Stability Analysis for VAR systems

For a set of n time series variables
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, a VAR model of order p (VAR(p)) can be written as:

(1)
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where the
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’s are (nxn) coefficient matrices and 
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 is an unobservable i.i.d. zero mean error term.  

I. Stability of the Stationary VAR system: 

(Glaister, Mathematical Methods for Economists
The stability of a VAR can be examined by calculating the roots of:
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The characteristic polynomial is defined as:
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The roots of  
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 = 0  will give the necessary information about the stationarity or nonstationarity of the process. 

The necessary and sufficient condition for stability is that all characteristic roots lie outside the unit circle.  Then 
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is of full rank and all variables are stationary.

In this section, we assume this is the case.  Later we allow for less than full rank matrices (Johansen methodology).

Calculation of the eigenvalues and eigenvectors

Given an (nxn) square matrix A, we are looking for a scalar 
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is an eigenvalues (or characteristic value or latent root) of A.  Then there will be up to n eigenvalues, which will give up to n linearly independent associated eigenvectors such that 

or 
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For there to be a nontrivial solution, the matrix 
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must be singular.  Then 
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Ex:  A= 
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Expanding the determinant of this matrix gives the characteristic equation: 
[image: image19.wmf]7

,

1

,

3

0

)

7

8

)(

3

(

3

2

1

2

=

=

=

Þ

=

+

-

-

l

l

l

l

l

l

. 

[image: image225.wmf]0

2

=

+

+

c

b

a

l

l


Note: an eigenvector is only determined up to a scalar multiple: If c is an eigenvector, then 
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is also an eigenvector where 
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is a scalar: 
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The associated eigenvectors are those that satisfy the equations for the three distinct values of the eigenvalues.

The eigenvector associated with 
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, which satisfies the equation for this matrix is found as
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.  Notice that only columns 2 and 3 are linearly independent (rank=2) so we can choose the first element of the c matrix arbitrarily.  Set
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and the other two elements are = 0 
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 Similarly, the eigenvector associated with 
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, which satisfies the equation for this matrix is found as
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Notice that rk(A)=2 again because this time the last two rows are linearly dependent.  Thus only the 2x2 matrix on the LHS is nonsingular.  We can delete the last row and move 
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multiplied by the last column to the RHS.  Now the first two elements will be expressed in terms of the last element.  We can fix arbitrarily 
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 is an eigenvector corresponding to the eigenvalue 
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We can find similarly the last eigenvector to be 
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Jordan Canonical Form:

Form a new matrix C whose columns are the three eigenvectors.
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.  You can calculate to find that the matrix product 
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Thus, for any square matrix A, there is a nonsingular matrix C such that 

(i) 
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is diagonal with the eigenvalues on the diagonal.

(ii) The eigenvectors corresponding to distinct eigenvalues of a symmetric matrix are orthogonal (linearly independent).

II. Stability Conditions for Stationary and Nonstationary VAR Systems

(Johnson and DiNardo, Ch 9+Appdx)
To discuss these conditions we start with simple models and generalize.  We will see:
VAR(1) with 2 variables: 

VAR(2) with k variables (ex: VAR(2) with 2 variables)

VAR(p) with k variables.

1. VAR(1) with two variables (p=1, k=2).

(1)
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(2)
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 or:

(3) 
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, which can be written with the lag operator

(4)

[image: image43.wmf]t

t

b

y

AL

I

e

+

=

-

)

(


Each variable is expressed as a linear combination of itself and all other variables (plus intercepts, dummies, time trends).  The dynamics of the system will depend on the properties of the A matrix.  

The error term is a vector white noise process with 
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 where the covariance matrix 
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is assumed to be positive definite ( the errors are serially uncorrelated but can be contemporaneously correlated.  

Solution to 4:
(i) Homogenous equation: 
Omit the error term 
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(5)
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is nonsingular (
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As a solution try 
[image: image52.wmf]t

d

l

.  Substituting it in the homogenous (trivial solution) equation (5):


[image: image53.wmf]0

)

(

=

-

d

A

I

l

  ---eigenvalues
The nontrivial solution requires the determinant to be zero:
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( Get the eigenvalues (
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(ii) Substitute the eigenvalues into the homogenous system, to get the corresponding eigenvectors (
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(iii) After calculating the nonhomogenous solution and adding to the homogenous equation, we obtain the complete solution (in matrix form):
(6) 
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(LR value) as t rises if the two eigenvalues have the modulus<1.
We can rewrite 
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 in (4) as a polynomial to see the stability conditions in terms of the eigenvalues: 
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The stability condition: 

(i) Modulus 
[image: image62.wmf]s
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 EMBED Equation.3  [image: image64.wmf]P

nonsingular, the determinant not 0, the system is stationary.  In (6) y converges to 
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.
(ii) Modulus 
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 EMBED Equation.3  [image: image68.wmf]P

nonsingular, but the system is explosive, no convergence.  This is because one or more of the 
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grows without bound as t increases, so does y from (6).  Not a typical process observed in the macro/finance series, therefore we do not consider this case.

(iii) Modulus 
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=1 
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unit root, 
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is singular, the determinant is 0 –y is nonstationary, we need to look into the VECM specification.  A lot of the macro/finance models fall into this category.

(iv) Modulus 
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( I(2) variables, VAR is I(1).  In general A is not symmetric.  Look for cointegrating vectors.
Relation between VAR variables and eigenvalues

Define the eigenvalues and the corresponding eigenvectors of the matrix A as:
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If the eigenvalues are distinct then the eigenvectors are linearly independent, and C is nonsingular 
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Theorem: (i) for any square matrix A, there is a nonsingular matrix C such that 
[image: image79.wmf]AC

C

1

-

is diagonal with the eigenvalues on the diagonal. (ii) The eigenvectors corresponding to distinct eigenvalues of a symmetric matrix are orthogonal (linearly independent).
Define a new vector of variables w such that 
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 each y is a linear combination of w’s (or each w is a linear combination of y’s).  Multiply (3) 
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(7)
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(i) 
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for i=1,2 
Both eigenvalues have modulus < 1.
Each w is therefore I(0), and since y’s are linear combinations of w’s, each y is I(0).  You can therefore apply the standard inference procedures and estimate each equation separately.  As we saw above, 
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 is nonsingular, it is full rank (=2 here), and a unique static equilibrium exists: 
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are such that any shock die out quickly and deviations from equilibrium are transitory.

(ii) 
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One of the eigenvalues has modulus > 1. Since each y is a linear combination of both w’s, y is unbounded and the process is explosive.

(iii) 
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Now 
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 is I(0).  Each y is I(1) since each y is a linear combination of both w’s, therefore VAR is nonstationary.  

Is there a linear combination of 
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  where c* represent the coefficients in the 
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( Look for a Relation between the CI vector
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Reparameterize equation (3) to give:

(8)

[image: image110.wmf]t

t

t

y

b

y

e

+

P

-

=

D

-

1

 where
[image: image111.wmf]A

I

-

=

P

.

The eigenvalues of 
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Thus:

(9)
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So 
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, which has a rank 1, is factorized into the product of a row vector 
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= the cointegrating vector.
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= the loading matrix = the weights with which the CI vector       enters into each equation of the VAR.
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Note: compare (9) to the case where 
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 is full rank with 
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Combining (8) and (9) we get the vector error correction model of the VAR:

(10)
[image: image137.wmf]ï

î

ï

í

ì

+

+

-

-

=

D

+

+

-

-

=

D

-

-

-

-

t

t

t

t

t

t

t

t

y

c

y

c

c

b

y

y

c

y

c

c

b

y

2

1

,

2

22

1

,

1

21

2

22

2

2

1

1

,

2

22

1

,

1

21

2

12

1

1

)

*

*

)(

1

(

)

*

*

)(

1

(

e

l

e

l

  
[image: image138.wmf]î

í

ì

+

-

-

=

D

+

-

-

=

D

Þ

-

-

t

t

t

t

t

t

w

c

b

y

w

c

b

y

2

1

,

2

2

22

2

2

1

1

,

2

2

12

1

1

)

1

(

)

1

(

e

l

e

l


All variables here are I(0): y’s in first differences and w’s.  

The w (EC term) measures the extent to which y’s deviate from their equilibrium LR values.

Although all the variables are I(0), the standard inference procedures are not valid.  (similar to the univariate case where in order to test whether a series is I(1), we have to use an ADF test and not the t statistics on the AR coefficient).

--See example below—
(iv) Repeated unitary eigenvalues: 
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We can no longer have a diagonal eigenvalue matrix as before.  But it is possible to find a nonsingular matrix P such that 
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 (the Jordan matrix).  The problem with this case is that although 
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is still rank 1, the transformation of y’s into w’s leads to I(2) variables, the cointegration vector gives a linear combination of I(2) variables and is thus I(1) and not I(0).  Thus y is CI(2,1), the variables in the VAR are all I(1) but the inference procedures are nonstandard.

Example of a case with 
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Find the matrices 
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and 
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from a VAR(1) with k=2:

(11) 
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(11) 
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Reparametrizing the VAR into a VECM gives us:
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in matrix form:

(12) 
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or:
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But we cannot infer the loading matrix and the cointegrating matrix separately from this.  To find 
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and 
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 separately, we need to calculate the eigenvector matrix:
Get the eigenvalues from the solution to 
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Eigenvectors corresponding to 
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 there is linear dependency  So set 
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Eigenvalues corresponding to 
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The eigenvector matrix and its inverse are:
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Now we can write the VAR in VECM by decomposing 
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This is the same expression as in (12) but now we have both the loading and the cointegrating matrices:
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2. VAR(2) with k variables:

(13)
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Note: you can also add any deterministic terms such as trend, breaks by specifying the model as:
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Set the error term=0 and examine the properties of the system.

We still have the LR solution (or the particular solution) as in (5) 
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exists if 
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is nonzero.  To see this, look at the eigenvalues.

We again try the same solution for the homogenous equation 
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and substitute it in to get the characteristic equation
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The number of roots = pk where p=order of the VAR and k=#variables.

Here we will have 2k roots.  

If all eigenvalues have modulus<1 then 
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is non singular and the solution
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will converge to 
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as t grows.  The analysis w.r.t the modulus of the roots (<1, =1, >1) is the same as in the VAR(1) case.

If the process is stationary then we can invert the VAR model and express y as a function of present and past shocks, and the exogenous (deterministic) components=Impulse Responses:
Ex: Calculate the roots of a 2-dimensional VAR(2): n=p=2 and find the effect of a shock on a dependent variable: (Juselius Ch. 3)
The characteristic function of 
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Therefore 
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Regrouping similar terms:


[image: image197.wmf]4

4

3

3

2

2

1

1

)

(

z

a

z

a

z

a

z

a

z

-

-

-

-

=

P



 EMBED Equation.3  [image: image198.wmf]
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The determinant is a 4th order polynomial in z giving 4 characteristic roots:
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Effects of a shock (or structural change dummy) on a dependent variable:
If 
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is invertible (all roots in the unit circle), we can write
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We can then calculate the effect of a shock on 
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 EMBED Equation.3  [image: image205.wmf])
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 for t=1,….T.

We are assuming that all roots have modulus less than 1.  The characteristic roots give information about the dynamic behavior of the process.  To see how the shock is propagated, expand the last component:
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You will have to do the same thing with each root.  Thus, each shock will affect current and future values of
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.  

The persistence of the shock depends on the magnitude of the roots.  The larger they are the more persistent will be the shocks.  

-If the roots 
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 are real and <1, the shock will exponentially die out.

-If one or more root 
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 is imaginary then a shock will be cyclical but    exponentially declining.

-If one or more roots 
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 lies on the unit circle, the shock will be permanent and and 
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 will show nonstationary behavior.  VAR is not invertible, then we need to look into VECM
We can also calculate the roots by reformulating the VAR(p) into the companion matrix VAR(1) form and solve for the two eigenvalues:

Alternative approach: companion matrix.

A VAR(p) can be transformed into a VAR(1).  Consider the equation (6) again.  We can rewrite it as:
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In matrix form:
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Calculate the eigenvalues 
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 from the coefficient matrix:
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Now we get the roots directly instead of the z’s, which were the inverse of the roots, obtained by solving the characteristic polynomial.  Johansen and Juselius refer to the 
[image: image219.wmf]s
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as eigenvalues roots and to z’s characteristic roots.
In the case of the companion matrix, there are two roots.  If the roots to the characteristic polynomial are outside the unit circle, then the eigenvalues of the companion matrix are inside the unit circle and the system is stable.

To recap: 

-The solution to 
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 gives the stationary roots (characteristic roots) outside the unit circle.

-The solution to 
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 gives the stationary roots (eigenvalues) inside the unit circle.

-If the roots of 
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 are all outside the unit circle or the eigenvalues of the companion matrix are inside the unit circle, the process is stationary.

-If one or more of the roots of 
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 or those of the companion matrix are on the unit circle then the process is nonstationary.

-If one or more roots of 
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 is inside the unit circle or the eigenvalues of the companion matrix are outside the unit circle, the process is explosive.

Reminder: For a characteristic equation of the type � EMBED Equation.3  ���


� EMBED Equation.3  ���	


Real roots: � EMBED Equation.3  ���


Imaginary roots: � EMBED Equation.3  ��� where � EMBED Equation.3  ���


				Modulus = � EMBED Equation.3  ���








[image: image226.wmf]i

a

ac

b

a

b

i

b

a

l

l

±

=

-

±

-

=

2

4

2

,

2

2

1

[image: image227.wmf]b

a

l

l

±

=

2

1

,

[image: image228.wmf]i

b

a

l

l

±

=

2

1

,

[image: image229.wmf]1

-

=

i

[image: image230.wmf]2

2

b

a

+

_1237378529.unknown

_1255364680.unknown

_1257088507.unknown

_1257142982.unknown

_1257143054.unknown

_1257143095.unknown

_1257144261.unknown

_1257147212.unknown

_1257147380.unknown

_1257147423.unknown

_1257147262.unknown

_1257146967.unknown

_1257143111.unknown

_1257143079.unknown

_1257143087.unknown

_1257143068.unknown

_1257143028.unknown

_1257143037.unknown

_1257143006.unknown

_1257142862.unknown

_1257142928.unknown

_1257142970.unknown

_1257142872.unknown

_1257088692.unknown

_1257142644.unknown

_1257088538.unknown

_1255807398.unknown

_1255848187.unknown

_1255848943.unknown

_1256452781.unknown

_1256453025.unknown

_1256453063.unknown

_1256452654.unknown

_1255848265.unknown

_1255848728.unknown

_1255848535.unknown

_1255848549.unknown

_1255848205.unknown

_1255848110.unknown

_1255807414.unknown

_1255848109.unknown

_1255365423.unknown

_1255365814.unknown

_1255365898.unknown

_1255365925.unknown

_1255807389.unknown

_1255365908.unknown

_1255365849.unknown

_1255365832.unknown

_1255365656.unknown

_1255365738.unknown

_1255365432.unknown

_1255364746.unknown

_1255364968.unknown

_1255365036.unknown

_1255364848.unknown

_1255364738.unknown

_1243945649.unknown

_1255206139.unknown

_1255206494.unknown

_1255332059.unknown

_1255332312.unknown

_1255364507.unknown

_1255332354.unknown

_1255332140.unknown

_1255206700.unknown

_1255207113.unknown

_1255332032.unknown

_1255207096.unknown

_1255206563.unknown

_1255206313.unknown

_1255206476.unknown

_1255206212.unknown

_1255204644.unknown

_1255205726.unknown

_1255206057.unknown

_1255205633.unknown

_1254742958.unknown

_1254743121.unknown

_1254743261.unknown

_1255204315.unknown

_1254743154.unknown

_1254743260.unknown

_1254743070.unknown

_1243945975.unknown

_1253522548.unknown

_1253719113.unknown

_1243945940.unknown

_1238484983.unknown

_1238485467.unknown

_1238851299.unknown

_1238851406.unknown

_1238851727.unknown

_1238485487.unknown

_1238485240.unknown

_1238485173.unknown

_1238485212.unknown

_1238485060.unknown

_1237379631.unknown

_1237392140.unknown

_1238484930.unknown

_1238484945.unknown

_1237392600.unknown

_1237411462.unknown

_1238484899.unknown

_1237411433.unknown

_1237404712.unknown

_1237392424.unknown

_1237392438.unknown

_1237392407.unknown

_1237385182.unknown

_1237385268.unknown

_1237390943.unknown

_1237385251.unknown

_1237383918.unknown

_1237384173.unknown

_1237384384.unknown

_1237384403.unknown

_1237384086.unknown

_1237383843.unknown

_1237379321.unknown

_1237379416.unknown

_1237379532.unknown

_1237379395.unknown

_1237378645.unknown

_1237378954.unknown

_1237378621.unknown

_1237145973.unknown

_1237148355.unknown

_1237377149.unknown

_1237377484.unknown

_1237378442.unknown

_1237378462.unknown

_1237378385.unknown

_1237377402.unknown

_1237377460.unknown

_1237377370.unknown

_1237190244.unknown

_1237375529.unknown

_1237377013.unknown

_1237375697.unknown

_1237376938.unknown

_1237204147.unknown

_1237211831.unknown

_1237212736.unknown

_1237212974.unknown

_1237375477.unknown

_1237212918.unknown

_1237212652.unknown

_1237204827.unknown

_1237203115.unknown

_1237204029.unknown

_1237201930.unknown

_1237192123.unknown

_1237189683.unknown

_1237189856.unknown

_1237190093.unknown

_1237189916.unknown

_1237189716.unknown

_1237188930.unknown

_1237189264.unknown

_1237189338.unknown

_1237189651.unknown

_1237189121.unknown

_1237148587.unknown

_1237147317.unknown

_1237147760.unknown

_1237147830.unknown

_1237147583.unknown

_1237147674.unknown

_1237146291.unknown

_1237147259.unknown

_1237147286.unknown

_1237146523.unknown

_1237146067.unknown

_1236008231.unknown

_1236012928.unknown

_1237145554.unknown

_1237145585.unknown

_1236076144.unknown

_1237145301.unknown

_1236008512.unknown

_1236011874.unknown

_1236012820.unknown

_1236008292.unknown

_1231095199.unknown

_1236005777.unknown

_1236007108.unknown

_1236007126.unknown

_1236007044.unknown

_1231143344.unknown

_1236005224.unknown

_1231142563.unknown

_1231142600.unknown

_1231142634.unknown

_1231142367.unknown

_1231067476.unknown

_1231093819.unknown

_1231093896.unknown

_1231093557.unknown

_1230121476.unknown

_1230385743.unknown

_1230385856.unknown

_1230386154.unknown

_1230121522.unknown

_1230121442.unknown

