Econometric Appendix
I. Univariate Models
White noise process 
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A sequence 
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is a white noise process if each value in the sequence has

1. zero-mean 
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2. constant conditional variance 
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3. is uncorrelated with all other realizations 
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Properties 1&2 : absence of serial correlation or predictability

Property 3        : Conditional homoscedasticity (constant conditional variance).

Covariance Stationarity (weakly stationarity)
A sequence 
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is strictly stationary if its mean, var and autocov do not grow over time, i.e. it has

1. finite mean: does not depend on t
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2. finite variance: does not depend on t 
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3. finite autocovariance: depends on s and not on t 
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Ex. autocovariance between 
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Ex: AR and MA, ARMA models.

Models with trends: nonstationarity
The general solution to a stochastic linear difference equation has three parts:
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The noise component: ARCH, GARCH approaches model this variance (volatility) component.

The stationary component: AR(p), MA(q), ARMA(p,q) models.  Require the roots of the characteristic equation to lie within the unit circle (or the roots of the inverse of the characteristic equation to lie outside the unit circle).  

Here: we examine the trend component.

Trend = deterministic trend + stochastic trend

Deterministic trend: constant, accelerating nonrandom trend.

Stochastic trend: random. It can be due to any shock, such as technology, oil prices, policy, etc.

If 
[image: image12.wmf]t

t

t

u

y

b

y

+

+

=

-

1

, a random walk with drift (an ARIMA(p,1,q) process)  then a stationary model for y would be:
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Note: “I” stands for integrated process and “1” shows that the process needs to be differenced once to be stationary: integrated of degree 1=I(1).  A covariance stationary series are I(0).  If a time series needs to be differenced d times to become stationary, it is integrated of degree d, I(d).  

Then the series can be represented by an integrated moving average process of the order, p, d, q, an ARIMA(p,d,q).  Usually d=1 is sufficient.  In economics d=2 is the maximum we would need to differentiate.  For ex: rate of growth of inflation (differentiate the price level twice).  

Consider the process
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where e is white noise (
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If 
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 stationary process.

If 
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, there is a unit root in the AR part of the series and we have to solve the equation recursively.  If
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, recursive substitution until t=0 gives the solution:  
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If there are no shocks, the intercept is 
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Suppose there is a shock at time i (e.g. an oil-price shock), it shifts the intercept by 
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 and the effect is permanent (with coefficient 1). This is a stochastic trend since each shock affects the mean randomly.  The model has a very different behavior than the traditional covariance stationary models where the effect of shocks dies over time.

You can make this a stationary model if you first-difference it: for y would be:  
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x is integrated of degree 1=I(1).  A covariance stationary series are I(0).  If a time series needs to be differenced d times to become stationary, it is integrated of degree d, I(d).  Usually d=1 is sufficient.  In economics d=2 is the maximum we would need to differentiate.  For ex: rate of growth of inflation (differentiate the price level twice).  

Why is it important to recognize this?

Most macro variables are very persistent (nonstationary).  But standard inference techniques are unreliable with nonstationary data.  

Dickey and Fuller: OLS estimates are biased towards stationarity, suggesting that series that looked stationary with OLS regressions would be in fact generated by random walks.  This finding made most of the conclusions in the macro literature wrong or at least undependable.

Implications of nonstationarity in economics and finance

1. Model building: 

Nonstationary series are more volatile than stationary series

Series with drift terms tend to be more volatile around strong trends.

If we have nonstationary processes with drifts, the other series also must exhibit the same behavior to have meaningful estimates.  For ex: you cannot explain GDP with unemployment since GDP has a trend while the other variable does not.  If the dependent variable is nonstationary, you need to have at least a subset of the independent variables to be nonstationary as well.

2. Econometrics

If data are nonstationary, then the sampling distributions of coefficients estimates may not be well approximated by the Normal distribution.  This is particularly true if the series have a drift.  

Suppose you regress one independent random walk process on another random walk process, you may end up getting high R2 and significant estimates but this result is called spurious, and meaningless since the two series have no relation.  Consider:

(8)
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The traditional regression methodologies require 
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.  If e is nonstationary, then estimates are meaningless because shocks will have permanent effects, and thus the regression will have permanent errors.  

Illustration

USUK.wf  

Run series LCUS (US consumption) on c LYUK (UK GDP)

	Dependent Variable: LCUS
	
	

	Method: Least Squares
	
	

	Date: 01/02/07   Time: 16:17
	
	

	Sample (adjusted): 1959Q2 1998Q1
	

	Included observations: 156 after adjustments
	

	
	
	
	
	

	
	
	
	
	

	Variable
	Coefficient
	Std. Error
	t-Statistic
	Prob.  

	
	
	
	
	

	
	
	
	
	

	C
	-5.612166
	0.162908
	-34.44987
	0.0000

	LYUK
	1.208546
	0.014643
	82.53580
	0.0000

	
	
	
	
	

	
	
	
	
	

	R-squared
	0.977893
	    Mean dependent var
	7.829120

	Adjusted R-squared
	0.977750
	    S.D. dependent var
	0.351691

	S.E. of regression
	0.052460
	    Akaike info criterion
	-3.044783


High R2, and t stats. but meaningless results.  Spurious regressions.  

Several cases:
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	Classical regression model appropriate
	Classical regression model not appropriate. Spurious regression.
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	Classical regression model not appropriate, spurious regression.  Residual sequence has stochastic trend.


	If residual sequence has stochastic trend, spurious regression.
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	If residual sequence is stationary, series are cointegrated. 
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	Classical regression model not appropriate.  Spurious regression


Tests for unit root (nonstationarity):

Null hypothesis: Series is nonstationary

Alternative: 
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If the null is not rejected then x is nonstationary.

Dickey Fuller (DF)

Augmented DF (ADF)

Phillips-Perron (PP) test

The statistics does not follow the conventional Student’s t-distribution.  In both tests critical values are calculated by Dickey and Fuller and depend on whether there is an intercept and/or deterministic trend, whether it is a DF or ADF test.  

II.    Multivariate Models

1. Cointegration:
The idea is to look for linear combinations of variables that remove the common trend and make the combination I(0).  For instance in the case of two variables 
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, can we find a unique value of 
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such that there is no unit root in the relation between the two variables and 
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 is I(0)?  This is the LR equilibrium that acts as “attractor” towards which the sytem converges when there is a divergence from it due to nonstationarity (caused by stochastic trends).
The components of the vector are cointegrated of the order (d) if they have a linear combination, which is integrated of order d-b.  We then say that x is cointegrated: 
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The process 
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Examples:

(i) PPP model:  
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 (P,P*=domestic, foreign price indices, S=$/foreign currency)
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If the equilibrium error is stationary, then the vector 
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 is cointegrated, 
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(ii) QTM: MV=PQ
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If u~I(0) and all variables I(1) then the cointegrating vector 
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2. Short-run dynamics, LR equilibrium and Error Correction
Consider the dynamic model:
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where y, x ~ I(1) and e ~ I(0).

Ex: y=consumption and x=income.

We can reparameterize this equation in several ways:

(i)  LR and SR multipliers
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  and the LR solution is 
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or 
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  ---the cointegrating relation. 



--
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If 
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then y and x must have the same stochastic trend, otherwise e would not be I(0).

(ii)  Error Correction Model 
Subtract 
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   ---The Error Correction Model (ECM).

It shows how
[image: image66.wmf]t
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.  Note that the LR equilibrium derived in (1.) is now nested in the dynamic model.  The ECM model thus shows that the growth rate in y is explained by the growth rate in x and past disequilibrium between these variables.

· 
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, is the LR equilibrium value of y.  Thus, if 
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· 
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 = the speed of adjustment to the LR.

The higher is 
[image: image75.wmf]a

, the faster is the adjustment to new equilibrium because the faster it takes for the error to disappear.

The error correction specification requires that the variables are I(1) and cointegrated.  Then their first difference is I(0), and the ECM term is I(0), hence the error term is stationary.  Thus the spurious equation situation will no longer exist since all stochastic trends disappear.

More generally:
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If 
[image: image77.wmf]0
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, there is no ECM.  It is a first difference model.

Problems with the single equation approach:

When there are more than one explanatory variable, there may be more than one cointegration vector.  For each vector, we must build error correction models for each of these variables.  We must thus use a VAR analysis ---Johansen (1988).

In a VAR, each variable is expressed by its own lagged values and the lagged values of all the other variables in the system.  In a cointegrated VAR (CVAR), also included is the cointegrating vectors that pull the system towards equilibrium.

3. Multivariate Analysis: Stationary VAR Models
For a set of n time series variables
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, a VAR model of order p (VAR(p)) can be written as:

(1)
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where the
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 is an unobservable i.i.d. zero mean error term.  

Consider a two-variable VAR(1) with n=2.
(1)
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(2)
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with 
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In matrix form:

(3)
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More simply:

(4)
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Structural VAR (SVAR) or the Primitive System

To normalize the LHS vector, we need to multiply the equation by inverse B:
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, thus:

(5)
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VAR in standard form (unstructured VAR=UVAR).

or:

(6)
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These error terms are composites of the structural innovations from the primitive system: 
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We can estimate (6) with OLS, since the RHS consists of predetermined variables and the error terms are white noise. The errors are serially uncorrelated but correlated across equations.  But we cannot use OLS to estimate the SVAR because of contemporaneous effects, which are correlated with the 
[image: image95.wmf]s
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Our goal: To see how a structural innovation 
[image: image96.wmf]it
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affects the dependent variables in our original model.  We estimate the reduced form (standard VAR), so how can we recover the parameters for the primitive system from the estimated system?

VAR: 9 parameters ( = 6 coefficient estimates+ 2 variance estimates + 1 Covar estimate).

SVAR: 10 parameters (=8 parameters + 2 variances).  It is underidentified.

Identification: recursive structure (Choleski), or model based constraints.

Impulse responses: plots of the effect of 
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[image: image98.wmf]}

{

t

y

 or 
[image: image99.wmf]}

{

t

z

 react to different shocks.

4. Multivariate Analysis with Nonstationary VAR Models: Vector Error Correction Models (VECM) or Cointegrated VAR (CVAR) and the Johansen estimation method
Consider a system of equations VAR(p) where y represents a vector of variables with k=m (#variables) and p=n (#lags).
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By reparameterizing, we can get 
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where 
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Compare it to the single equation model: 
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A VECM or a CVAR models several effects:

· 
[image: image106.wmf]ij

b

coefficients show the LR equilibrium relationships between levels of variables.

· 
[image: image107.wmf]ij

a

coefficients show the amount of changes in the variables to bring the system back to equilibrium.

· 
[image: image108.wmf]i

F

coefficients show the SR changes occurring due to previous changes in the variables.
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