in Γ. It is an
important quantity because it is invariant under conformal mappings and quasi-
invariant under quasiconformal mappings, in the sense to be described precisely
in Proposition 2. First we define the set of allowable metrics. A metric ρ(z)|dz|
is allowable if

• it is defined independently under choice of chart, that is, ρ1(z1)|dz1| =
ρ2(z2)|dz2|, where ρ1 and ρ2 are representatives of ρ in terms of the charts
z1 and z2.

• ρ is measurable and ≥ 0 everywhere, and

• A(ρ) =
∫ ∫

X
ρ2dxdy 6= 0 or ∞.

For such an allowable ρ, define

Lγ =
∫
γ

ρ|dz|

if ρ is measurable along γ; otherwise define Lγ = +∞. Let L(ρ,Γ) = inf Lγ(ρ),
where the infimum is taken over all curves γ in Γ. The extremal length of the
curve family Γ is

Λ(Γ) = sup
ρ

L(ρ,Γ)2

A(ρ)
, (3)

where the supremum is taken over all allowable metrics ρ. Notice that the ratio
in the surpremum is invariant if ρ is multiplied by a positive constant. Thus in
attempting to evaluate Λ(Γ) we may normalize in different ways. For example
by putting L(ρ) or A(ρ) equal to 1, or by putting L(ρ) = A(ρ). A metric ρ is
said to be extremal if it realizes the supremum in (3).
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Lemma 1. Let X be a rectangle with width a and height b and Γ be the family
of arcs in X that join the left side of X to the right side of X. Then Λ(Γ) = a/b
with extremal metric ρ0 = 1.

Proof. We show that ρ0 = 1 is an extremal metric. Note that L(ρ0,Γ) = a
and A(ρ0) = ab. Therefore Λ(Γ) ≥ a2/ab = a/b. Let ρ be any competing
metric and scale ρ so that L(ρ,Γ) = a. Then for every horizontal line segment
γ crossing X, a ≤

∫
γ
ρ(z)|dz| =

∫
γ
ρ(z)dx, so ab ≤

∫ ∫
X
ρ(z)dxdy. By Schwarz’s

inequality, (ab)2 ≤
(∫ ∫

X
ρ2dxdy

) (∫ ∫
X
dxdy

)
. Hence ab ≤ A(ρ) and a/b =

a2/ab ≥ L(ρ)2/A(ρ), which implies Λ(Γ) ≤ a/b. Thus Λ(Γ) = a/b.

Lemma 2. Let X = {z : 1 < |z| < R} and Γ be the family of closed curves in
X homotopic in X to a core curve of X. By definition a core curve is any circle
centered at the origin and lying in the interior of X. Then Λ(Γ) = 2π/ logR
with extremal metric ρ0(z) = 1/r.

Proof. We will show that ρ0 = 1/r is an extremal metric. Clearly A(ρ0) =
2π logR and L(ρ0) =

∫ 2π

0
(1/r)rdθ = 2π. Therefore,

Λ(Γ) ≥ 2π/ logR.

For any allowable metric ρ(z)|dz|, L(ρ) ≤
∫ 2π

0
ρ(reiθ)rdθ,

L(ρ)
r
≤
∫ 2π

0

ρ(reiθ)dθ,

L(ρ) logR ≤
∫ ∫

X

ρdrdθ =
∫ ∫

1√
r

√
rρdrdθ.

So by Schwarz’s inequality

(L(ρ) logR)2 ≤
∫ ∫

1
r
drdθ

∫ ∫
ρ2rdrdθ,

L(ρ)2

A(ρ)
≤ 2π/ logR.

Thus Λ(Γ) ≤ 2π/ logR and Λ(Γ) = 2π/ logR.

Exercise 7. Let X = {z : 1 < |z| < R} and Γt be the family of arcs in X that
join |z| = 1 to |z| = R. Show that Λ(Γt) = logR/(2π) also with extremal metric
ρ0(z) = 1/r.

Now let w = f(z) be a continuously differentiable and quasiconformal map
from an annulus X = {z : 1 < |z| < R} onto another annulus f(X) = {z : 1 <
|z| < R′} with R′ > R and assume µ is the Beltrami coefficient of f, that is,

fz(z) = µ(z)fz(z).
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Then if Γ is the family of arcs inX joining its inner and outer boundary contours,
Γµ = f(Γ) will be the family of arcs joining the inner and outer boundary
contours of f(A).

Note that f0 : z = reiθ 7→ rK0eiθ maps X = {z : 1 < |z| < R} onto X ′ = {z̃ :
1 < |z̃| < R′} provided that R′ = RK0 , and ζ = log z and ζ̃ = log z̃ are natural
parameters for the quadratic differentials (dz/z)2 and (dz̃/z̃)2 on X and X ′. The
mapping f0 expressed in terms of ζ and ζ̃ is given by ζ = ξ+ iη 7→ ζ̃ = K0ξ+ iη.
We let f be an arbitrary quasiconformal map from X onto X ′ also mapping the
inner and outer contours of X onto the inner and outer contours of X ′.

Proposition 1. In the notation described above

K0 =
Λ(Γµ)
Λ(Γ)

≤
∫ ∫

X

|1 + µ ϕ
|ϕ| |

2

1− |µ|2
|ϕ|dxdy.

Moreover, if µ is the Beltrami coefficient of f, then ||µ||∞ > k0 unless

µ = k0|ϕ|/ϕ a.e.,

where k0 = K0−1
K0+1 and ϕ(z) = 1

(2π logR)z2 .

Proof. Through the correspondence z = exp(ζ), f determines a mapping from
the rectangle {ζ : 0 ≤ ξ ≤ logR, 0 ≤ η ≤ 2π} onto the annulus {z : 1 < |z| <
R′}. Let γ be a radial arc in Γ joining the inner and outer boundary contours
of X. Then

logR′ ≤
∫
f(γ)

|dz| =
∫

Γ

|df | =
∫ logR

0

|fζ ||1 + µ̃|dξ,

where µ̃ = fζ/fζ . Integrating from η = 0 to η = 2π we obtain

2π logR′ ≤
∫ ∫

|fζ ||1 + µ̃|dξdη,

where the integral is over the rectangle {ζ : 0 ≤ ξ ≤ logR, 0 ≤ η ≤ 2π}. Intro-
ducing a factor of

√
1− |µ|2 in both numerator and denominator and applying

Schwarz’s inequality together with the Jacobian change of variable formula (see
exercise 3) yields

(2π logR′)2 ≤
∫ ∫

|fζ |2(1− |µ̃|2)dξdη
∫ ∫

|1 + µ̃|2

1− |µ̃|2
dξdη.

Since the first integral on the right hand side is the area of the rectangle in the
ζ̃−plane, we get

2π logR′ ≤
∫ ∫

|1 + µ̃|2

1− |µ̃|2
dξdη.

Since ζ = log z, µ̃ = µz/z, where µ = fz/fz. Noting that ϕ(z) = 1
(2π logR)z2 ,

the last inequality can be rewritten as

K0 =
Λ(Γµ)
Λ(Γ)

≤
∫ ∫

1<|z|<R

|1 + µ ϕ
|ϕ| |

2

1− |µ|2
|ϕ|dxdy. (4)
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Since
|1 + µ ϕ

|ϕ| |
2

1− |µ|2
≤ (1 + k(f))2

1− k(f)2
=

1 + k(f)
1− k(f)

, (5)

from (4) and (5) we obtain

1 + k0

1− k0
≤ |1 + µϕ/|ϕ||2

1− |µ|2
≤ 1 + k(f)

1− k(f)
.

If k(f) = k0, then these inequalities are equalities and hence µϕ/|ϕ| = k0, that
is, µ = k0|ϕ|/ϕ almost everywhere.

Exercise 8. By the same technique as used in the previous theorem, except by
using concentric circles centered at the origin in place of radial line segments,
show that

Λ(Γ)
Λ(Γµ)

≤
∫ ∫

1<|z|<R

|1− µϕ/|ϕ||2

1− |µ|2
|ϕ|dxdy.

Conclude that for small complex numbers t,

log Λ(Γtµ) = log Λ(Γ) + 2Re

(
t

∫ ∫
1<|z|<R

µϕdxdy

)
+ o(t),

where Γtµ = ft(Γ) and ft satisfies the Beltrami equation (ft)z = tµ(ft)z (see
the next section).

Exercise 9. Consider a complex number µ in the unit disc and a number M >
0. Show that

|1− µe−iθ|2

1− |µ|2
= M

is the equation of a circle inside the unit disc and tangent to the unit circle with
diameter 2M/(M + 1) and tangent to the unit circle at the point eiθ.

Exercise 10. Consider the map f mapping the unit square onto a figure dis-
torted by dyadic translations along subrectangles of the unit square whose vertical
sides are located on the gaps of a standard middle-thirds Cantor set on the unit
interval of the imaginary axis. On the largest subrectangle f is defined by the
translation z 7→ z + 1/2 and on the two rectangles at the next two levels of the
Cantor set f is defined by z 7→ z + 1/4 and z 7→ z + 3/4. The definition of f
should be clear from the following picture:

0 1

2/3

1

21

z+1/2z

0 1

z

z

7/9

z+ 1/4

z+3/4

0

f

1/9
2/9

1/3

8/9
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Fig 1

In figure 1 the scaling on the y-axis is different from the scaling on the x-axis so
the unit square appears as a rectangle. Show that f is a homeomorphism onto its
image, and in fact, f is Hölder continuous with Hölder exponent α = log 2/ log 3.
Furthermore, show that f is not quasiconformal by finding a sequence of curve
families Γn such that there is no finite value K for which

Λ(f(Γn)) ≤ KΛ(Γn).

Hint: Let Γ1 be the curve family of arcs lying in the rectangle {0 ≤ x ≤ 1, 2/9 ≤
y ≤ 1/3} with initial point at (x, 2/9) and endpoint at (x, 1/3). If β is such an
arc, then f(β) has initial point (x, 2/9) and endpoint (x + 1/2, 1/3). Consider
the analogous curve families Γn lying in the rectangles

{0 ≤ x ≤ 1, 1/3− 1/(3n+1) ≤ y ≤ 1/3}.

Proposition 2. Suppose f is a C1−quasiconformal mapping with dilatation K
taking a Riemann surface X onto a Riemann surface X ′ and taking a curve
family Γ onto a curve family Γ′. Then K−1Λ(Γ) ≤ Λ(f(Γ)) ≤ KΛ(Γ).

Proof. Let w be a local parameter on X ′ and z be a local parameter on X and
assume the mapping f takes z to w. Then for any allowable metric ρ on X,

ρ̃(w) =
∣∣∣∣ ρ(z)
|wz| − |wz|

∣∣∣∣
defines an allowable metric on X ′. Then for γ′ = w(γ) and w = u+ iv = w(z),
we have ∫

γ′
ρ̃(w)|dw| =

∫
γ

∣∣∣∣ ρ(z)
|wz| − |wz|

∣∣∣∣ |wzdz + wzdz|

=
∫
γ

∣∣∣∣ ρ(z)
|wz| − |wz|

∣∣∣∣ |wz + wz
dz

dz
||dz| ≥

∫
γ

ρ(z)|dz|

and ∫ ∫
X′
ρ̃(w)2dudv =

∫ ∫
X

ρ(z)2 |wz|+ |wz|
|wz| − |wz|

dxdy ≤ KA(ρ).

This means that we can transport any metric ρ on X to a metric ρ̃ on X ′ in such
a way that curves γ are transported to curves γ′ that are at least as long, and
such that the area of X ′ with respect to ρ̃ is no larger than K times the area
of X with respect to ρ. Therefore, Λ(Γ) ≤ KΛ(f(Γ)) and the reverse inequality
follows by applying the same argument to the inverse mapping.
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4 The Beltrami equation

Suppose that Ω is a plane domain and µ(z) is a continuous complex valued
function defined on Ω with |µ(z)| < 1. Consider the equation

fz(z) = µ(z)fz(z). (6)

(6) is called the Beltrami equation, a mapping f satisfying (6) is called a solution,
and µ is called the Beltrami coefficient or the complex dilatation of f. We now
suppose local homeomorphic solutions are known to exist in a neighborhood of
every point z in Ω.

Exercise 11. Show that the set of such solutions define a Riemann surface
structure on Ω. That is, show that transition functions are holomorphic.

We remark that for each t with |t| < 1/||µ||∞, the construction of the pre-
vious exercise creates a one-parameter family of Riemann surface structures on
X which yield the original structure when t = 0.

Now, we consider the following special case of (6). The Beltrami coefficient
has the special form µ(z) = k|ϕ(z)|/ϕ(z) where ϕ(z) is a holomorphic function
defined on a plane domain Ω and 0 < k < 1.

Exercise 12. Assume that ϕ(z) is a holomorphic function defined on Ω. Show
that (6) has a local homeomorphic solution when

µ(z) = k
|ϕ(z)|
ϕ(z)

in a neighborhood of every point where ϕ(z) 6= 0 and that µ defines a Riemann
surface structure on Ω.

Hint: Let ζ(z) =
∫ √

ϕ(z)dz, in a neighborhood of any point z where ϕ(z) 6= 0.
ζ is defined by taking an anti-derivative of a power series for

√
ϕ(z). Note that

ζ is defined ambiguously up to a plus or minus sign and an additive constant,
but ζ = ξ + iη is a local homeomorphism. The function ζ is called a natural
parameter with respect to the quadratic differential ϕ(z)(dz)2. Then form

f(z) = ζ + kζ =
∫ √

ϕ(z)dz + k

∫ √
ϕ(z)dz.

Show that fζ/fζ = k, that fz/fz = k |ϕ|ϕ and that f is K−quasiconformal with
K = 1+k

1−k .

Exercise 13. For a holomorphic quadratic differential ϕ(z)(dz)2 defined on a
Riemann surface X, the conditions ϕ(z)(dz)2 > 0 and ϕ(z)(dz)2 < 0 define
parameterized curves on X called horizontal and vertical trajectories which are
perpendicular. These trajectories are mapped to horizontal or vertical line seg-
ments in the ζ−plane for any natural parameter ζ.

11



Exercise 14. In a neighborhood of z = 0 draw the critical horizontal trajecto-
ries of z(dz)2, z2(dz)2, and z3(dz)2. In addition, draw regular horizontal tra-
jectories which are near to z = 0. Tell how many prongs there are for the
critical horizontal trajectories of ϕ(z)(dz)2 = zn(dz)2 near to z = 0. Putting
ζ = dξ+ idη =

∫ √
ϕ(z)dz, tell why it is not possible to find η as a single valued

function of z in a neighborhood of z = 0 when n is an odd integer.

Ultimately you will learn that equation (6) admits global homeomorphic
solutions on the Riemann sphere even if µ(z) is assumed only to be measurable.
That is, if Ω = C ∪ {∞} and µ(z) is measurable and ||µ||∞ < 1, then there is a
global homeomorphism f of C∪{∞} satisfying (6), where the partial derivatives
with respect to z and z are taken in the generalized sense. (See [29], [3],[23]).
Moreover, if the solution fµ(z) is normalized to fix three points on the Riemann
sphere, say 0, 1 and∞, then it is unique and w = fµ(z) is a holomorphic function
of µ, ([12],[4]). This version of the existence theorem for equation (6) (with
holomorphic dependence of the solution on the Beltrami coefficient) is sometimes
called the measurable Riemann mapping theorem (denoted by MRMT). In this
phrase the adjective measurable refers not to the theorem but to the coefficient
in the Beltrami equation. Moreover, a central aspect of the theorem is not
mentioned in its title, namely, the fact that dependence of the solution w =
fµ(z) on the coefficient µ is holomorphic.

Here we briefly outline the proof of MRMT with holomorphic dependence.
It is based on properties of the following two singular integral operators:

Pµ(z) = − 1
π

∫ ∫
µ(ζ)

{
1

ζ − z
− 1
ζ

}
dξdη

and

Tµ(z) = − 1
π

∫ ∫
µ(ζ)

{
1

(ζ − z)2
− 1
ζ2

}
dξdη.

P is a smoothing operator in the sense that if µ(ζ) has compact support and is
in Lp with p > 2, then

|Pµ(z1)− Pµ(z2)| ≤ C|z1 − z2|1−2/p,

and T preserves smoothness in the sense that for µ in Lp, (p > 2) and with
compact support

||Tµ||p ≤ Cp||µ||p,
with Cp → 1 as p decreases to 2. Moreover, if partial derivatives are interpreted
in the generalized sense, then

(Pµ(z))z = µ(z) (7)

and
(Pµ(z))z = Tµ(z). (8)

Then a (non-normalized) solution to (6) is given by

fµ(z) = z + Pµ(z) + PµTµ(z) + PµTµTµ(z) + · · · . (9)

12



We leave it to the reader to check that formal term-by-term differentiation of
this infinite sum yields

(fµ(z))z = µ(z) + µTµ(z) + µTµTµ(z) + · · · =

µ(z) (1 + Tµ(z) + TµTµ(z) + TµTµTµ(z) + · · · ) ,

and
(fµ(z))z = 1 + Tµ(z) + TµTµ(z) + TµTµTµ(z) + · · · .

Here, we make a few comments about the meaning of (9) and the structure of
the proof. We assume that ||µ||∞ = k < 1 and that µ has compact support. In
(9) we view µT as the operator given by first applying the linear map T and
afterwards multiplying by µ. Thus, for example, the expression

µTµTµ(z)

means first apply T to µ, then multiply the resulting Lp function by µ, then
apply T again, and finally multiply by µ. Moreover, the norm of µT as an oper-
ator satisfies ||µT ||p ≤ Cpk. Since k < 1 and for p larger than 2 but sufficiently
close to 2, Cp approaches 1, Cpk is less than 1. Therefore, µT is an operator
with norm less than 1, and (I − µT )−1 is a bounded operator on Lp. So the
solution (9) can be rewritten as a perturbation of the identity:

fµ(z) = z + P ((I − µT )−1)(µ).

Note that the final application of P smooths the Lp-function (I−µT )−1(µ) and
so the resulting solution is Hölder continuous with Hölder exponent 1 − 2/p.
Several more steps are involved in showing that the series yields a homeomor-
phism of the Riemann sphere for arbitrary µ in L∞ with ||µ||∞ < 1, and that
the operators P and T satisfy properties (7) and (8) for generalized partial
derivatives. For these steps we refer to [3] and [29].

We point out that if µ is replaced by tµ for a complex number t, then the
solution f tµ(z) is exhibited as a power series in t convergent for |t| < 1/||µ||∞,
its derivative at t = 0 is the first term of the series, namely, the vector field
V (z) ∂∂z . When the solution is normalized so that f tµ(z) fixes the points 0, 1 and
∞, then this vector field vanishes at those points and is given by the formula

V (z) = − 1
π

∫ ∫
µ(ζ)

{
1

ζ − z
− z

ζ − 1
+
z − 1
ζ

}
dξdη

= −z(z − 1)
π

∫ ∫
µ(ζ)

{
1

ζ(ζ − 1)(ζ − z)

}
dξdη. (10)

13



5 The Reich-Strebel Inequality and Teichmül-
ler’s Uniqueness Theorem

To generalize the example of the previous section, we assume f0 : X → Xµ is a
mapping satisfying the Beltrami equation

fz(z) = µ(z)fz(z),

where µ = k0|ϕ0|/ϕ0 and ϕ0 is a holomorphic quadratic differential on X with∫ ∫
X
|ϕ0|dxdy = 1. Such a Beltrami coefficient is said to be of Teichmüller form.

We also assume that f is another mapping from X to Xµ which is homotopic
to f0.

For non-compact Riemann surfaces X the form of homotopy we require
needs to be clarified. We require that there exists a map ft(z) continuous
simultaneously in both variables such that it is equal to f0 for t = 0 and equal
to f for t = 1, and f0(p) = ft(p) = f(p) for every t with 0 ≤ t ≤ 1 and
every boundary point p of X. For now we will assume that X is compact (and
so has no boundary) or a punctured compact surface with only finitely many
punctures. In the later case, the boundary of X consists of finitely many points.

Just as in the case of the annulus, we will obtain the following Reich-Strebel
inequality

K0 ≤
∫ ∫

X

|1 + ν ϕ0
|ϕ0| |

2

1− |ν|2
|ϕ0|dxdy, (11)

where ν is the Beltrami coefficient of any competing map f. In this section, we
first show how this inequality implies the next theorem.

Theorem 1 (Teichmüller’s Uniqueness Theorem). If a quasiconformal
mapping f0 from a Riemann surface X to another Riemann surface X ′ has Bel-
trami coefficient of Teichmüller form k0|ϕ0|/ϕ0 for some holomorphic quadratic
differential ϕ0 with ||ϕ0|| = 1 and 0 < k0 < 1, then any other quasiconformal
mapping fµ in the same homotopy class either has the same Beltrami coeffi-
cient or ||µ||∞ > k0. Moreover, if f0 and f1 are two mappings with Beltrami
coefficients of Teichmüller form k0|ϕ0|/ϕ0 and k1|ϕ1|/ϕ1, then k0 = k1 and
ϕ0 = ϕ1.

Proof. Clearly,
|1 + µ ϕ0

|ϕ0| |
2

1− |µ|2
≤ (1 + k(f))2

1− k(f)2
=

1 + k(f)
1− k(f)

. (12)

By the Reich-Strebel inequality (11) and the above estimate, we obtain

K0 ≤
∫ ∫

X

|1 + µ ϕ0
|ϕ0| |

2

1− |µ|2
|ϕ0|dxdy ≤ K(fµ), (13)

that is,
1 + k0

1− k0
≤
∫ ∫

X

|1 + µ ϕ0
|ϕ0| |

2

1− |µ|2
|ϕ0|dxdy ≤

1 + k(f)
1− k(f)

.
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Therefore, if fµ is also extremal in the same class, then k(f) = k0 and hence
these inequalities are equalities, which forces µϕ0/|ϕ0| = k0, that is, µ =
k0|ϕ0|/ϕ0 almost everywhere.

Before starting out the work of proving (11), we take note of two closely
related inequalities.

Theorem 2. Suppose f is a quasiconformal self map of X homotopic to the
identity on X and ϕ is any holomorphic quadratic differential on X with

||ϕ|| =
∫ ∫

X

|ϕ|dxdy = 1.

Then

1 ≤
∫ ∫

X

|1 + µ ϕ
|ϕ| |

2

1− |µ|2
|ϕ|dxdy. (14)

We note that (14) is the special case of (11) when K0 = 1, and we postpone
the proof until the end of section 7. For now we show only how Theorem 2
implies another inequality, which is a version of The Main Inequality of Reich
and Strebel and which implies (11).

Theorem 3. Let f and g be two quasiconformal maps from X to Y, with Bel-
trami differential coefficients µf and µg. Assume g ◦ f−1 is homotopic to the
identity on Y, w = u+ iv = f(z), and let ψ(w)(dw)2 be an integrable, holomor-
phic, quadratic differential on Y with

∫ ∫
Y
|ψ|dudv = 1. Then

1 ≤
∫ ∫

Y

∣∣∣1 + µg
1
θ
ψ
|ψ|

∣∣∣2
1− |µg|2

∣∣∣∣∣1− µf 1
θ
ψ
|ψ|

(
1+µg

µf
µf

ψ
|ψ|

1+µg
1
θ
ψ
|ψ|

)∣∣∣∣∣
2

1− |µf |2
|ψ(w)|dudv. (15)

where θ = p/p and p = fz.

Proof. Note that

µg◦f−1 =
[
µg − µf
1− µfµg

· 1
θ

]
◦ f−1. (16)

On using (14) for the surface Y and replacing µ by (16), for ||ψ|| = 1 we obtain

1 ≤
∫ ∫

Y

|1 + σ ψ
|ψ| |

2

1− |σ|2
|ψ(w)|dudv. (17)

where

σ(w) =
[
µg − µf
1− µfµg

· 1
θ

]
◦ f−1(w).

(17) simplifies to

1 ≤
∫ ∫

Y

∣∣∣(1− µfµg) + (µg − µf ) 1
θ
ψ
|ψ|

∣∣∣2
|1− µfµg|2 − |µg − µf |2

|ψ(w)|dudv. (18)
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The part inside the absolute value in the numerator of this integrand can be
rewritten in the following way

(1− µfµg) + (µg − µf )
1
θ

ψ

|ψ|
=
[
1 + µg

1
θ

ψ

|ψ|

]1− µf
1
θ

ψ

|ψ|

1 + µg
µf
µf

ψ
|ψ|

1 + µg
1
θ
ψ
|ψ|


Therefore (18) can be rewritten as

1 ≤
∫ ∫

Y

∣∣∣1 + µg
1
θ
ψ
|ψ|

∣∣∣2
1− |µg|2

·

∣∣∣∣∣1− µf 1
θ
ψ
|ψ|

(
1+µg

µf
µf

ψ
|ψ|

1+µg
1
θ
ψ
|ψ|

)∣∣∣∣∣
2

1− |µf |2
· |ψ(w)|dudv. (19)

We now go to the proof of (11). We assume w = f(z) is of Teichmüller form,
with Beltrami coefficient k |ϕ0(z)|

ϕ0
. This means that in terms of ζ =

∫ √
ϕ0(z)dz,

f(ζ) = ζ̃ = ξ̃ + iη̃ = K1/2ξ + iK−1/2η and the push-forward of ϕ0 under f is
a holomorphic quadratic differential on X ′ of the form ψ0(ζ̃)(dζ̃)2 = (dζ̃)2 with
norm also equal to 1. Note that in terms of the natural parameters ζ, and ζ̃,
θ ≡ 1, ψ ≡ 1 and µf ≡ k. Applying (19) to this mapping f and to the quadratic
differential ψ0(ζ̃)(dζ̃)2, (19) becomes

1 ≤
∫ ∫

Y

∣∣∣1 + µg ◦ f−1(ζ̃)
∣∣∣2

1− |µg ◦ f−1(ζ̃)|2
· (1− k)2

1− k2
dξ̃dη̃

=
1
K

∫ ∫
X

|1 + µg(ζ)|2

1− |µg(ζ)|2
dξdη =

1
K

∫ ∫
X

∣∣∣1 + µg(z)
ϕ0(z)
|ϕ0(z)|

∣∣∣2
1− |µg|2

|ϕ0(z)|dxdy,

and then we obtain (11).

6 The Minimum Norm Principle

Now suppose we are given two integrable quadratic differentials ϕ and ψ. Also
suppose ϕ is holomorphic and ψ is locally L1 with respect to dξdη, where ζ =
ξ+ iη, the natural parameter measure for ϕ. For any vertical trajectory β of ϕ,
we can form hψ(β) =

∫
β
|Im(

√
ψ(z)dz)|, where the integral is unoriented and

taken in the positive sense regardless of the orientation of β. In the unusual
circumstance that β runs along a closed trajectory, by hψ(β) we mean the
arclength integral of |Im(

√
ψ(z)dz)| along the entire parametrization of β.

Theorem 4 (The Minimum Norm Principle). Assume X is a Riemann
surface of finite analytic type and ϕ is a holomorphic quadratic differential on
X with ||ϕ|| =

∫ ∫
X
|ϕ|dxdy < ∞. Let ψ be another locally integrable quadratic
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differential and assume there is a constant M such that for every non-critical
vertical segment β for ϕ, one has hϕ(β) ≤ hψ(β) +M. Then

||ϕ|| ≤
∫ ∫

X

|√ϕ||
√
ψ|dxdy.

Proof. As usual, we let ζ = ξ+ iη be a natural parameter for ϕ, that is, (dζ)2 =
ϕ(z)(dz)2. Put

g(p) =
∫
βp

|Im(
√
ψ(ζ)dζ)|,

where βp is a vertical segment for ϕ with height b and midpoint p. Since the
number of zeroes of ϕ on X is finite, the number of vertical trajectories of ϕ
which lead into these zeroes is countable. Therefore, the set of regular vertical
trajectories of ϕ is of full measure and g is defined on a set of full measure in
X. We wish to establish the following inequality.∫ ∫

X

g(p)dξdη ≤ b
∫ ∫

X

|
√
ψ(ζ)|dξdη. (20)

All that is required is a change of order of integration with respect to dη along
any regular vertical trajectory of ϕ. Since the transformation ζ = ξ + iη 7→
ξ+i(η+t) has Jacobian identically equal to 1, this change of variable is justified
so long as we can view this transformation as an almost everywhere defined self-
mapping of X. However, since trajectories of a quadratic differential do not in
general have globally defined orientation on X, it is not possible to distinguish
between the maps ζ = ξ + iη 7→ ξ + i(η + t) and ζ = ξ + iη 7→ ξ − i(η + t).
To avoid this problem, we pass to the double cover X̃ of X where

√
ϕ can be

globally defined, and where the norm of the lifted quadratic differential |ϕ̃| on
X̃ is exactly twice norm of ϕ on X. After these steps we end up with (20).

To go on with the proof, we now invoke the hypothesis that b − M ≤∫
βp
|Im(

√
ψdz)|, and so b−M ≤ g(p) for almost all p. From (20) this implies

(b−M)
∫ ∫

X

dξdη ≤ b
∫ ∫

X

|
√
ψ(ζ)|dξdη,

and dividing both sides by b and taking the limit as b→∞, we obtain∫ ∫
X

dξdη ≤
∫ ∫

X

|
√
ψ(ζ)|dξdη,

where ψ(ζ) is the expression for the quadratic differential ψ in terms of the local
parameter ζ. Since dζ =

√
ϕ(z)dz,

dξdη =
1
2
|dζdζ| = 1

2
|ϕdzdz| = |ϕ|dxdy,

and √
ψ(ζ) =

√
ψ(z)√
ϕ(z)

,
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by changing from the natural parameter ζ to the local parameter z, we obtain
the desired inequality, namely,

||ϕ|| ≤
∫ ∫

X

|√ϕ||
√
ψ|dxdy.

7 The Heights Argument

Lemma 3. Let ϕ be a holomorphic quadratic differential on X with ||ϕ|| <∞.
Let f be a quasiconformal self-mapping of X which is homotopic to the identity.
Then there exists a constant M such that for every non-critical vertical segment
β of ϕ, one has

hϕ(β) ≤ hϕ(f(β)) +M.

the constant M depends on ϕ and f but not on β.

Proof. Let X be the completion of X with the n punctures filled in. So X
is compact with no punctures, and since f is quasiconformal, it extends to
a quasiconformal map fixing the punctures. By hypothesis this extension is
homotopic to the identity by a homotopy ft which fixes the punctures pointwise.
The infinitesimal form |ϕ|1/2|dz| determines a finite valued metric on X. To see
that the distance from a point in X to a puncture is finite, one observes that
ϕ has at most simple poles and so to find the length of a short arc ending at
a puncture, one has to calculate an integral of the form

∫ a
0
t−1/2dt, and this

clearly converges.
Let ft be the homotopy connecting f to the identity, so f0(p) = p and

f1(p) = f(p). Let l(p) be the infimum of the ϕ−lengths of all curves which
go from p to f(p) and which are homotopic with fixed endpoints to the curve
t 7→ ft(p). Clearly, l(p) is a continuous function on the compact set X. Let M1

be the maximum of this function.
Let β be a noncritical vertical segment for ϕ with endpoints p and q. The

segment β and the curve which consists of a curve homotopic to t 7→ ft(p)
followed by f(β) and then followed by a curve homotopic to t 7→ f1−t(q) is
homotopic to β with fixed endpoints. From the following lemma it will follow
that

hϕ(β) ≤ hϕ(ft(p)) + hϕ(f(β)) + hϕ(f1−t(q)).

Since the first and third terms of this inequality are each bounded by M1, the
lemma follows with M = 2M1.

Lemma 4. Let ϕ be a holomorphic quadratic differential on X. Suppose β is a
segment of a vertical trajectory of ϕ and that γ is an arc in X with the same
endpoints as β such that the arc β followed by the arc γ−1 forms a closed curve
homotopic to a point. Then hϕ(β) ≤ hϕ(γ).
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Proof. It is sufficient to prove this inequality for lifts of the arcs β and γ in the
universal cover X̃. If β followed by γ−1 forms a closed curve in X homotopic to
a point, the lifts of these curves form a closed curve in X̃ contractible to a point
in X̃. Because there can be only finitely many singularities of ϕ in a bounded
simply connected domain containing this curve, β may be subdivided into a
finite number of subintervals such that horizontal strips emanating from these
subintervals must be crossed by γ. Since the height of the strip is constant, the
height of β along each strips is less than or equal to the height of γ. By adding
up over all of the strips, the lemma follows.

Now our approach to obtain Theorem 2 is to apply the minimum norm
principle of the previous section to the quadratic differential

ψ(z) = ϕ(f(z))f2
z (z) (1− µϕ/|ϕ|)2

. (21)

We leave it to the reader to check that this is a quadratic differential, and go
on to show that for any vertical segment β relative to ϕ,

hψ(β) = hϕ(f(β)).

By definition,

hϕ(f(β)) =
∫
f(β)

|Im(
√
ϕ(f)df)| =

∫
β

|Im
(√

ϕ(f(z))fz(1 + µ(z)(dz/dz))dz
)
|.

Note that for a natural parameter ζ, dζ =
√
ϕ(z)dz, and for a parametrization

ζ = it of the vertical trajectory β, dζdζ = −1. Therefore, dz/dz = −ϕ/|ϕ| along
β. The final result is that hϕ(f(β)) = hψ(β). Therefore, we obtain the following
lemma.

Lemma 5. There exists a constant M such that for all regular vertical trajec-
tories β of ϕ,

hϕ(β) ≤ hψ(β) +M.

Proof. Merely apply the previous lemma and the previously derived equality
hϕ(f(β)) = hψ.

Now we are ready to prove inequality (14) in Theorem 2. From the minimum
norm principle,

||ϕ|| ≤
∫ ∫

|ϕ(f(z))|1/2|fz| |1− µϕ/|ϕ|| |ϕ|1/2dxdy.

Introducing a factor of (1 − |µ|2)1/2 into the numerator and denominator and
applying Schwarz’s inequality yields

||ϕ|| ≤
(∫ ∫

|ϕ(f(z))||fz|2(1− |µ|2)dxdy
)1/2(∫ ∫ |1− µϕ/|ϕ||2

1− |µ|2
|ϕ|dxdy

)1/2

.
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Since the first factor on the right hand side of this expression is simply equal to
||ϕ||1/2, we obtain

1 ≤
∫ ∫

|1− µϕ/|ϕ||2

1− |µ|2
|ϕ|dxdy.

Replacing ϕ by −ϕ, we obtain (14).

8 The Hamilton-Krushkal condition and Teich-
müller’s Existence Theorem

Suppose f : X → Y is a quasiconformal map between Riemann surfaces and
fz(z)/fz(z) = µ(z) is its Beltrami differential coefficient. We shall say f is
extremal in its homotopy class if no other mapping in the same class has smaller
dilatation. If we let

K = inf{K(g) : where g is in the homotopy class of f},

then by definition there is a sequence of mappings gn in the homotopy class
of f with K(gn) < K + 1/n. The sequence of the maps gn is uniformly Hölder
continuous, and therefore it is a normal family. Let g be a limit of a subsequence
of {gn}∞n=1. Then g, is also Hölder continuous and K(g) ≤ K. Moreover, g
is in the same homotopy class as that of f because homotopy equivalence is
determined by the images of closed curves γ on X. That is to say, two maps
g0 and g1 are homotopic if g0 and g1 take the same values at the punctures
and if for every closed curve γ on X, g0(γ) is freely homotopic to g1(γ) in Y.
Thus the limit g must be in the same homotopy class of f . We conclude that
K(g) = K and every homotopy class of a quasiconformal homeomorphism f has
an extremal representative, which is the existence for Teichmüller’s Theorem.

The more interesting and useful part of Teichmüller’s Theorem is to find an
explicit description of the unique extremal mapping, this is the interpretation
through stretching and shrinking of the horizontal and vertical trajectories of a
holomorphic quadratic differential. In other words, the Beltrami coefficient of
the extremal mapping is of Teichmüller form. By pairing Beltrami differentials
with holomorphic quadratic differential, Hamilton and Krushkal obtained the
following useful condition.

Theorem 5. [21][25] [The Hamilton-Krushkal Condition] If fµ is ex-
tremal in its homotopy class, then

k = (K − 1)/(K + 1) = ||µ||∞ = supRe
∫ ∫

X

µϕdxdy, (22)

where the supremum is taken over all holomorphic quadratic differentials ϕ with
||ϕ|| =

∫ ∫
X
|ϕ|dxdy = 1.
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It is clear that for any µ,

sup
||ϕ||=1

Re

∫ ∫
X

µϕdxdy ≤ ||µ||∞.

We say that µ satisfies the Hamilton-Krushkal condition if the equality holds.

Proof. Start by assuming k = ||µ||∞ > k0, where k0 is the supremum in (22).
By the Hahn-Banach and the Riesz representation theorems, there exists an
L∞−complex valued function ν such that∫ ∫

X

µϕdxdy =
∫ ∫

X

νϕdxdy

such that ||ν||∞ = k0, the supremum in (22). Hence µ − ν is infinitesimally
trivial, and we shall show in the next section that this implies there exists a
smooth curve σt of Beltrami coefficients such that

||σt − t(µ− ν)||∞ = O(t2),

and such that for each t, fσt is a self-map of X homotopic to the identity.
For brevity let σt = σ and form fτ = fµ ◦ (fσ)−1. Clearly, fτ is in the same
homotopy class as µ, and we will show that, for sufficiently small t > 0, ||τ ||∞ <
||µ||∞, which contradicts with the assumption that µ is extremal in its class and
completes the proof of the theorem. Note that

τ(fσ(z)) =
µ− σ
1− σµ

· 1
θ
, (23)

where θ = p/p and p = fσz . This implies

|τ ◦ fσ|2 =
|µ|2 − 2 Re µσ + |σ|2

1− 2 Re µσ + |µσ|2
,

which gives

|τ ◦ fσ| = |µ| − 1− |µ|2

|µ|
Re (µσ) +O(t2).

Replacing σ by t(µ− ν), we obtain

|τ ◦ fσ| = |µ| − t1− |µ|
2

|µ|
Re (|µ|2 − µν) +O(t2). (24)

Since k0 = ||ν||∞ < k = ||µ||∞, by putting

S1 = {z ∈ X : |µ(z)| ≤ (k + k0)/2}, and

S2 = {z ∈ X : (k + k0)/2 < |µ(z)| ≤ k},

we obtain S1 ∪S2 = X and (23) implies there exist δ1 > 0 and c1 > 0 such that
for 0 < t < δ1,

|τ ◦ fσ(z)| ≤ k − c1t for z in S1.
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For z in S2 the coefficient of t in (24) is bounded below by

1− k2

k
·

[(
k + k0

2

)2

− k0k

]
=

1− k2

k
·
(
k − k0

2

)2

> 0.

Therefore, (24) implies there exist δ2 > 0 and c2 > 0 such that for 0 < t < δ2,

|τ ◦ fσ| ≤ k − c2t for z in S2.

Putting these two statements for S1 and for S2 together, we find that ||τ ||∞ < k
for sufficiently small t > 0, and this proves the theorem.

Theorem 6. Suppose X is a Riemann surface of finite analytic type and as-
sume that it is given the finite dimensionality of the linear space holomorphic
quadratic differentials on X. Let f be a quasiconformal map from X to an-
other Riemann surface Y . Then in the homotopy class of f there exists an
extremal representative f0 homotopic to f and its Beltrami coefficient is of the
form k0|ϕ0|/ϕ0. The constant k0 is uniquely determined by f and if k0 > 0,
then ϕ is uniquely determined up to positive multiple.

Proof. By the remark preceding Theorem 5 we know that in any homotopy
class of quasiconformal mappings from one surface to another there exists an
extremal representative. We also know from Theorem 5 that the extremality of
f in its Teichmüller class forces the linear condition

||µ||∞ = supRe
∫ ∫

X

µϕdxdy,

where the supremum is taken over all holomorphic quadratic differentials with∫ ∫
|ϕ|dxdy = 1. By the finite dimensionality of the space of integrable quadratic

differentials on X, there is a quadratic differential ϕ0 with ||ϕ0|| = 1 such that

supRe
∫ ∫

X

µϕdxdy = Re

∫ ∫
X

µϕ0dxdy,

and then ∫ ∫
[||µ||∞|ϕ0| −Re(µϕ0)] = 0. (25)

Since
|µϕ0| ≤ ||µ||∞|ϕ0|,

the equality (25) forces that µ = ||µ||∞ |ϕ0|
ϕ0

almost everywhere.

9 Trivial and Infinitesimally Trivial Beltrami Dif-
ferentials

Let M(X) be the space of Beltrami coefficients µ with ||µ||∞ < 1. Since M(X)
is the open unit ball in a complex Banach space, it is also a complex manifold.
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The natural map Φ from M(X) onto T (X) takes a Beltrami coefficient µ onto
its Teichmüller equivalence class Φ(µ), and the complex structure on T (X) is
the one which makes Φ holomorphic.

The preimage under Φ of the Teichmüller class of the identity corresponds to
those mappings f from X to X ′ for which there is a conformal map c from X ′ to
X such that c◦f is a quasiconformal self-mapping ofX homotopic to the identity.
We denote by M0(X) the subset in M(X) consisting of of Beltrami coefficients
of such mappings. It is called the space of trivial Beltrami coefficients. By
Theorem 2 every Beltrami coefficient in M0(X) satisfies inequality (14). Note
that by changing ϕ to −ϕ, the numerator in the integrand of the integral in the
right hand side of (14) (at the end of Section 7) can be replaced by∣∣∣∣1− µ ϕ

|ϕ|

∣∣∣∣2 ,
and multiplying this by |ϕ|, we obtain∣∣∣∣1− µ ϕ

|ϕ|

∣∣∣∣2 |ϕ| = |ϕ|(1− |µ|2)− 2Re µϕ+ 2|µ|2|ϕ|.

Since
∫ ∫

X
|ϕ|dxdy = 1, from (14) we obtain

Re
∫ ∫

X

µϕ

1− |µ|2
dxdy ≤

∫ ∫
X

|µ|2|ϕ|
1− |µ|2

dxdy. (26)

Since this form of the inequality is unchanged if ϕ is multiplied by a positive
number, in (26) we only need to impose the condition that ||ϕ|| =

∫ ∫
X
|ϕ|dxdy <

∞. By reversing these steps, it is also clear that (26) implies (14).
Now suppose µt is a smooth curve of Beltrami coefficients passing through

the zero Beltrami coefficient at time t = 0 with tangent vector ν, that is, suppose

||µt − tν
t
||∞ → 0 (27)

as t → 0. By letting t be a real parameter and a purely imaginary parameter
respectively and calculating the first order variation in inequality (26), we obtain
that if ν is a tangent vector to a µt lying in M0(X), then∫ ∫

X

νϕdxdy = 0 (28)

for all holomorphic quadratic differentials ϕ with ||ϕ|| <∞.

Definition. A Beltrami differential ν is called infinitesimally trivial if it satisfies
(28) for all integrable holomorphic quadratic differentials ϕ.

We have already seen that the burden of proof of the Hamilton-Krushkal
condition in Theorem 5 is to show the converse of (27), that is, we need the
following theorem.
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Theorem 7. If a Beltrami differential ν is infinitesimally trivial, then there
exists a curve of trivial Beltrami coefficients µt passing through the origin at
time t = 0 with the property that

||µt − tν
t
||∞ → 0

as t→ 0.

Proof. There are many references for this well-known theorem, [1, 3, 6, 9, 19,
20, 33, 34]. We first give a proof in the case where X is the Riemann sphere
with n points removed. After treating this case, we outline the proof for any
surface of genus g with n punctures, provided that 3g − 3 + n > 0.

The case X has genus zero:

Note that in the genus zero case, the Möbius transformations are triply-
transitive, and so any two such surfaces are conformal if n ≤ 3, and in that
case the Teichmüller space of X consists of just one point, M0(X) = M(X),
and there is nothing to prove. If n is 4 or more, by the action of a Möbius
transformation we can move three of the points to 0, 1 and ∞, and label the
remaining n− 3 points by p1, . . . , pn−3. Thus X = C \ {0, 1, p1, . . . , pn−3}, and
an arbitrary integrable, holomorphic quadratic differential on X has the form

ϕ(z)(dz)2 =
a0 + a1z + · · ·+ an−4z

n−4

z(z − 1)(z − p1) · · · (z − pn−3)
(dz)2, (29)

where a0, . . . , an−4 are arbitrary complex numbers. This quadratic differential
has at most simple poles at n points, namely, 0, 1, p1, . . . , pn−3 and at∞. To see
the order of the pole at ∞ we need to express ϕ(z)(dz)2 in terms of the local
parameter w = 1/z which vanishes at z =∞. Using the equation ϕz(z)(dz)2 =
ϕw(w)(dw)2, we obtain

ϕw(w) =
1
w4
· a0 + a1(1/w) + · · ·+ an(1/w)n−4

1/w((1/w)− 1)((1/w)− p1) · · · ((1/w)− pn−3)
.

Multiplying both the numerator and denominator by wn−4, we see that

ϕw(w) =
1
w
· a0w

n−4 + a1w
n−5 + · · ·+ an

1(1− w)(1− wp1) · · · (1− wpn−3)
,

which has a simple pole at w = 0 unless an = 0, in which case it is holomorphic
at w = 0. Since ϕ(z)(dz)2 has at most a simple zero at any one of these n
points, it is integrable in a neighborhood of each of these points and therefore
integrable over C ∪ {∞}.

Consider a family of disjoint discs Dj centered at pj , 1 ≤ j ≤ n − 3, with
positive radii, and let Ψ : M(X)→ (C \ {0, 1})n−3 be the map which assigns to
µ in M(X) the vector (fµ(p1), . . . , fµ(pn−3)), where fµ is the quasiconformal
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self-mapping of C ∪ {∞} normalized to fix 0, 1 and ∞. Because of the theory
of the Beltrami equation [4], each coordinate fµ(pj) depends continuously and
holomorphically on µ. In particular, there exists a number δ > 0, such that if
||µ||∞ < δ, then fµ(pj) is in Dj for each j. The map Ψ is also locally surjective,
holomorphic and Ψ−1(p1, . . . , pn−3) ∩ {µ ∈ M(X) with ||µ||∞ < δ} = {µ ∈
M0(X) with ||µ||∞ < δ}. Therefore, M0(X) has a manifold structure at µ = 0,
and a vector ν is a tangent vector to M0(X) at µ = 0 if DΨ0(ν) = (0, . . . , 0).
But from the theory of the Beltrami equation

f tν(pj) = pj − t
1
π

∫ ∫
C

pj(pj − 1)
z(z − 1)(z − pj)

ν(z)dxdy +O(t2).

Since we are assuming that ν is infinitesimally trivial and since for each j,

with 1 ≤ j ≤ n − 3, pj(pj−1)
z(z−1)(z−pj) (dz)2 is an integrable holomorphic quadratic

differential on X, we conclude that DΨ0(ν) = (0, . . . , 0). Therefore, there is a
curve µt in M0(X) tangent to ν.

The case X:

We briefly explain this proof in several steps. For more complete explana-
tions we refer to any of the following references: [1], [5], [7], [19], [22], [23],
[24].

Step 1 (Uniformization and Poincaré series). The first step is to realize the
Riemann surface X as the upper half plane H factored by a Fuchsian group Γ,
that is, a discrete group of Möbius transformations preserving H. Then the Rie-
mann surface X is conformal to the factor space H/Γ and integrable quadratic
differentials ϕ on X can be realized as automorphic functions ϕ in H satisfying
the following properties:

1. ϕ(z) is holomorphic in H,

2. ϕ is automorphic in the sense that

ϕ(A(z))A′(z)2 = ϕ(z) (30)

for all A in Γ,

3. ϕ(z) is integrable over X in the sense that∫ ∫
X/Γ

|ϕ(z)|dxdy =
∫ ∫

ω

|ϕ(z)|dxdy <∞,

where ω is a fundamental domain for Γ in H.

Now we begin with the elementary identity∫ ∫
H

dξdη

|ζ − z|4
=
π

4
y−2, (31)
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where ζ = ξ + iη and z = x + iy are in the upper and lower half planes,
respectively. The integral in (31) is invariant under the translation ζ 7→ ζ − x,
and so is equal to ∫ ∫

H

dξdη

|ζ − iy|4
.

Make the substitution w = ζ+iy
ζ−iy, and observe that ζ 7→ w is a conformal mapping

carrying H onto the unit disc |w| < 1. Moreover, if w = u+ iv, then since

dw

dζ
=

−2iy
(ζ − iy)2

,

∫ ∫
H

4y2dξdη

|ζ − iy|4
=
∫ ∫

|w|<1

dudv = π,

and (31) follows.
From (31) we see that if ϕz(ζ) =

∑
A∈Γ

A′(ζ)2

(A(ζ)−z)4 , then ϕz(ζ) is given by an
absolutely convergent series because

||ϕz|| =
∫ ∫

X/Γ

∣∣∣∣∣∑
A∈Γ

A′(ζ)2

(A(ζ)− z)4

∣∣∣∣∣ dξdη ≤
∫ ∫

ω

∑
A∈Γ

∣∣∣∣ A′(ζ)2

(A(ζ)− z)4

∣∣∣∣ dξdη =
∫ ∫

H

dξdη

|ζ − z|4
.

Since the hypothesis of Theorem 7 says that
∫ ∫

X
νϕdxdy = 0 for every

integrable holomorphic quadratic differential, on replacing ϕ by ϕz we conclude
that

0 =
∫ ∫

ω

νϕzdξdη =
∫ ∫

H

ν(ζ)
(ζ − z)4

dξdη, (32)

for every z in the lower half plane.

Step 2 (The Bers’ embedding). We may identify a Beltrami coefficient µ on X
with a measurable complex valued function µ defined on H satisfying ||µ||∞ < 1,
and

µ(A(ζ))
A′(ζ)
A′(ζ)

= µ(ζ). (33)

Such a coefficient represents a point [µ] in T (X) and by putting µ identically
equal to zero in the lower half plane, we may associate to µ the unique quasi-
conformal homeomorpism of C that solves the Beltrami equation

fµz (z) = µ(z)fµz (z)

and fixes the points 0, 1 and ∞. This homeomorphism has the following prop-
erties.

1. It is holomorphic in the lower half plane.
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2. It yields by conjugation an isomorphism χ of Γ into a discrete subgroup
of PSL(2,C) by the equation

fµ(A(z)) = χ(A)(fµ(z)).

3. Since Γ is the covering group of a Riemann surface of finite analytic type
its limit set is the entire real axis and the values of fµ on the real axis
normalized to fix 0, 1 and ∞ determine and are determined by the Teich-
müller equivalence class of µ.

4. Since fµ applied to the lower half plane is a simply connected region and a
Jordan domain, fµ(z) realizes the Riemann mapping from the lower half
plane to its image and this Riemann mapping determines and is deter-
mined by the Teichmüller equivalence class of µ.

Because of these properties, it is natural to form the Schwarzian derivative
{f, z} of f = fµ for values for z in the lower half plane. The Schwarzian
derivative of a function f is defined by

Sf (z) = Nf (z)′ − 1
2
Nf (z)2 = 6 lim

w→z

∂2

∂w∂z
log

f(w)− f(z)
w − z

, (34)

where

Nf (z) =
f ′′(z)
f ′(z)

.

The map Φ taking the Teichmüller equivalence class of µ in M(X) to the
Schwarzian derivative of fµ in B(X) is called the Bers’ embedding. Φ maps
an equivariant Beltrami coefficient, that is, a Beltrami coefficient µ satisfying
||µ||∞ < 1 and (33), to a holomorphic quadratic differential ϕ satisfying (30)
and

||y2ϕ(z)||∞ ≤ 3/2. (35)

In fact, Φ is a one-to-one holomorphic mapping from T (X) onto an open
set in the Banach space B(X) of functions ϕ(z) holomorphic in the lower half
plane satisfying (30) and

||y2ϕ(z)||∞ <∞.

For this result we cite [3]. Although we do not need this result in full generality,
the first step in proving it is the next step of the argument we are currently
following.

Step 3 (A section for Φ). If a map Φ from T (X) onto B is given and Φ(0) = 0,
s is called a local section of Φ at 0 if s maps an open neighborhood U of 0 in B
onto an open neighborhood of 0 in T (X) and Φ ◦ s = I, the identity on U.

Lemma 6. [Ahlfors-Weill] The map s : ϕ 7→ −2y2ϕ(z) provides a section for
Φ : M(X)→ B. That is, if ||2y2ϕ(z)||∞ < 1, then Φ ◦ s(ϕ) = ϕ, or what is the
same,

{f2y2ϕ(z), z} = ϕ(z).

27



Proof. If ϕ is given and you want to solve for f the equation

{f, z} = ϕ(z),

you can follow the following procedure. You solve for two linearly independent
solutions η1 and η2 of the equation η′′ = − 1

2ϕη normalized by η′1η2 − η′2η1 ≡ 1
and then form

f̂(z) =

{
η1(z)+(z−z)η′1(z)
η2(z)+(z−z)η′2(z) for z in the upper half plane,
η1(z)
η2(z) for z in the lower half plane.

(36)

In the case that ||y2ϕ(z)||∞ < 1, f̂ is a quasiconformal self mapping of the
entire plane, holomorphic in the lower half plane and for z in the lower half
plane {f, z} = ϕ(z). All of the details of this calculation are given in [3] and in
[19], pages 97-102.

Step 4 (Construction of µt in Theorem 7).
Let ν be a Beltrami coefficient satisfying (32). We need to calculate Φ̇ =

limt→0(1/t)Φ(tν) = 0, and in order to do this we view Φ(tν) as the composition
of the maps tν 7→ f tν and the map f tν 7→ {f tν , z}. From the power series
solution to the Beltrami equation the derivative of the first map is given by (10)
with µ replaced by ν. Note that if f t(z) = z + tḟ + o(t), then since {f, z} =
f ′′′

f ′ − (3/2)
(
f ′′

f ′

)2

, limt→0(1/t){f t, z} = ḟ ′′′, where

ḟ(z) = − 1
π

∫ ∫
C
ν(ζ)

{
1

ζ − z
− z

ζ − 1
+
z − 1
ζ

}
dξdη.

Since ν is identically equal to zero in the lower half plane,

Φ̇(tν)|t=0 = ḟ ′′′ =
6
π

∫ ∫
H

ν(ζ)
(ζ − z)4

dξdη

and by (32) this is equal to zero for all z in the lower half plane.
Since Φ(tν) = ϕt = tϕ1 + t2ϕ2 + t3ϕ3 + · · · is a convergent power series in

the Banach space B, we see from the previous paragraph and formula (32) that
ϕ1 ≡ 0. This implies that the holomorphic curve νt = −2y2ϕt(z) has vanishing
first order term, that is, ||νt(z)||∞ = ||2y2ϕt(z)||∞ ≤ Ct2.

Now form fµt = (fνt)−1 ◦f tν . This composition is well-defined because each
of the mappings (fνt)−1 and f tν are normalized self-mappings of the complex
plane. If we let ν̃ be the Beltrami coefficient of (fνt)−1 and ν̂ = ν̃θ, where
θ = p/p and p = f tνz , then ||ν̂||∞ = ||νt||∞ ≤ Ct2. But from the composition
formula for Beltrami coefficients, we have

µt =
tν + ν̂

1 + tνν̂
= tν + ν̂

(
1− |tν|2

1 + tνν̂

)
= tν +O(t2).

But since tν and νt have the same image under Φ, they are equivalent Beltrami
coefficients and so µt is in M0(X).
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10 Teichmüller Space and Teichmüller’s Metric

For any Riemann surface X, Teichmüller’s space T (X) consists of the quasi-
conformal maps f from X to variable Riemann surfaces f(X) factored by an
equivalence relation. Two such maps f0 and f1 are considered to be equivalent
if there is a conformal map c from f0(X) to f1(X) and a homotopy gt such that
g0 = c ◦ f0, g1 = f1, gt(z) is a jointly continuous map from X to c ◦ f0(X), and
gt(p) = c ◦ f0(p) = f1(p) for every p in the ideal boundary of X.

The reader may not know what we mean by the ideal boundary of X, and if
so we refer to any of the various books on Teichmüller theory in the bibliography.
Since these notes attempt to treat only the case that X is of finite analytic type,
X has no ideal boundary if X is compact or its ideal boundary consists of finitely
many punctures.

For a given map f from X to a variable Riemann surface Y, we denote its
equivalence class by [f, Y ].

Definition. The Teichmüller metric d : T (X) × T (X) → R+ ∪ {0} is defined
by

d([f0, Y0], [f1, Y1]) = inf
1
2

logK(g),

where the infimum is taken over all g in the equivalence class of f1 ◦ (f0)−1.

Exercise 15. Show that d provides a complete metric on T (X).

Hint: The triangle inequality follows from properties of the infimum and the
fact that dilatation satisfies the inequality K(f ◦ g) ≤ K(f)K(g). Symmetry
follows from the fact that K(g) = K(g−1). It is obvious that d ≥ 0 because by
definition K ≥ 1. Finally, you need to show that if d([f0, Y0], [f1, Y1]) = 0, then
[f0, Y0] and [f1, Y1] are the same equivalence class. That is, you must show that
there is a conformal map c from f0(Y0) to f1(Y1) such that c ◦ f0 is homotopic
to f1 through a homotopy that fixes boundary points. The completeness of d
follows from properties of quasiconformal mappings.

Exercise 16. Show that

d([f0, Y0], [f1, Y1]) = inf
1
2

log
1 + || µ1−µ0

1−µ0µ1
||∞

1− || µ1−µ0
1−µ0µ1

||∞
,

where the infimum is taken over Beltrami coefficients of all possible maps in the
equivalence classes [f0, Y0] and [f1, Y1].

Theorem 8. The Teichmüller space of a Riemann surface of finite analytic type
of genus g with n punctures is homeomorphic to a cell of dimension 3g − 3 + n
provided that this number is positive.

Proof. From Teichmüller’s theorem we know that each equivalence class [f, Y ]
except the equivalence class of the identity is represented by a Beltrami coeffi-
cient of the form k|ϕ|/ϕ, where k and ϕ are uniquely determined with 0 < k < 1
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and ||ϕ|| = 1. We let Q(X) be the Banach space of integrable holomorphic
quadratic differentials on X and consider the map Ψ from the open unit ball of
Q(X) into T (X) given by

ϕ 7→ [fk|ϕ|/ϕ, fk|ϕ|/ϕ(X)],

where k = ||ϕ||. This map is injective and surjective by Teichmüller’s uniqueness
and existence theorems. To show that it is continuous consider a sequence ϕn
in the open unit ball of Q(X) converging in norm to an element ϕ of this ball.
If we put kn = ||ϕn|| and k = ||ϕ||, then kn converges to k and 0 ≤ k < 1.
If k = 0, then the Beltrami coefficients kn|ϕn|/ϕn converge uniformly to 0,
and the Teichmüller distance from [fkn|ϕn|/ϕn , Yn] to [identity,X] is no greater
than (1/2) log 1+kn

1−kn . This shows that Ψ is continuous at 0. If k > 0, then the
Beltrami coefficients µn = kn|ϕn|/ϕn converge to µ = k|ϕ|/ϕ in the bounded
pointwise sense. From the theory of quasiconformal mapping, this is enough to
guarantee that the maps fµn converge normally to the map fµ, and because
T (X) is locally compact, this is enough to guarantee that [fµn , Yn] converges
to [fµ, Y ] in the Teichmüller metric.

Finally, we must show that Ψ applied to a compact set is compact. A
compact set C in the open ball B is closed and bounded away from the unit
sphere. If ϕn ∈ C converges to ϕ ∈ C, then there exists r < 1 such that ||ϕn|| ≤
r < 1. Thus K(fn) ≤ 1+r

1−r , where fn is a normalized family of quasiconformal
mappings with Beltrami coefficients of the form

||ϕn||
|ϕ|
ϕ
.

Thus Ψ(C) forms a bounded set in T (X). By the same argument as given in
the previous paragraph, this set is also closed.

11 Infinitesimal Teichmüller’s Metric

Let X be a Riemann surface of finite analytic type, f be a quasiconformal map
from X to another Riemann surface Y, and µ be the Beltrami coefficient of f.
Let K0 be the extremal dilatation of a mapping in the class [f, Y ]. We have
already seen that the main inequality gives the following upper bound for K0.

K0 ≤ sup
∫ ∫

X

∣∣∣1 + µ ϕ
|ϕ|

∣∣∣2
1− |µ|2

|ϕ|dxdy, (37)

where the supremum is taken over holomorphic quadratic differentials ϕ with
||ϕ|| = 1. Moreover, if K0 > 1 and if fµ is extremal in its class, then the
supremum is realized by a unique quadratic differential ϕ and the Beltrami
coefficient of any extremal mapping f0 in the class of f is equal to k0|ϕ|/ϕ.
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Exercise 17. Show that the main inequality also gives a lower bound for K0,
namely,

1
K0
≤
∫ ∫

X

∣∣∣1− µ ϕ
|ϕ|

∣∣∣2
1− |µ|2

|ϕ|dxdy, (38)

for every holomorphic quadratic ϕ with ||ϕ|| = 1.

Exercise 18. Replace µ by tµ in (37) and in (38) and show that for any Bel-
trami coefficient µ,

d([id,X], [f tµ, f tµ(X)]) = t

(
sup

∣∣∣∣ Re
∫ ∫

X

µϕdxdy

∣∣∣∣)+O(t2), (39)

where the supremum is taken over all holomorphic quadratic differentials ϕ with
||ϕ|| = 1.

The coefficient of t in the expression on the right hand side of (39) is called
the infinitesimal form of Teichmüller’s metric at the base point. It transports
to every point [fµ, fµ(X)] of Teichmüller space with tangent vector ν at that
point and is given by the global form expressed by the following formula:

F ([µ], ν) = sup
∣∣∣∣ Re

∫ ∫
X

ϕ(w)
[

ν

1− |µ|2
· 1
θ

]
dudv

∣∣∣∣ , (40)

where w = fµ(z), θ = p/p, p = ∂
∂z f

µ, w = u + iv, and the supremum is taken
over all holomorphic quadratic differentials on the Riemann surface fµ(X) with
norm equal to 1.

It is not difficult to see from these formulas that Teichmüller’s metric is
equal to the integral of its infinitesimal form. That is, the Teichmüller distance
between any two points is equal to the infimum of the arc length integrals with
respect to F in (40), where the infimum is taken over all differentiable curves
joining the two points, and any curve of the form γ(t) = tν, 0 ≤ t ≤ 1, will
realize this infimum.

Instead of pursuing this calculation we prefer to go on to an interpretation
of the Teichmüller infinitesimal norm of a tangent vector to Teichmüller space
in the case that the Riemann surface X is the Riemann sphere C ∪ {∞} with
n ≥ 4 points removed.

12 Tangent Vectors to Teichmüller Space

In this section we study the infinitesimal Teichmüller norm on vector fields
tangent to Teichmüller space. The most direct way to illustrate the theory is
to consider only the case when X is a Riemann surface equal to the Riemann
sphere C ∪ {∞} minus n ≥ 4 points. For simplicity we temporarily assume
that the n points are in the finite plane, C, and that they are the finite set
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E = {ak}nk=1. In that case the quadratic differentials can be identified with
holomorphic functions of z of the form

ϕ(z) =
n∑
k=1

ρk
z − ak

,

where the residues ρk satisfy the equations∑n
k=1 ρk = 0,∑n
k=1 ρkak = 0,∑n
k=1 ρka

2
k = 0.

(41)

Exercise 19. Let w = 1/z be a local parameter at z = ∞. Verify that the
assumption that ϕw(w)

(
dw
dz

)2
= ϕ(z) is a holomorphic quadratic differential at

w = 0 forces the side conditions (41). Also verify that

ϕ(z) =
p(z)∏n

k=1(z − ak)
,

where p(z) is a polynomial of degree less than or equal to n− 4.

Given a Beltrami differential µ, its infinitesimal Teichmüller norm is the
smallest possible value of ||ν||∞ where ν is a Beltrami differential with the
property that ∫ ∫

X

νϕdxdy =
∫ ∫

X

µϕdxdy

for all ϕ in Q(X). By the Hahn-Banach and Riesz representation theorems such
a ν exists.

Definition. We denote this number ||ν||∞ by ||µ||T and call it the Teichmüller
infinitesimal norm of µ. It is the norm of µ considered as a linear functional on
the Banach space Q(X).

If we let L∞(X) be the vector space of measurable Beltrami differentials
µ(z)dzdz defined on X, then clearly

(ϕ, µ) =
∫ ∫

X

µϕdxdy

defines a pairing. On putting N = {µ : (ϕ, µ) = 0 for all ϕ ∈ Q(X)}, this
pairing establishes an isomorphism between the Q(X)∗, the dual space to Q(X),
and L∞(X)/N.

Another way to construct Q(X)∗ is to introduce the vector space Z of vectors
vj assigned to the points aj of E factored by an equivalence relation. Two
vectors V = (v1, ..., vn) and W = (w1, ..., wn) are considered equivalent if there
is a quadratic polynomial p(z) = az2 + bz + c such that vj − wj = p(aj) for
every j.
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Exercise 20. Use (41) to show that the pairing

(V, ϕ) =
n∑
j=1

vjρj ,

where V = (v1, ..., vn) and ϕ(z) =
∑n
j=1

ρj
z−aj , is well-defined and non-degenerate,

and establishes an isomorphism between Z and Q(X)∗.

Now we set up an isomorphism between L∞(X)/N and Z which satisfies the
identity

−π
2

(V, ϕ) =
∫ ∫

X

µϕdxdy. (42)

The formula for V in terms of µ is

V (z) = − (z − a1)(z − a2)(z − a3)
π

∫ ∫
µ(ζ)

(ζ − a1)(ζ − a2)(ζ − a3)(ζ − z)
dξdη,

and the important properties are that

1. V is continuous and has generalized first partial derivatives,

2. Vz(z) = µ and

3. V (z) = O(|z|2) as z →∞.

In order to do the following exercise you do not need this formula; all you need
are these three properties.

Exercise 21. Prove equation (42) by using the identity

d(V (z)ϕ(z)dz) = Vz(z)ϕ(z)dzdz

and Stokes’ theorem in the region consisting of the complement of n very small
discs of radius ε centered at the points of E.

The point of this exercise is that the linear functional determined by µ in
L∞(X)/N depends precisely on the values of the vector field V at the points
of E, up to the addition of a quadratic polynomial. This is reflected in the
infinitesimal form of Teichmüller’s metric. According to (39) the infinitesimal
displacement in Teichmüller’s metric caused by a tangent vector µ is

sup
||ϕ||=1

∣∣∣∣∫ ∫
X

µϕdxdy

∣∣∣∣ = sup
||ϕ||=1

∣∣∣∣∣∣π2
n∑
j=1

ρjvj

∣∣∣∣∣∣ .
In this way the velocity of the moving Riemann surface in T (X) is expressed in
terms of the velocities of the points in E and the quadratic differentials of norm
one on X = C ∪ {∞} \ E.
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[30] R. Màñé, P. Sad, and D. Sullivan. On the dynamics of rational maps. Ann.
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