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Abstract. We consider a two-player zero-sum stochastic differential
game (SDG) with hybrid state variable dynamics given by a Markov-
switching jump-diffusion. We study this game using a combination of
dynamic programming and viscosity solution techniques, generalizing
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1. Introduction

Differential game theory concerns problems modeling interactions among
agents whose decisions are continuously evolving. Isaacs [34] first, and
Berkovitz and Fleming [15] and Friedman [29, 30] later, studied such prob-
lems and provided the first contributions to the field. The goal of the theory
is to describe the interaction among agents occurring in the most various situ-
ations. One should point out that any action taken by the players both influ-
ences and is influenced by the evolution of the state of the system over time.
This class of problems is closely related with optimal control theory and, in
particular, the Pontryagin maximum principle and Bellman’s dynamic pro-
gramming principle and the corresponding Hamilton-Jacobi-Bellman-Isaacs
equation. However, it should be noted that differential games are usually
far more complex than optimal control problems, the reason being the fact
that, unlike optimal control problems, differential games correspond to the
case where more than one player is involved. Besides, there isn’t an obvious
notion for what a solution is, with multiple proposals put forward instead.

Early definitions of differential game value made use of time discretiza-
tions [29] and were later substituted by the Elliott-Kalton notion of differ-
ential game value [23]. Using the theory of viscosity solutions introduced
by Crandall and Lions [22], Evans and Souganidis [26] characterized the up-
per and lower Elliott-Kalton value functions as unique viscosity solutions
of the corresponding Hamilton-Jacobi-Bellman-Isaacs PDEs and Souganidis
[59] showed that the Elliott-Kalton value functions are actually the same
as those defined using time discretizations. The notion of value of a dif-
ferential game extends to the stochastic differential games’ setup. Under
the assumption that the Isaacs condition holds, Fleming and Souganidis [28]
proved the existence of value for two-player zero-sum stochastic differential
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games (SDGs) with diffusive state variable dynamics. Their approach re-
lies on an asymmetric formulation of the game under consideration whereby
two subgames are defined, with one player having an information advantage
on one of the subgames and the remaining player having a similar advan-
tage on the other subgame. The stronger player uses Elliot-Kalton strate-
gies while the weaker player resorts to open-loops controls. Katsoulakis [37]
and Cardaliaguet and Rainer [21] also rely on asymmetric game formula-
tions while proving a dynamic programming principle. An alternative ap-
proach introduced by Sîrbu [55] and building up on previous related work by
Bayraktar and Sîrbu [10, 11, 12], relies on the stochastic Perron’s method to
characterize the value of SDGs formulated symmetrically over appropriately
specified elementary feedback strategies. Some recent developments of the
theory address SDGs with more general state variable dynamics such as, for
instance, jump-diffusion state variable dynamics with no switching variable
[16, 17, 18, 38] or diffusive state variable dynamics modulated by a switching
process with both finite horizon [9, 32, 43, 53] and infinite horizon [41, 42].
Other extensions include more general payoff functionals [19, 20, 40], alter-
native control sets [13, 60, 64] and game formulations [21, 27, 51, 64], or
more relaxed assumptions regarding boundedness of the problem’s data [33].

In this paper, we study a two-player zero-sum stochastic differential game
in which the state variable dynamics follow a Markov-switching jump-diffusion
process. The game has a hybrid framework, incorporating both continu-
ous and discrete stochastic effects, with state transitions among distinct
jump-diffusive dynamics being governed by a continuous-time Markov pro-
cess modeling the regime switches. The players’ payoff functionals depend
explicitly on the state of the Markov process governing the switching behav-
ior, adding an extra layer of complexity to the problem under consideration.
We employ a combination of dynamic programming and viscosity solution
techniques to rigorously establish the existence and uniqueness of the value
function for the game. Namely, we prove that the upper and lower value
functions associated with this SDG satisfy certain nonlinear partial integro-
differential equation of Hamilton-Jacobi-Bellman-Isaacs (HJBI) type which,
under appropriate conditions, uniquely determine the value of the game as a
viscosity solution. Even though we will regard such HJBI type equation as a
single partial differential equation, depending on the finitely many values of
the Markov process driving the switching dynamics, we should note it could
also be regarded as a system of coupled partial differential equations, one
equation for each state of the Markov process. Our choice aims at simplifying
technical details and attempting to remain close to the most commonly used
definitions of viscosity solutions for partial differential equations. We should
stress that the strategy followed here generalizes the seminal work of Fleming
and Souganidis in [28] to include the broader class of games under consider-
ation herein. We find this approach to be quite effective, as it allows us to
build on established and foundational results, extending only those aspects
where the influence of the Markov-switching and jump-diffusion components
is significant. We should also note that our analysis differs from other re-
cent works such as [41, 42, 43], which focus on SDGs with Markov-switching
diffusive dynamics with no jump component, or [64], which focus on a SDG
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with state variable dynamics within the class considered herein, but with
impulsive controls and a recursive functional.

Incorporating both jump-diffusion processes and Markov-switching into
the framework of stochastic differential games results in highly intricate state
variable dynamics, leading to additional mathematical challenges. Firstly,
the presence of both jump-diffusion processes and regime switching provides
the systems under analysis with a sort of hybrid behavior, i.e. with both con-
tinuous and discrete sources of uncertainty simultaneously present. Namely,
while the Markov-switching component introduces discrete transitions be-
tween distinct regimes, the jump-diffusion process models sudden and un-
predictable movements occurring continuously. Secondly, the HJBI equation
describing the SDG value functions is actually a system of coupled par-
tial integro-differential equations, one for each state of the regime-switching
Markov process, each of which including nonlocal integral terms arising from
the jump process. Such equations are highly nonlinear, complicating the ex-
istence, uniqueness, and regularity analysis of its solutions. Finally, from the
point of view of game theory, the presence of multiple interacting stochas-
tic components complicates the design of optimal strategies. Players must
account for the effects of both jumps and regime changes in their decision-
making, leading to potentially more complicated feedback strategies. In real-
world applications such as finance, energy markets, and engineering control,
estimating transition probabilities for regime switching and jump intensities
adds an extra layer of difficulty. Incomplete or noisy observations of the
switching process can further complicate the formulation and solution such
games.

We should also point out that, in addition to its relevance from a theoret-
ical point of view, the analysis of SDGs with Markov-switching has potential
applications to problems modeled by hydrid dynamic systems originating
from areas of knowledge as distinct as finance, ecology or engineering. In-
deed, in all of these areas, sudden external variations may lead to significant
changes in the evolution of relevant observables. In particular, the impor-
tance of such class of systems has contributed to the recent increase of its
use in mathematical finance [24, 25, 54, 56, 62, 63] and mathematical biology
[5, 14, 65], to name only a few recent works. Moreover, the study of optimal
control problems with Markov-switching has also received a lot of attention
in recent years: see, for instance, the contributions by Koutsoukos [39], Tang
and Hou [60], Mao [46], Azevedo et al. [4], Temoçin and Weber [61], and
Song and Zhu [57]. Finally, we believe that such class of systems will find a
broader scope of applications in areas germane to game theory [44, 48, 49].

This paper is organized as follows. In Section 2 we describe the problem
we propose to address and state our main results, which are then proved in
Section 3. We conclude in Section 4.

2. Framework and main results

In this section we formulate the problem under consideration herein and
state our main results.

2.1. Notation and setup. Let T > 0 be a deterministic finite time horizon
and, for every t ∈ [0, T ], let (Ωt,T ,Gt,T ,Gt,T ,Pt,T ) be a filtered probability
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space with filtration Gt,T = {Gt,s : s ∈ [t, T ]} satisfying the usual conditions,
i.e. Gt,T is an increasing sequence of σ-algebras for any t ∈ [0, T ], it is
right-continuous, and Gt,T contains all Pt,T -null sets. For each d ∈ N, let
Rd
0 = Rd \ {0} and let Bd

0 be the Borel σ-field generated by the open subsets
O of Rd

0 whose closure does not contain 0.
We will consider the following stochastic processes throughout this paper:

(i) a M -dimensional Brownian motion Bt =
{
Bt(s) : s ∈ [t, T ]

}
on the

filtered probability space (Ωt,T ,Gt,T ,Gt,T ,Pt,T ).
(ii) a K-dimensional Lévy process ηt = {ηt(s) : s ∈ [t, T ]} with Poisson

random measure J t(s,A) with intensity (or Lévy measure) νt(A).
Recall that for each s ∈ [t, T ] and ω ∈ Ωt,T , J t(s, ·)(ω) is a counting
measure on BK

0 , and that for each A ∈ BK
0 , {J t(s,A) : s ∈ [t, T ]}

is a Poisson process with intensity νt(A). For each s ∈ [t, T ] and
A ∈ BK

0 , define the compensated Poisson random measure of ηt(·)
by

J̃ t(ds, dz) = J t(ds, dz)− νt(dz)ds

and notice that {J̃ t(s,A) : s ∈ [t, T ]} is a martingale-valued measure
[3].

(iii) a homogeneous continuous-time Markov process µt = {µt(s) : s ∈
[t, T ]} with a finite state space S = {1, . . . , n}.

Let us introduce the following technical assumptions:
(A1) U and V are compact metric spaces.
(A2) The transition probability function

Pij(s) = Pt,T {µt(t+ s) = j|µt(t) = i} , i, j ∈ S , s ∈ [0, T − t]

of the Markov-process µt(·) is such that both conditions below hold:
(i) lims→0+ Pii(s) = 1 for all i ∈ S
(ii) qi = lims→0+ (1− Pii(s)) /t is finite for all i ∈ S.

(A3) The maps f : [0, T ] × RN × S × U × V → RN , σ : [0, T ] × RN ×
S × U × V → RN×M , h : [0, T ]× RN × S × U × V × RK

0 → RN×K ,
Ψ : RN ×S → R and L : [0, T ]×RN ×S×U ×V → R are such that
for each fixed a ∈ S, f(·, ·, a, ·, ·), σ(·, ·, a, ·, ·), h(·, ·, a, ·, ·, ·), Ψ(·, a)
and L(·, ·, a, ·, ·) are bounded and uniformly continuous with respect
to all the remaining variables, and Lipschitz continuous with respect
to the variables (t, x) ∈ [0, T ]× RN , uniformly in (u, v) ∈ U × V .

(A4) The Lévy measure νt is a positive Radon measure on RK
0 that satisfies∫

RK
0

min(|z|2, 1)νt(dz) <∞ .

(A5) the Brownian motion Bt(·), the Lévy process ηt(·) and the Markov
process µt(·) are mutually independent and adapted to the filtration
Gt,T .

Under Assumption (A2), it is known [2] that for each i ∈ S the rates of
change

qij = P ′
ij(0)

exist and are finite for all j ∈ S. Moreover, setting qii = −qi for each
i ∈ S, we are able to write the generator matrix of the Markov process
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µt as Q = (qij)
n
i,j=1. This is related with the transition probability matrix

P (s) = (Pij(s))i,j∈S through the identity

P (s) = esQ , s ∈ [0, T − t] .

The Markov process µt(·) introduced above admits a representation as a
stochastic integral with respect to a Poisson random measure [47, 31], as we
will now explain. For i, j ∈ S such that i ̸= j, denote by Λij the consecutive
(with respect to the lexicographical order on S × S), left-closed, right-open
intervals of the real line, each with length qij . Define Γ : S × R → R as

Γ(i, z) =

{
j − i if z ∈ Λij

0 otherwise ,

where the new state j ∈ S is determined by the interval Λij to which z ∈ R
belongs to. Roughly, the map Γ determines the size of the switch between
states of the Markov process µt(·). Then, the Markov process µt(·) with
initial condition µt(t) = i0 admits the representation

dµt(s) =

∫
R
Γ(µt(s−), z) N

t(ds, dz) , s ∈ [t, T ] , (1)

where N t(ds, dz) is a Poisson random measure with intensity ds× ℓ(dz), in
which ℓ(·) is the Lebesgue measure on R.

We will use the notation | · | for the Euclidean norm on any finite dimen-
sional space, without indicating the dimension each time for simplicity of
exposition. Embedding the state space S = {1, . . . , n} of the Markov pro-
cess µt(·) into Rn by identifying each element i ∈ S with the unit vector ei of
the standard basis of Rn (i.e. ei is the element of Rn having all components
equal to zero except for the ith component, which equals 1), we endow the
product space RN × S with the metric

dN,S ((x, a), (y, b)) = |(x− y, ea − eb)| (2)

induced by the Euclidean norm on RN+n, i.e. the distance between the points
(x, a) ∈ RN × S and (y, b) ∈ RN × S equals the distance from the origin of
RN+n to the point (x − y, ea − eb) ∈ RN+n whose first N components are
those of x− y ∈ RN and whose last n components are those of ea− eb ∈ Rn.
For a bounded Lipschitz continuous function g on RN , denote by |g|1 its
Lipschitz norm, defined as

|g|1 = sup
x∈RN

|g(x)|+ sup
x,y∈RN :x ̸=y

|g(x)− g(y)|
|x− y|

.

We denote by W 1,∞(RN ) the space of all bounded Lipschitz continuous func-
tions g on RN with the property that |g|1 is finite. For a fixed t ∈ [0, T ],
we will denote by |g(t, ·)|1 the Lipschitz norm | · |1 of g(t, x) as a function
of x alone. We also denote by C1,2([0, T ) × RN ) the space of continuous
functions on [0, T ) × RN with one continuous derivative with respect to its
first argument and two continuous derivatives with respect to its second ar-
gument, and by USC([0, T ]×RN ) and LSC([0, T ]×RN ) the set of all upper
and lower semicontinuous functions on [0, T ]×RN , respectively. Finally, we
denote by USCp([0, T ]×RN ), LSCp([0, T ]×RN ) and C1,2

p ([0, T )×RN ) the
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sets of functions g, respectively, in USC([0, T ]×RN ), LSC([0, T ]×RN ) and
C1,2([0, T )× RN ) satisfying the growth condition

|g(x)| ≤ C (1 + |x|p) for all x ∈ RN

for some p ≥ 0. The condition above should be satisfied uniformly in t if g
depends on t.

In what follows, let s ∈ [t, T ]. Denote by Ω1
t,s the set of RM -valued

continuous functions on [t, s] taking the value 0 at t, i.e.

Ω1
t,s =

{
ω ∈ C

(
[t, s];RM

)
: ω(t) = 0

}
,

and endow Ω1
t,s with the sup-norm. Let G1

t,s be the corresponding Borel σ-
algebra and note that when endowed with the Wiener measure P1

t,s on G1
t,s,

Ω1
t,s becomes a classical Wiener space.
Denote by B

(
[t, s]× RK

0

)
the Borel σ-algebra on [t, s]×RK

0 and define Ω2
t,s

as the set of all N ∪ {∞}-valued measures on
(
[t, s]× RK

0 ,B
(
[t, s]× RK

0

))
.

Let G2
t,s be the smallest σ-algebra over Ω2

t,s such that the maps q ∈ Ω2
t,s →

q(A) ∈ N∪{∞} are measurable for all A ∈ B
(
[t, s]× RK

0

)
. Additionally, let

the coordinate random measure Jt,s be defined as Jt,s(q, A) = q(A) for all
q ∈ Ω2

t,s, A ∈ B
(
[t, s]× RK

0

)
and denote P2

t,s as the probability measure on(
Ω2
t,s,G2

t,s

)
under which Jt,s is a Poisson random measure with Lévy measure

νt satisfying of Assumption (A4).
Similarly, let B ([t, s]× R) be the Borel σ-algebra on [t, s]× R and define

Ω3
t,s as the set of all N ∪ {∞}-valued measures on ([t, s]× R,B ([t, s]× R)).

Let G3
t,s be the smallest σ-algebra over Ω3

t,s such that the maps p ∈ Ω3
t,s →

p(A) ∈ N ∪ {∞} are measurable for all A ∈ B ([t, s]× R). Moreover, let
the coordinate random measure Nt,s be defined as Nt,s(p,A) = p(A) for all
p ∈ Ω3

t,s, A ∈ B ([t, s]× R) and denote by P3
t,s the probability measure on(

Ω3
t,s,G3

t,s

)
under which the process µt(·) is a Markov process with respect

to its natural filtration.
We define Ωt,s as the direct product

Ωt,s = Ω1
t,s × Ω2

t,s × Ω3
t,s ,

defining accordingly the probability measure Pt,s as

Pt,s = P1
t,s ⊗ P2

t,s ⊗ P3
t,s , (3)

and the σ-algebra Gt,s, as the completion of G1
t,s ⊗G2

t,s ⊗G3
t,s with respect to

the measure Pt,s.
We will denote a generic element of Ωt,T by ω = (ω1, ω2, ω3) with ωi ∈

Ωi
t,T , i ∈ {1, 2, 3}. Define the coordinate functions

Bt(s, ω) = ω1(s) and J t(A2, ω) = ω2(A2) and N t(A3, ω) = ω3(A3)

for 0 ≤ t ≤ s ≤ T , ω ∈ Ω, A2 ∈ B([t, T ] × RK
0 ), A3 ∈ B([t, T ] × R). For

t ∈ [0, T ], define the filtration Gt,T = {Ft,s : s ∈ [t, T ]} as follows. Let

F̂t,s = σ{Bt(r), J t(A2), N
t(A3) : A2 ∈ B([t, r]× RK

0 ), A3 ∈ B([t, r]× R), t ≤ r ≤ s} ,

with t ≤ s ≤ T and make the resulting filtration Ĝt,T = {F̂t,s : s ∈ [t, T ]}
right-continuous. Additionally, augment Ĝ+

t,T by including all Pt,T -null sets.
This procedure yields Gt,T . If and when needed, we extend the filtration



SDGS WITH MARKOV-SWITCHING JUMP-DIFFUSION DYNAMICS 7

Gt,T for s < t by taking Ft,s to be the trivial σ- algebra augmented by all
the Pt,T -null sets.

For t̂ ∈ (t, T ) and ω = (ω1, ω2, ω3) ∈ Ωt,T = Ω1
t,T × Ω2

t,T × Ω3
t,T , let

ωt,t̂ = (ω1|[t,t̂], ω2|[t,t̂], ω3|[t,t̂]) ∈ Ωt,t̂ ,

and
ωt̂,T =

((
ω1 − ω1(t̂)

)
|[t̂,T ], ω2|[t̂,T ], ω3|[t̂,T ]

)
∈ Ωt̂,T .

Define π : Ωt,T → Ωt,t̂ × Ωt̂,T to be the map given by

π(ω) =
(
ωt,t̂, ωt̂,T

)
. (4)

Then, π induces the identification

Ωt,T = Ωt,t̂ × Ωt̂,T

and the inverse of π acts on pairs of paths (ωt,t̂, ωt̂,T ) ∈ Ωt,t̂ × Ωt̂,T by
concatenation, i.e. ω = π−1(ωt,t̂, ωt̂,T ) ∈ Ωt,T . Finally, notice that for any t̂ ∈
(t, T ) the map π identifies the filtered probability space (Ωt,T ,Gt,T ,Gt,T ,Pt,T )

with
(
Ωt,t̂ × Ωt̂,T ,Gt,t̂ ⊗ Gt̂,T ,Gt,t̂ ⊗Gt̂,T ,Pt,t̂ ⊗ Pt̂,T

)
.

2.2. Differential Game formulation. The two-Player zero-sum differen-
tial game with Markov-switching jump-diffusion is defined on the filtered
probability space (Ωt,T ,Gt,T ,Gt,T ,Pt,T ) and consists of the controlled sto-
chastic differential equation

dX(s) = f (s,X (s), u(s), v(s)) ds

+σ (s,X (s), u(s), v(s)) dBt(s)

+

∫
RK
0

h (s−,X (s−), u(s−), v(s−), z) J̃
t(ds, dz) (s ∈ [t, T ]) ,

dµt(s) =

∫
R
Γ
(
µt(s−), z

)
N t(ds, dz) , (5)

X(t) = x, µt(t) = a ,

where X (s) denotes the pair (X(s), µt(s)), and the payoff functional

J(t, x, a;u(·), v(·)) = EPt,T

[∫ T

t
L
(
s,X u,v

t,x,a(s), u(s), v(s)
)
ds

+Ψ
(
X u,v
t,x,a(T ))

) ]
, (6)

where X u,v
t,x,a(s) = (Xu,v

t,x,a(s), µt,a(s)) denotes the solution of the initial value
problem (5) associated with a specific choice of controls u(·) and v(·). Note
that both the stochastic differential equation in (5) and the payoff functional
(6) depend on the Markov process µt(·). Moreover, observe that in light of
assumption (A3), equation (5) admits a unique strong solution. We should
note, however, that the boundedness assumption on f , σ, h and ψ in (A3)
could be replaced by a linear growth condition in x. For instance, Buckdahn
et al. [18] implement the use of such weaker condition within the context of
controlled stochastic systems with a Brownian motion and a Poisson random
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measure, and with nonlinear cost functionals defined by controlled backward
stochastic differential equations.

We will refer to the functions L and Ψ determining the objective functional
J as the running payoff and terminal payoff, respectively. In what concerns
the game under consideration, the payoff functional (6) represents some cost
that a first Player is trying to maximize (and thus a second Player seeks to
minimize) subject to the state variable dynamics defined by (5) and some
constraints of the form u(t) ∈ U and v(t) ∈ V for every appropriately defined
instant of time t ≥ 0. Since the gain of one player represents a loss to the
other player, this game fits into the class of zero-sum games.
Admissible control process An admissible control process u(·) (resp. v(·))
for Player I (resp. II) on [t, T ] is a Gt,T -progressively measurable process tak-
ing values in U (resp. V ). The set of all admissible controls for Player I (resp.
II) on [t, T ] is denoted by U(t, T ) (resp. V(t, T )).

We say that two controls u1(·), u2(·) ∈ U(t, T ) are the same on [t, s], for
some s ∈ (t, T ], and denote it by u1(·) ≈ u2(·), if it holds that

Pt,T {u1(·) = u2(·) a.e. [t, s]} = 1 .

A similar convention is used for elements of V(t, T ).
Admissible strategy An admissible strategy α (resp. β) for Player I (resp.
II) on [t, T ] is a mapping α : V(t, T ) → U(t, T ) (resp. β : U(t, T ) → V(t, T ))
such that if v(·) ≈ ṽ(·) (resp. u(·) ≈ ũ(·)) on [t, s] for every s ∈ [t, T ], then
α[v(·)] ≈ α[ṽ(·)] (resp. β[u(·)] ≈ β[ũ(·)]). The set of all admissible strategies
for Player I (resp. II) on [t, T ] is denoted by A(t, T ) (resp. B(t, T )).
Before proceeding, we note that admissible strategies are also referred to as
nonanticipative strategies in the literature.
Lower and upper value functions The lower value function of the SDG
(5)-(6) is given by

V −(t, x, a) = inf
β∈B(t,T )

sup
u(·)∈U(t,T )

J(t, x, a;u(·), β[u(·)]) (7)

while the corresponding upper value function is

V +(t, x, a) = sup
α∈A(t,T )

inf
v(·)∈V(t,T )

J(t, x, a;α[v(·)], v(·)) . (8)

We say that the SDG (5)-(6) has a value if

V +(t, x, a) = V −(t, x, a)

and call it the common value of the SDG. This definition extends the stan-
dard notion of common value of a game, introduced by Elliot and Kalton
[23], to SDGs with a Markov-switching jump-diffusion.

Choosing the controls at time t, the Player who moves first (the maxi-
mizing Player for the lower game, and the minimizing Player for the upper
game) is allowed to use the past of the three stochastic processes driving (5),
while the Player with the advantage (Player II for the lower game, Player I
for the upper game), is allowed to use both the past of such processes and
the other player’s control.
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2.3. Statement of main results. In this section we state our main results.
We focus first on a recursive characterization for the value functions of the
game, known as dynamic programming principle, before proceeding to an
alternative characterization in terms of viscosity solutions of partial integro-
differential equations.

Theorem 2.1 (Dynamic programming principle). Suppose that Assumptions
(A1)-(A5) hold and let t, t̂ ∈ [0, T ] be such that t < t̂. Then, for every
(x, a) ∈ RN × S, we have that:

(i) the lower value function V − is determined by the recursive relation

V −(t, x, a) = inf
β∈B(t,T )

sup
u∈U(t,T )

EPt,T

[
V − (t̂,X u,v

t,x,a(t̂)
)

(9)

+

∫ t̂

t
L(s,X u,v

t,x,a(s), u(s), β[u(·)](s)) ds

]
,

combined with the boundary condition V −(T, x, a) = Ψ(x, a), where
X u,v
t,x,a(s), s ∈ [t, T ], is the solution of (5) with v(·) = β[u(·)] ∈ V(t, T )

for u(·) ∈ U(t, T ).
(ii) the upper value function V + is determined by the recursive relation

V +(t, x, a) = sup
α∈A(t,T )

inf
v∈V(t,T )

EPt,T

[
V +

(
t̂,X u,v

t,x,a(t̂)
)

(10)

+

∫ t̂

t
L(s,X u,v

t,x,a(s), α[v(·)](s), v(s)) ds

]
,

combined with the boundary condition V +(T, x, a) = Ψ(x, a), where
X u,v
t,x,a(s), s ∈ [t, T ], is the solution of (5) with u(·) = α[v(·)] ∈ U(t, T )

for v(·) ∈ V(t, T ).

It is well known that, in general, the value functions V − and V + deter-
mined by the variational identities in the dynamic programming principle
above are not smooth. An alternative notion of weak solution, know as vis-
cosity solution, was originally proposed by Crandall and Lions in [22] for the
case of first order Hamilton-Jacobi equations. More recently, such notion has
been extended to partial integro-differential [1, 6, 7, 8, 35, 36, 50]. Herein
we deal with such class of equations, containing additional terms due to the
Markov-switching.
Viscosity solution A functionW : [0, T ]×RN×S → R such thatW (·, ·, a) ∈
USCp([0, T ]×RN ) for every a ∈ S (resp. W (·, ·, a) ∈ LSCp([0, T ]×RN )) is
a viscosity subsolution (resp. supersolution) of{

Wt +H(t, x, a,W (t, ·, ·),Wx,Wxx) = 0

W (T, x, a) = Ψ(x, a) ,
(11)

if for every (x, a) ∈ RN × S we have that

W (T, x, a) ≤ Ψ(x, a) (resp. W (T, x, a) ≥ Ψ(x, a) )
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and, additionally,

ϕt(t0, x0, a0)

+H(t0, x0, a0, ϕ(t0, x0, a0), ϕx(t0, x0, a0), ϕxx(t0, x0, a0)) ≥ 0(
resp. ϕt(t0, x0, a0)

+H(t0, x0, a0, ϕ(t0, x0, a0), ϕx(t0, x0, a0), ϕxx(t0, x0, a0)) ≤ 0
)

for every function ϕ : [0, T ]×RN ×S → R such that ϕ(·, ·, a) ∈ C1,2
p ([0, T )×

RN ) for every a ∈ S, and any local maximum (resp. minimum) (t0, x0, a0)
of W − ϕ. We say that W is a viscosity solution of (11) if it is both a sub-
and supersolution.

Before proceeding to the statement of the next result, let us introduce
some more notation: we will denote by SN the set of symmetric N × N
matrices and by tr(A) the trace of a matrix A ∈ SN .

Theorem 2.2. Suppose that Assumptions (A1)-(A5) hold. Then the value
functions V − and V + are, respectively, the unique viscosity solutions of the
HJBI equations:{

Wt +H−(t, x, a,W (t, ·, ·),Wx,Wxx) = 0

W (T, x, a) = Ψ(x, a)
(12)

and {
Wt +H+(t, x, a,W (t, ·, ·),Wx,Wxx) = 0

W (T, x, a) = Ψ(x, a)
(13)

where, for (t, x, a, p, A) ∈ [0, T ] × RN × S × RN × SN and any real valued
function w on [0, T ]×RN × S such that w(·, ·, a) is smooth for every a ∈ S,
we have

H−(t, x, a, w (t, ·, ·) , p, A) = max
u∈U

min
v∈V

{
H1(t, x, a, u, v, p, A)

+H2(t, x, a, u, v)[w]
}

H+(t, x, a, w (t, ·, ·) , p, A) = min
v∈V

max
u∈U

{
H1(t, x, a, u, v, p, A)

+H2(t, x, a, u, v)[w]
}

with

H1(t, x, a, u, v, p, A) = L(t, x, a, u, v) + f(t, x, a, u, v) · p

+tr

(
1

2
g(t, x, a, u, v)A

)
and

H2(t, x, a, u, v)[w] =
∑

j∈S:j ̸=a

qaj (w(t, x, j)− w(t, x, a))

+

∫
RK
0

(
w(t, x+ h(t, x, a, u, v, z), a)− w(t, x, a)

−wx(t, x, a) · h(t, x, a, u, v, z)
)
νt(dz)
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where g = σσ′, and σ′ denotes the transpose of σ.

We say that the Isaacs condition holds if for all (t, x, a, p, A) ∈ [0, T ] ×
RN × S ×RN × SN and any real valued function w on [0, T ]×RN × S such
that w(·, ·, a) is smooth for every a ∈ S, the following identity holds:

H+(t, x, a, w(t, ·, ·), p, A) = H−(t, x, a, w(t, ·, ·), p, A) . (14)

The next result follows from combining Isaacs condition above with the
uniqueness of the viscosity solutions to (12) and (13), guaranteed by Theo-
rem 2.2. In particular, it establishes the existence of a common value for the
SDG (5)-(6) in the sense of Elliot and Kalton [23].

Corollary 2.3. If the Isaacs condition (14) holds, then the upper and the
lower value functions of the SDG (5)-(6) coincide.

The rest of this paper is devoted to the proof of Theorems 2.1 and 2.2.

3. Dynamic programming principle

The goal of this section is to obtain a dynamic programming principle for
the SDG (5)-(6), describing the game value functions. We will resort to the
concepts of r-strategies and r-lower and r-upper values introduced by Flem-
ing and Souganidis [28], which combined with an appropriate discretization
procedure, yield the existence and uniqueness of viscosity solutions to the
HJBI equations (12) and (13) associated with the desired dynamic program-
ming principle.

3.1. Some preliminary results. We will now introduce further notation
and terminology that will be useful in the sequel. Let (t, x, a) ∈ [0, T ) ×
RN × S be fixed and for any given u(·) ∈ U(t, T ) and v(·) ∈ V(t, T ), define

γ(s, ω) = (u(s, ω), v(s, ω))

for every s ≥ t and ω ∈ Ωt,T . By definition of the control processes
u(·) ∈ U(t, T ) and v(·) ∈ V(t, T ), it follows that γ(·) is Gt,T -progressively
measurable. By standard results from stochastic differential equations the-
ory (see e.g. [3] for further details), it is known that the SDE (5) ad-
mits a unique solution X u,v

t,x,a(s) ∈ RN × S on the filtered probability space
(Ωt,T ,Gt,T ,Gt,T ,Pt,T ) for any fixed u(·) ∈ U(t, T ) and v(·) ∈ V(t, T ). More-
over, X u,v

t,x,a(·) =
(
Xu,v

t,x,a(·), µt,a(·)
)

satisfies

Xu,v
t,x,a(s) = Xu,v

t,x,a(t̂) +

∫ s

t̂
f(r,X u,v

t,x,a(r), γ(r)) dr

+

∫ s

t̂
σ(r,X u,v

t,x,a(r), γ(r)) dB
t(r) (15)

+

∫ s

t̂

∫
RK
0

h
(
r−,X u,v

t,x,a(r−), u(r−), v(r−), z
)
J̃ t(dr, dz) ,

µt,a(s) = µt,a(t̂) +

∫ s

t̂

∫
R
Γ(µt,a(r−), z) N

t(dr, dz) ,
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where t ≤ t̂ ≤ s ≤ T . Additionally, noticing that

Bt(s, π−1(ωt,t̂, ωt̂,T ))−B t̂(s, π−1(ωt,t̂, ωt̂,T )) = ωt̂,T
1 (s)

J t̂(A2, π
−1(ωt,t̂, ωt̂,T )) = ωt̂,T

2 (A2) (16)

N t̂(A3, π
−1(ωt,t̂, ωt̂,T )) = ωt̂,T

3 (A3)

we obtain that for Pt,t̂-a.e. ωt,t̂ ∈ Ωt,t̂ the processes on the left hand side
of (16) coincide with the Brownian motion B t̂(s, ωt̂,T ) and the Poisson ran-
dom measures J t̂(A2, ω

t̂,T ) and N t̂(A3, ω
t̂,T ) on the filtered probability space

(Ωt̂,T ,Gt̂,T ,Gt̂,T ,Pt̂,T ). Define also

γ̃(s, ωt,t̂, ωt̂,T ) = γ(s, π−1(ωt,t̂, ωt̂,T ))

X̃(s, ωt,t̂, ωt̂,T ) = Xu,v
t,x,a(s, π

−1(ωt,t̂, ωt̂,T ))

µ̃(s, ωt,t̂, ωt̂,T ) = µt,a(s, π
−1(ωt,t̂, ωt̂,T )) ,

and

X̃ u,v
t,x,a(s, ω

t,t̂, ωt̂,T ) =
(
X̃(s, ωt,t̂, ωt̂,T ), µ̃(s, ωt,t̂, ωt̂,T )

)
.

Note that the identity

X̃(s, ωt,t̂, ·) = Xu,v
t,x,a(t̂) +

∫ s

t̂
f(r, X̃ (r, ωt,t̂, ·), γ̃(r, ωt,t̂, ·)) dr

+

∫ s

t̂
σ(r, X̃ (r, ωt,t̂, ·), γ̃(r, ωt,t̂, ·)) dB t̂(r) (17)

+

∫ s

t̂

∫
RK
0

h
(
r−, X̃ (r−, ω

t,t̂, ·), u(r−), v(r−), z
)
J̃ t(dr, dz) ,

µ̃(s, ωt,t̂, ·) = µt,a(t̂) +

∫ s

t̂

∫
R
Γ
(
µ̃(r−, ω

t,t̂, ·), z
)
N t(dr, dz) ,

holds Pt,t̂-a.e. ωt,t̂ ∈ Ωt,t̂ as a consequence of (15) and the comments follow-
ing it. Moreover, by uniqueness of solutions of (5), we get that the paths of
X̃ (s, ωt,t̂, ·) =

(
X̃(s, ωt,t̂, ·), µ̃(s, ωt,t̂, ·)

)
, s ∈ [t̂, T ], coincide with those of (5)

with initial condition (t̂, Xu,v
t,x,a(t̂), µt,a(t̂)) and controls (u(·, ωt,t̂), v(·, ωt,t̂))

for Pt,t̂-a.e ωt,t̂ ∈ Ωt,t̂. From this point onwards we will also use the nota-
tion X u,v

t,x,a(·) =
(
Xu,v

t,x,a(·), µt,a(·)
)

to refer to the stochastic process X̃ (·) =(
X̃(·), µ̃(·)

)
on the filtered probability space (Ωt̂,T ,Gt̂,T ,Gt̂,T ,Pt̂,T ).

The observations above, together with the fact that

EPt,t̂⊗Pt̂,T

[
ϕ
(
ωt,t̂, ωt̂,T

)
|Gt,t̂

]
= EPt̂,T

[
ϕ
(
ωt,t̂, ωt̂,T

)]
Pt,t̂ − a.s. (18)

for any bounded and measurable function ϕ : Ωt,T → R, yield the following
technical lemma.

Lemma 3.1. Suppose Assumptions (A1)-(A5) hold and let X u,v
t,x,a(·) denote

the solution of (5) with initial condition (t, x, a) ∈ [0, T ) × RN × S and
controls (u(·), v(·)) ∈ U(t, T )×V(t, T ). For any bounded continuous function
ϕ and any deterministic s ∈ [t̂, T ] we have that
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EPt,T

[
ϕ
(
X u,v
t,x,a(s), γ(s, ω)

)
|Gt,t̂

]
=

EPt̂,T

[
ϕ

(
X u,v

t̂,Xu,v
t,x,a(t̂)

(s), γ̃(s, ωt,t̂, ωt̂,T )

)]
holds Pt,t̂ almost surely.

The next lemma concerns regularity of the SDG value functions V − and
V + defined in (7) and (8).

Lemma 3.2. Let Assumptions (A1)-(A5) hold. Then, we have that:

i) For every u(·) ∈ U(t, T ), v(·) ∈ V(t, T ), α ∈ A(t, T ), and β ∈
B(t, T ), the payoff functionals

(t, x, a) → J(·, ·, ·;α[v(·)], v(·)) and (t, x, a) → J(·, ·, ·;u(·), β[u(·)]) (19)

are bounded and Lipschitz continuous with respect to x, uniformly in
t, a, α, v(·), β, u(·).

ii) the SDG value functions V − and V + in (7) and (8) are bounded and
Lipschitz continuous with respect to x, uniformly in t, a.

Proof. Boundedness of the functionals in (19), as well as Lipschitz continuity
with respect to x, follow from Assumptions (A1)-(A5) combined with stan-
dard results from stochastic differential equations such as moment estimates
and Gronwall’s inequality (see e.g. [3, 52]). □

The lemma below establishes a regularity property of the solutions of (5)
that will be useful in the sequel.

Lemma 3.3. Suppose Assumptions (A1)-(A5) hold and let X u,v
t,x,a(·) be the

solution of (5) for a pair of admissible controls (u(·), v(·)) ∈ U(t, T )×V(t, T ).
Then, X u,v

t,x,a(·) is stochastically continuous, i.e.

lim
r→s

Pt,T

(
dN,S

(
X u,v
t,x,a(r),X

u,v
t,x,a(s)

)
> ϵ
)
= 0

for every ϵ > 0 and s ∈ [t, T ].

Proof. Let s∗, s ∈ [t, T ]. Using (5) we obtain

Xu,v
t,x,a(s

∗)−Xu,v
t,x,a(s) =

∫ s∗

s
f
(
r,X u,v

t,x,a(r), u(r), v(r)
)
dr

+

∫ s∗

s
σ
(
r,X u,v

t,x,a(r), u(r), v(r)
)
dBt(r)

+

∫ s∗

s

∫
RK
0

h
(
r,X u,v

t,x,a(r), u(r), v(r), z
)
J t(dr, dz)

and

µt,a(s
∗)− µt,a(s) =

∫ s∗

s

∫
R
Γ(µt,a(r), z) N

t(dr, dz)



14 M. FERREIRA, D. PINHEIRO, AND S. PINHEIRO

By the Itô-Lévy isometry and the boundedness of our data, we have that

EPt,T

[
|Xu,v

t,x,a(s
∗)−Xu,v

t,x,a(s)|2 + |µt,a(s∗)− µt,a(s)|2
]

≤ 3EPt,T

[ ∣∣∣∣∣
∫ s∗

s
f(r,X u,v

t,x,a(r), u(r), v(r)) dr

∣∣∣∣∣
2 ]

+3

∫ s∗

s
EPt,T

[
σ2(r,X u,v

t,x,a(r), u(r), v(r))

]
dr

+3

∫ s∗

s

∫
RK
0

EPt,T

[
h2(r,X u,v

t,x,a(r), u(r), v(r))

]
ν(dz) dr (20)

+

∫ s∗

s

∫
R
EPt,T

[
Γ2 (µt,a(r), z)

]
dzdr

≤ K
(
|s∗ − s|+ |s∗ − s|2

)
.

Therefore, by Chebyshev’s inequality, we get

Pt,T

(
dN,S

(
X u,v
t,x,a(s

∗),X u,v
t,x,a(s)

)
> ϵ
)
≤ K

ϵ2
(
|s− s∗|+ |s− s∗|2

)
,

establishing the stochastic continuity of X u,v
t,x,a(·). □

We close this section with a first-moment estimate for Markov-switching
jump-diffusions such as considered herein. This result belongs to a class
of well-known estimates within the theory of SDEs (see, for instance, [45,
Corollary 2.4.6] for difusive SDEs or [47, Theorem 3.3.23] for the case of
Markov-switching diffusions, both of which stated and proved under a linear
growth condition). Since we are not aware of any reference in the literature
with a version of this estimate with the features we require here (i.e., con-
taining both Markov-switching and jump-diffusion components), we state
and prove the relevant first-moment estimate below.

Lemma 3.4. Suppose Assumptions (A1)-(A5) hold and let X u,v
t,x,a(·) =

(
Xu,v

t,x,a(·), µt,a(·)
)

be the solution of (5) for a pair of admissible controls (u(·), v(·)) ∈ U(t, T )×
V(t, T ). Then, there exists a positive constant C such that

EPt,T

[
dN,S

(
X u,v
t,x,a(t

∗), (x, a)
) ]

≤ C (t∗ − t)1/2 .

Proof. Without loss of generality we may assume |t∗ − t| ≤ 1. Appealing to
inequality (20) from the proof of Lemma 3.3 (with s = t and s∗ = t∗), we
obtain that there exists a positive constant K such that

EPt,T

[
|Xu,v

t,x,a(t
∗)− x|2 + |µt,a(t∗)− a|2

]
≤ K

(
|t∗ − t|+ |t∗ − t|2

)
.

Since |t∗ − t| ≤ 1, the result then follows from combining the estimate above
with the Cauchy-Schwarz inequality. □

In the next section we will prove certain sub- and super-optimal dynamic
programming principles, key intermediate steps for the proof of Theorem 2.1.
For that purpose, we will resort to a special class of restrictive strategies and
the corresponding value functions, following a method originally developed
by Fleming and Souganidis [28].
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3.2. Sub-optimal and super-optimal dynamic programming princi-
ples. Fleming and Souganidis, in their seminal paper [28], have introduced
the concept of restrictive strategies, r-strategies for short, in order to over-
come the measurability issues that hamper a generalization of the method
for the proof of the deterministic dynamic programming principle to the
stochastic setup.

Before proceeding to the definition of r-strategies, we observe that given
a sequence of times 0 ≤ t̄ ≤ t ≤ T and a Player I admissible control
u(·) ∈ U(t̄, T ), for Pt̄,t a.e. path ωt̄,t ∈ Ωt̄,t, we are able to define a Player I
admissible control in U(t, T ), which we will denote as u(ωt̄,t)(·), through the
relation

u(ωt̄,t)(s, ωt,T ) = u(s, ω) ,

where ω = π−1(ωt̄,t, ωt,T ) and π is the map defined in (4). Recalling that
the preimage ω = π−1(ωt̄,t, ωt,T ) ∈ Ωt,T corresponds to the concatenation of
ωt̄,t ∈ Ωt,t̂ with ωt,T ∈ Ωt̂,T , we note that the process detailed above defines
the admissible control u(ωt̄,t)(·) ∈ U(t, T ) over the time interval [t, T ] as
the restriction of the admissible control u(·) ∈ U(t̄, T ) over the larger time
interval [t̄, T ] when the section of the path ωt̄,t corresponding to the time
interval [t̄, t] is fixed.

Given the SDG determined by (5) and (6), we say that a r-strategy β
for Player II on [t, T ] is an admissible strategy with the following addi-
tional property: for every t̄ < t < t̂ and u(·) ∈ U(t̄, T ) the map (s, ω) →
β[u(ωt̄,t)(·)](s, ωt,T ) is (B([t, t̂])⊗Gt,t̂,B(U))-measurable, where B(X) stands
for the Borel σ-algebra of a set X. The set of r-strategies for Player II is
denoted by Br(t, T ). We define r-strategies for Player I in a similar fashion
and denote the set of such strategies by Ar(t, T ).
r-lower and r-upper value functions The r-lower and r-upper value func-
tions of the SDG determined by (5) and (6) with initial data (t, x, a) are given
by

V −
r (t, x, a) = inf

β∈Br(t,T )
sup

u(·)∈U(t,T )
J(t, x, a;u(·), β[u(·)])

and
V +
r (t, x, a) = sup

α∈Ar(t,T )
inf

v(·)∈V(t,T )
J(t, x, a;α[v(·)], v(·)) .

The result below follows from Lemma 3.2 and the definitions of admissible
strategies and r-strategies.

Corollary 3.5. Suppose Assumptions (A1)-(A5) hold. We have that:
(a) the r-value functions V −

r and V +
r of the SDG determined by (5) and

(6) are bounded and Lipschitz continuous in x, uniformly in t, a.
(b) for every (t, x, a) ∈ [0, T ]× RN × S,

V −(t, x, a) ≤ V −
r (t, x, a) and V +

r (t, x, a) ≤ V +(t, x, a) ,

where V − and V + are, respectively, the SDG lower and upper value
functions defined in (7) and (8).

Even though the r-value functions do not satisfy a full dynamic program-
ming principle, it is still possible to obtain sub- and super-optimal dynamic
programming principles for such functions.
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Proposition 3.6 (Sub-optimal and super-optimal dynamic programming
principle). Assume that conditions (A1)-(A5) hold. For any (t, x, a) ∈ [0, T )×
RN × S and every t̂ ∈ [t, T ), we have that:

V −
r (t, x, a) ≤ inf

β∈Br(t,T )
sup

u(·)∈U(t,T )
EPt,T

[
V −
r

(
t̂,X u,v

t,x,a(t̂)
)

(21)

+

∫ t̂

t
L(s,X u,v

t,x,a(s), u(s), β[u(·)](s)) ds

]
,

where X u,v
t,x,a(·) is the solution of (5) with v(·) = β[u(·)](·) ∈ V(t, T ) for

u(·) ∈ U(t, T ), and

V +
r (t, x, a) ≥ sup

α∈Ar(t,T )
inf

v(·)∈V(t,T )
EPt,T

[
V +
r (t̂,X u,v

t,x,a(t̂)) (22)

+

∫ t̂

t
L(s,X u,v

t,x,a(s), α[v(·)](s), v(s)) ds

]
,

where X u,v
t,x,a(·) is the solution of (5) with u(·) = α[v(·)](·) ∈ U(t, T ) for

v(·) ∈ V(t, T ).

Proof. We will prove identity (21). The proof of (22) is analogous. In order
to simplify notation, the superscripts u, v will be dropped from the notation
for the solution X u,v

t,x,a(·).
Let (t, x, a) ∈ [0, T ) × RN × S be fixed and let t̂ ∈ [t, T ) be arbitrary.

Denote the right-hand side of (21) by V (t, x, a). Observe that for any ϵ > 0
there exists βϵ(·) ∈ Br(t, T ) such that

V (t, x, a) ≥ EPt,T

[
V −
r (t̂,Xt,x,a(t̂))

+

∫ t̂

t
L(s,Xt,x,a(s), βϵ[u(·)](s)) ds

]
− ϵ (23)

for every u(·) ∈ U(t, T ). Moreover, for each (y, b) ∈ RN × S, we have that

V −
r (t̂, y, b) = inf

β∈Br(t̂,T )
sup

u(·)∈U(t̂,T )

J(t̂, y, b;u(·), β[u(·)]) . (24)

Therefore, there exists β(y,b) ∈ Br(t̂, T ) such that

V −
r (t̂, y, b) ≥ sup

u(·)∈U(t̂,T )

J(t̂, y, b;u(·), β(y,b)[u(·)])− ϵ . (25)

Let {Di}i∈N be a Borel partition of RN × S with diameter diam (Di) < δ
(with respect to the metric dN,S(·, ·) defined in (2)) and pick (yi, bi) ∈ Di

for each i ∈ N. Using item a) of Lemma 3.2 and Corollary 3.5, the diameter
δ > 0 can be picked sufficiently small so that for any (yi, bi) ∈ Di, we have
that ∣∣J(t̂, y, b;u(·), β[u(·)])− J(t̂, yi, bi;u(·), β[u(·)])

∣∣ < ϵ (26)

for every u(·) ∈ U(t̂, T ) and β ∈ B(t̂, T ). We also have∣∣V −
r (t̂, y, b)− V −

r (t̂, yi, bi)
∣∣ < ϵ .
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For each t̂ ∈ [t, T ] and u(·) ∈ U(t, T ), define

β̃[u(·)](s, ω) =

{
βϵ[u(·)](s, ω) if s ∈ [t, t̂)∑

i∈N 1Di(Xt,x,a(t̂))β(yi,bi)[u(ω
t,t̂)(·)](s, ωt̄,T ) if s ∈ [t̂, T ]

,

where ω = (ωt,t̂, ωt̄,T ) ∈ Ωt,t̂ ×Ωt̂,T and u(ωt,t̂)(·) ∈ U(t̂, T ) is the admissible
control introduced just before the definition of the r-value functions. Note
that β̃ is, by construction, an r-strategy i.e. β̃ ∈ Br(t, T ).

Moreover, whenever Xt,x,a(t̂) ∈ Di for some i ∈ N and u(·) ∈ U(t, T ),
identity (25) and inequality (26) yield

V −
r (t̂, yi, bi) ≥ J(t̂, yi, bi;u(ω

t,t̂)(·), β(yi,bi)[u(ω
t,t̂)(·)])− ϵ (27)

≥ J(t̂,Xt,x,a(t̂);u(ω
t,t̂)(·), β(yi,bi)[u(ω

t,t̂)(·)])− 2ϵ

for all u(·) ∈ U(t, T ) and Pt,t̂-a.e. ωt,t̂ ∈ Ωt,t̂.
Using the definition of the payoff functional in (6), we get

J(t, x, a;u(·), β̃[u(·)]) =

= EPt,T

[∫ T

t
L
(
s,Xt,x,a(s), u(s), β̃[u(·)](s)

)
ds+Ψ(Xt,x,a(T ))

]

= EPt,T

[∫ t̂

t
L
(
s,Xt,x,a(s), u(s), β̃[u(·)](s)

)
ds

+
∑
i∈N

1Di(Xt,x,a(t̂))

(∫ T

t̂
L
(
s,Xt,x,a(s), u(s), β̃[u(·)](s)

)
ds

+Ψ(Xt,x,a(T ))

)]
.

From the definition of the r-strategy β̃, we get

J(t, x, a;u(·), β̃[u(·)]) = EPt,T

[∫ t̂

t
L (s,Xt,x,a(s), u(s), βϵ[u(·)](s)) ds

+
∑
i∈N

1Di(Xt,x,a(t̂))EPt,T

[ ∫ T

t̂
L
(
s,Xt,x,a(s), u(s), β̃[u(·)](s)

)
ds

+Ψ(Xt,x,a(T )) |Gt,t̂

]
.

Combining the previous identity with Lemma 3.1, we obtain

J(t, x, a;u(·), β̃[u(·)]) = EPt,T

[∫ t̂

t
L (s,Xt,x,a(s), u(s), βϵ[u(·)](s)) ds

+
∑
i∈N

1Di(Xt,x,a(t̂))J
(
t̂,Xt,x,a(t̂);u(ω

t,t̂)(·), β(yi,bi)[u(ω
t,t̂)(·)]

)]
.



18 M. FERREIRA, D. PINHEIRO, AND S. PINHEIRO

Using inequalities (27) and (26), we get

J(t, x, a;u(·), β̃[u(·)]) ≤ EPt,T

[∫ t̂

t
L (s,Xt,x,a(s), u(s), βϵ[u(·)](s)) ds

+
∑
i∈N

1Di(Xt,x,a(t̂))V
−
r (t̂, yi, bi)

]
+ 2ϵ

≤ EPt,T

[∫ t̂

t
L (s,Xt,x,a(s), u(s), βϵ[u(·)](s)) ds

+V −
r (t̂,Xt,x,a(t̂))

]
+ 3ϵ .

Finally, from the previous inequality and (23), we get

J(t, x, a;u(·), β̃[u(·)]) ≤ V (t, x, a) + 4ϵ

for every u(·) ∈ U(t, T ). As a consequence, we conclude that

V −
r (t, x, a) ≤ V (t, x, a) + 4ϵ .

Letting ϵ go to zero completes the proof. □

The following Hölder continuity estimates for the r-value functions V −
r and

V +
r are obtained by combining Proposition 3.6 with the moment estimate of

Lemma 3.4.

Corollary 3.7. Suppose that conditions (A1)-(A5) hold. The r-value func-
tions V −

r and V +
r are ½-Hölder continuous in t, uniformly in x and a, that

is, there exist positive constants C1 and C2 such that

|V −
r (t, x, a)− V −

r (s, x, a)| ≤ C1(t− s)1/2

and

|V +
r (t, x, a)− V +

r (s, x, a)| ≤ C2(t− s)1/2

for every t, s ∈ [0, T ], x ∈ RN , and a ∈ S.

Proof. We will focus on establishing Hölder continuity of V −
r with respect to

t. The corresponding argument for V +
r is similar. To simplify notation, we

will drop the superscripts u, v from the solution X u,v
t,x,a(·) =

(
Xu,v

t,x,a(·), µt,a(·)
)
,

with the specific controls used at each instant being clear from the context.
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Without loss of generality, suppose that t1, t2 ∈ [0, T ] are such that t1 < t2
and |t2 − t1| < 1. Using (21) and rearranging terms, we get

V −
r (t1, x, a)− V −

r (t2, x, a)

≤ inf
β∈Br(t1,T )

sup
u(·)∈U(t1,T )

EPt1,T

[∫ t2

t1

L(s,Xt1,x,a(s), u(s), β[u(·)](s)) ds

+ V −
r (t2,Xt1,x,a(t2))− V −

r (t2, x, a)

]

= inf
β∈Br(t1,T )

sup
u(·)∈U(t1,T )

EPt1,T

[∫ t2

t1

L(s,Xt1,x,a(s), u(s), β[u(·)](s)) ds

+V −
r (t2, Xt1,x,a(t2), µt1,a(t2))− V −

r (t2, x, µt1,a(t2))

+V −
r (t2, x, µt1,a(t2))− V −

r (t2, x, a)

]
(28)

Boundedness of L (from assumption (A3)), uniform Lipschitz continuity of
V −
r in x (from Corollary 3.5), and boundedness of V −

r (also from Corollary
3.5) combined with the finiteness of the state space S, yield the existence of
positive constants C1, C2 and C3 such that the following inequalities hold:∫ t2

t1

L(s,Xt1,x,a(s), u(s), β[u(·)](s)) ds ≤ C1|t2 − t1|

V −
r (t2, Xt1,x,a(t2), µt1,a(t2))− V −

r (t2, x, µt1,a(t2)) ≤ C2|Xt1,x,a(t2)− x|
(29)

V −
r (t2, x, µt1,a(t2))− V −

r (t2, x, a) ≤ C3dN,S ((x, µt1,a(t2)), (x, a)) .

Observing that

|Xt1,x,a(t2)− x| ≤ dN,S (Xt1,x,a(t2), (x, a))

dN,S ((x, µt1,a(t2)), (x, a)) ≤ dN,S (Xt1,x,a(t2), (x, a)) , (30)

and combining the three inequalities in (29) with inequality (28), we obtain
that there exists a positive constant C4 such that

V −
r (t1, x, a)− V −

r (t2, x, a) ≤ C4

(
|t2 − t1|+ EPt1,T

[dN,S (Xt1,x,a(t2), (x, a))]
)

(31)
The first-moment estimate of Lemma 3.4 guarantees the existence of a pos-
itive constant C5 such that

EPt1,T
[dN,S (Xt1,x,a(t2), (x, a))] ≤ C5|t2 − t1|1/2 . (32)

Putting together inequalities (31) and (32), we conclude that

V −
r (t1, x, a)− V −

r (t2, x, a) ≤ K1|t2 − t1|1/2 (33)

for some positive constant K1, thus completing the first part of the proof.
Let us now prove the remaining inequality. Given u(·) ∈ U(t2, T ), define

u∗(·) ∈ U(t1, T ) as

u∗(s, ω) =

{
u(t2, ω

t1,t2) if s ∈ [t1, t2]

u(s, ωt1,t2) if s ∈ (t2, T ]
,
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and given β∗ ∈ Br(t1, T ), define β ∈ Br(t2, T ) as

β[u(·)](s, ωt2,T ) = β∗[u∗(·)](s, π−1(ωt1,t2 , ωt2,T )) .

We now observe that for β∗ ∈ Br(t1, T ), we have

J(t1, x, a;u
∗(·), β∗[u∗(·)]) = EPt1,T

[∫ T

t1

L (s,Xt1,x,a(s), u
∗(s), β∗[u∗(·)](s)) ds

+Ψ(Xt1,x,a(T ))

]

= EPt1,T

[∫ t2

t1

L (s,Xt1,x,a(s), u
∗(s), β∗[u∗(·)](s)) ds

+J(t2,Xt1,x,a(t2);u(·), β[u(·)])

]

= EPt1,T

[∫ t2

t1

L (s,Xt1,x,a(s), u
∗(s), β∗[u∗(·)](s)) ds

+ J(t2, Xt1,x,a(t2), µt1,a(t2);u(·), β[u(·)])− J(t2, x, µt1,a(t2);u(·), β[u(·)])
+ J(t2, x, µt1,a(t2);u(·), β[u(·)])− J(t2, x, a;u(·), β[u(·)])

+ J(t2, x, a;u(·), β[u(·)])

]

Boundedness of L (ensured by assumption (A3)), Lipshitz continuity of the
map x 7→ J(t, x, a;u(·), v(·)) (guaranteed by Lemma 3.2), and boundedness
of J(t, x, a;u(·), v(·)) (also from Lemma 3.2) combined with the finiteness of
the state space S, yield the existence of positive constants C6, C7 and C8

such that the following inequalities hold:∫ t2

t1

L(s,Xt1,x,a(s), u
∗(s), β∗[u∗(·)](s)) ds ≥ −C6|t2 − t1|

J(t2, Xt1,x,a(t2), µt1,a(t2);u(·), β[u(·)])
− J(t2, x, µt1,a(t2);u(·), β[u(·)]) ≥ −C7|Xt1,x,a(t2)− x|

J(t2, x, µt1,a(t2);u(·), β[u(·)])
− J(t2, x, a;u(·), β[u(·)]) ≥ −C8dN,S ((x, µt1,a(t2)), (x, a)) .

Combining the three inequalities above with those in (30), we obtain that
there exists a positive constant C9 such that

J(t1, x, a;u
∗(·), β∗[u∗(·)])

≥ −C9

(
|t2 − t1|+ EPt1,T

[dN,S (Xt1,x,a(t2), (x, a))]
)

+J(t2, x, a;u(·), β[u(·)]) .
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As a consequence, we have that

sup
u(·)∈U(t1,T )

J(t1, x, a;u(·), β∗[u(·)])

≥ −C9

(
|t2 − t1|+ EPt1,T

[dN,S (Xt1,x,a(t2), (x, a))]
)

+ sup
u(·)∈U(t2,T )

J(t2, x, a;u(·), β[u(·)])

≥ −C9

(
|t2 − t1|+ EPt1,T

[dN,S (Xt1,x,a(t2), (x, a))]
)
+ V −

r (t2, x, a) .

Resorting once more to the first-moment estimate (32), and using the previ-
ous inequality, we obtain that a positive constant K2 exists such that

V −
r (t1, x, a)− V −

r (t2, x, a) ≥ −K2|t2 − t1|1/2 . (34)

The result now follows from combining the estimates (33) and (34). □

3.3. Hamilton-Jacobi-Bellman-Isaacs equation and viscosity solu-
tions. Before proceeding to prove that the r-value functions V −

r and V +
r are,

respectively, viscosity subsolutions and supersolutions of the HJBI equations
(12) and (13), we will derive such equations, under a smoothness assumption,
from the dynamic programming principle of Theorem 2.1.

Theorem 3.8. Let Assumptions (A1)-(A5) hold. Suppose that the varia-
tional problems (9) and (10) in the statement of Theorem 2.1 have solutions
V − and V + such that V ±(·, ·, a) ∈ C1,2([0, T )×RN ) for every a ∈ S. Then,
V − and V + satisfy the HJBI equations (12) and (13), respectively.

Proof. We only prove the part of the statement concerning the lower value
function V −, the proof for V + being similar. Let (t, x, a) ∈ [0, T )×RN×S be
fixed and denote by X u,v

t,x,a(·) = (Xu,v
t,x,a(·), µta(·)) the state variable trajectory

associated with the controls u(·) ∈ U(t, T ) and v(·) ∈ V(t, T ).
For arbitrary controls u(·) ∈ U(t, T ) and v(·) ∈ V(t, T ), taking t̂ ∈ [t, T )

and using Itô-Lévy’s formula, we obtain

EPt,T

[
V −(t̂,X u,v

t,x,a(t̂))− V −(t, x, a)
]

t̂− t
=

1

t̂− t
EPt,T

[∫ t̂

t
A1(s,X u,v

t,x,a(s), u(s), v(s))

+H2(s,X u,v
t,x,a(s), u(s), v(s))

[
V −(t, x, a)

]
ds

]
, (35)

where the function A1 is given by

A1(t, x, a, u, v) = V −
t (t, x, a) + f(t, x, a, u, v) · V −

x (t, x, a)

+
1

2
tr
(
σ(t, x, a, u, v)V −

xx(t, x, a)σ(t, x, a, u, v)
)

and H2 is as given in the statement of Theorem 2.2.
Under the assumption that V − satisfies the dynamic programming prin-

ciple identity (9), for every ε > 0 there exists βε[·] ∈ B(t, T ) such that for
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v(·) = βε[u(·)](·) we have

−
EPt,T

[
V −(t̂,X u,v

t,x,a(t̂))− V −(t, x, a)
]

t̂− t
≥

1

t̂− t
EPt,T

[∫ t̂

t
L(s,X u,v

t,x,a(s), u(s), βε[u(·)](s)) ds

]
− ε

for every u(·) ∈ U(t, T ). Taking u(·) ∈ U(t, T ) to be constant and equal
to u ∈ U for every s ∈ [t, T ] and combining identity (35) with the last
inequality, we obtain that for every ε > 0 there exists βε[·] ∈ B(t, T ) such
that for v(·) = βε[u](·) we have

1

t̂− t
EPt,T

[∫ t̂

t
A1(s,X u,v

t,x,a(s), u, βε[u](s))

+H2(s,X u,v
t,x,a(s), u, βε[u](s))

[
V −(t, x, a)

]
+ L(s,X u,v

t,x,a(s), u, βε[u](s)) ds

]
≤ ε (36)

for every u ∈ U .
Letting t̂ ↓ t in (36), we obtain that for every ε > 0 there exists βε[·] ∈

B(t, T ) such that

V −
t (t, x, a) +H1

(
t, x, a, u, βε[u], V

−
x (t, x, a), V −

xx(t, x, a)
)

+H2 (t, x, a, u, βε[u])
[
V −(t, x, a)

]
≤ ε

holds for every u ∈ U , where H1 is as given in the statement of Theorem 2.2.
As a consequence, one obtains that

V −
t (t, x, a) + min

v∈V

{
H1

(
t, x, a, u, v, V −

x (t, x, a), V −
xx(t, x, a)

)
H2 (t, x, a, u, v)

[
V −(t, x, a)

]}
≤ ε

for every u ∈ U . Taking the maximum over u ∈ U , the previous inequality
implies that

V −
t (t, x, a) +H− (t, x, a, V −(t, ·, ·), V −

x (t, x, a), V −
xx(t, x, a)

)
≤ 0 .

On the other hand, for any ε > 0 and any t̂ ∈ (t, T ) for which t̂− t is small
enough, there exists uε(·) ∈ U(t, T ) such that

V −(t, x, a)− ε(t̂− t) ≤ EPt,T

[
V −

(
t̂,X uε,ṽ

t,x,a(t̂)
)

+

∫ t̂

t
L(s,X uε,ṽ

t,x,a(s), uε(s), β[uε(·)](s)) ds

]
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for every β[·] ∈ B(t, T ), where ṽ stands for the control process ṽ(·) =
β[uϵ(·)](·). Isolating ε in the inequality above, we get

−ε ≤ 1

t̂− t
EPt,T

[
V −

(
t̂,X uε,ṽ

t,x,a(t̂)
)
− V −(t, x, a)

+

∫ t̂

t
L(s,X uε,ṽ

t,x,a(s), uε(s), β[uε(·)](s)) ds

]
,

which, when combined with identity (35), ensures that

−ε ≤ 1

t̂− t
EPt,T

[∫ t̂

t
A1(s,X uε,ṽ

t,x,a(s), uε(s), β[uε(·)](s))

+H2(s,X uε,ṽ
t,x,a(s), uε(s), β[uε(·)](s))

[
V −(t, x, a)

]
+ L(s,X uε,ṽ

t,x,a(s), uε(s), β[uε(·)](s)) ds

]
holds for every β[·] ∈ B(t, T ).

Letting t̂ ↓ t in (37) once again, we obtain that for every ε > 0 there exists
uε(·) ∈ U(t, T ) such that

−ε ≤ V −
t (t, x, a) +H1

(
t, x, a, uε(t), β[uε(·)](t), V −

x (t, x, a), V −
xx(t, x, a)

)
+H2 (t, x, a, uε(t), β[uε(·)](t))

[
V −(t, x, a)

]
for every β[·] ∈ B(t, T ). Hence, we get that

−ε ≤ V −
t (t, x, a) + min

v∈V

{
H1

(
t, x, a, uε(t), v, V

−
x (t, x, a), V −

xx(t, x, a)
)

+H2 (t, x, a, uε(t), v)
[
V −(t, x, a)

]}
.

Taking the maximum over u ∈ U , the previous inequality implies that

V −
t (t, x, a) +H− (t, x, a, V −(t, ·, ·), V −

x (t, x, a), V −
xx(t, x, a)

)
≥ 0 ,

completing the proof. □

Corollaries 3.5 and 3.7 guarantee continuity of the r-value functions V −
r

and V +
r with respect to t and x. The proposition below characterizes V −

r

and V +
r as, respectively, viscosity subsolution and supersolution of the HJBI

equations (12) and (13).

Proposition 3.9. Suppose that conditions (A1)-(A5) hold. The r-lower
value function V −

r (resp. r-upper value function V +
r ) of the SDG determined

by (5) and (6) is a viscosity subsolution (resp. supersolution) of (12) (resp.
(13)).

Proof. We restrict our attention to the assertion regarding the r-lower value
function V −

r , with the result concerning V +
r following in a similar fashion.

Let ϕ(·, ·, a) be smooth for every a ∈ S and suppose that V −
r − ϕ attains

a local maximum at (t0, x0, a0) ∈ [0, T )× RN × S. We must prove that

ϕt(t0, x0, a0) +H− (t0, x0, a0, ϕ(t0, x0, a0), ϕx(t0, x0, a0), ϕxx(t0, x0, a0)) ≥ 0 .
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Assume, for a contradiction, that the inequality above fails to hold. Then,
there exists λ > 0 such that

ϕt(t0, x0, a0) (37)
+H− (t0, x0, a0, ϕ(t0, x0, a0), ϕx(t0, x0, a0), ϕxx(t0, x0, a0)) ≤ −λ < 0 .

Define the map Λ1 : [0, T ]× RN × S × U × V → R as

Λ1(t, x, a, u, v) = ϕt(t, x, a) + f(t, x, a, u, v)ϕx(t, x, a)

+
1

2
tr (g(t, x, a, u, v)ϕxx(t, x, a)) + L(t, x, a, u, v) ,

where g(t, x, a, u, v) is as given in the statement of Theorem 3.8. From
inequality (37) one obtains that

max
u∈U

min
v∈V

{Λ1(t0, x0, a0, u, v) +H2(t0, x0, a0, u, v)[ϕ]} ≤ −λ < 0 . (38)

Hence, for each u ∈ U there exists v = v(u) ∈ V such that

Λ1(t0, x0, a0, u, v(u)) +H2(t0, x0, a0, u, v(u))[ϕ] ≤ −λ .
By uniform continuity of Λ1 +H2, we can conclude that

Λ1(t0, x0, a0, w, v(u)) +H2(t0, x0, a0, w, v(u))[ϕ] ≤ −3λ

4

for all w ∈ B(u, r) ∩ U and some r = r(u) > 0. By compactness of U , there
exist finitely many distinct elements u1, u2, . . . , un ∈ U , v1, v2, . . . , vn ∈ V
and numbers r1, . . . , rn > 0 such that

U ⊂
n⋃

i=1

B(ui, ri)

and
Λ1(t0, x0, a0, w, vi) +H2(t0, x0, a0, w, vi)[ϕ] ≤ −3λ

4
,

for all w ∈ B(ui, ri).
Define a map ψ : U → V by setting ψ(u) = vk whenever

u ∈ B(uk, rk) \
k−1⋃
i=1

B(ui, ri) , k = 1, . . . , n .

Thus, by definition of ψ it follows that

Λ1 (t0, x0, a0, u, ψ(u)) +H2 (t0, x0, a0, u, ψ(u)) [ϕ] ≤ −3λ

4
for all u ∈ U .

Relying once again on the uniform continuity of Λ, we obtain that there
exists R > 0 such that

Λ1 (t, x, a, u, ψ(u)) +H2 (t0, x0, a0, u, ψ(u)) [ϕ] ≤ −λ
2

(39)

for all u ∈ U and (t, x, a) ∈ [0, T )× RN × S such that

max{|t− t0|, dN,S((x, a), (x0, a0))} ≤ R

where dN,S(·, ·) denotes the metric on RN × S defined in (2). The map ψ
defined above determines a r-strategy β∗ for the second Player on [t0, T ] as
follows: for any u(·) ∈ U(t0, T ) and (s, ω) ∈ [t0, T ]× Ωω

t0,T
let

β∗[u(·)](s) = ψ(u(s)) .
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Since ψ is measurable (with respect to the Borel σ-algebras B(U) and B(V )),
we have β∗ ∈ Br(t0, T ).

Combining the sub-optimal dynamic programming principle (21) and the
choice of (t0, x0, a0) ∈ [0, T )×RN×S with the Itô-Lévy formula, for t̂ ∈ [t, T )
we have the inequality

sup
u(·)∈U(t0,T )

EPt0,T

[∫ t̂

t0

Λ1

(
s, X̃ u,v

t0,x0,a0
(s), u(s), β∗[u(·)](s)

)
+H2

(
s, X̃ u,v

t0,x0,a0
(s), u(s), β∗[u(·)](s)

) [
ϕ
(
s, X̃ u,v

t0,x0,a0
(s)
)]

ds

]
≥ 0 ,

where X̃ u,v
t0,x0,a0

(·) denotes the solution of (5) under the choice of controls
u(·) ∈ U(t0, T ) and v(·) = β∗[u(·)] ∈ V(t0, T ), and initial condition (x0, a0)
at time t0. Given ϵ > 0 arbitrary, we can always choose uϵ(·) ∈ U(t0, T ) such
that

EPt0,T

[∫ t̂

t0

Λ1

(
s, X̃ u,v

t0,x0,a0
(s), uϵ(s), β

∗[uϵ(·)](s)
)

+H2

(
s, X̃ u,v

t0,x0,a0
(s), uϵ(s), β

∗[uϵ(·)](s)
) [
ϕ
(
s, X̃ u,v

t0,x0,a0
(s)
)]

ds

]
≥ −ϵ(t̂− t0) . (40)

In what follows we will use the simplified notation

Λ̃(s) := Λ1

(
s, X̃ u,v

t0,x0,a0
(s), uϵ(s), β

∗[uϵ(·)](s)
)

+H2

(
s, X̃ u,v

t0,x0,a0
(s), uϵ(s), β

∗[uϵ(·)](s)
) [
ϕ
(
s, X̃ u,v

t0,x0,a0
(s)
)]

.

Let us denote by dt0,t̂∞ the metric

dt0,t̂∞ (γ1(·), γ2(·)) = sup
t∈[t0,t̂]

dN,S (γ1(t), γ2(t)) (41)

on the space of piecewise continuous paths γ1, γ2 : [t0, t̂] 7→ RN × S. Setting
Du,v

t0,x0,a0
as

Du,v
t0,x0,a0

= dt0,t̂∞

(
X̃ u,v
t0,x0,a0

(·), (x0, a0)
)
, (42)

where X̃ u,v
t0,x0,a0

(·) denotes the solution of (5) under the choice of controls
uϵ(·) ∈ U(t0, T ) and v(·) = β∗[uϵ(·)] ∈ V(t0, T ), and initial condition (x0, a0)
at time t0, we rewrite inequality (40) as

EPt0,T

[∫ t̂

t0

Λ̃(s)1Du,v
t0,x0,a0

>R ds

+

∫ t̂

t0

Λ̃(s)1Du,v
t0,x0,a0

≤R ds

]
≥ −ϵ(t̂− t0) .
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Combining the inequality above with (39), we obtain

EPt0,T

[∫ t̂

t0

Λ̃(s)1Du,v
t0,x0,a0

>R ds

]
(43)

−λ
2
(t̂− t0)Pt0,T

(
Du,v

t0,x0,a0
≤ R

)
≥ −ϵ(t̂− t0) .

Note also that applying Cauchy-Schwarz inequality to the space [t0, t̂]×Ωt0,T ,
we get

EPt0,T

[∫ t̂

t0

Λ̃(s)1Du,v
t0,x0,a0

>R ds

]

≤

(
EPt0,T

[∫ t̂

t0

1Du,v
t0,x0,a0

>R ds

])1/2

·

(
EPt0,T

[∫ t̂

t0

(Λ̃(s))2 ds

])1/2

≤ C(t̂− t0)
(
Pt0,T

(
Du,v

t0,x0,a0
> R

))1/2
, (44)

where C is a constant depending only on x0, a0, t0, T and the Lipschitz
constants from the functions listed in Assumption (A3). Combining (43)
and (44) yields

−C
(
Pt0,T

(
Du,v

t0,x0,a0
> R

))1/2
+
λ

2
Pt0,T

(
Du,v

t0,x0,a0
≤ R

)
≤ ϵ . (45)

For t̂− t0 sufficiently small, there exists a constant a > 0 such that

Pt0,T

(
Du,v

t0,x0,a0
> R

)
≤ Pt0,T

(
dt0,t̂∞ ((ζ1(·), ζ2(·)) , (0, 0)) > aR

)
, (46)

where (ζ1(·), ζ2(·)) is determined by

ζ1(t) =

∫ t

t0

σ
(
s, X̃ u,v

t0,x0,a0
(s), u1(s), β

∗[u1(·)](s)
)
dBt0(s)

+

∫ t

t0

∫
RK
0

h
(
s−, X̃ u,v

t0,x0,a0
(s−), u1(s−), β

∗[u1(·)](s−), z
)
J̃ t0(ds, dz) , t ≥ t0

ζ2(t) =

∫ t

t0

∫
R
Γ (µ̃t0,a0(s−), z)N

t0(ds, dz) , t ≥ t0 .

Finally, using Doob’s martingale inequality, we obtain that there exists
some positive constant K such that

Pt0,T

(
dt0,t̂∞ ((ζ1(·), ζ2(·)) , (0, 0)) > aR

)
≤

EPt0,T

[
|ζ1(t̂)|2 + |ζ2(t̂)|2

]
(aR)2

≤ K(t̂− t0)

(aR)2
, (47)

where |ζ2(t̂)| should be understood in terms of the embedding of S into Rn.
Combining (45) with (46) and (47), we obtain that

−C ′(t̂− t0)
1/2 +

λ

2
Pt0,T

(
Du,v

t0,x0,a0
≤ R

)
≤ ϵ
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for some positive constant C ′, contradicting the stochastic continuity of the
process X̃ u,v

t0,x0,a0
(·) established in Lemma 3.3. □

3.4. Time-discretization procedure. This section uses an approximation
procedure, based on a discretization of the time variable, to obtain viscosity
solutions for (12) and (13). This technique is originally due to Fleming and
Souganidis [28, 58, 59].

Let π = {0 = t0 < t1 < . . . < tm = T} be a partition of [0, T ] and denote
by

∥π∥ = max
1≤i≤m

(ti − ti−1)

the mesh of the partition π. We specify below the subsets of admissible
controls and admissible strategies associated with the partition π and of
relevance to the discretization procedure to be pursued here.
π-admissible control A π-admissible control u(·) for Player I on [t, T ] is an
admissible control with the following additional property: If i0 ∈ {0, . . . ,m−
1} is such that t ∈ [ti0 , ti0+1), then u(s) = u for s ∈ [t, ti0+1) with u ∈ U
and u(s) = utk for s ∈ [tk, tk+1) for k = i0 + 1, . . . ,m − 1 where utk is
Gt,tk -measurable. The set of π-admissible controls for Player I on [t, T ] will
be denoted by Uπ(t, T ). A π-admissible control v(·) for Player II on [t, T ] is
defined similarly and the set of all such controls will be denoted by Vπ(t, T ).
π-admissible strategy A π-admissible strategy α for Player I on [t, T ] is
an element of the set of admissible strategies A(t, T ) with the additional
properties that α[V(t, T )] ⊂ Uπ(t, T ), if t ∈ [ti0 , ti0+1) then for every v(·) ∈
V(t, T ) the resulting control α[v(·)]|[t,ti0+1) does not depend on v(·), and
if v(·) ≈ ṽ(·) on [t, tk], then α[v(·)](tk) = α[ṽ(·)](tk), Pt,T -a.s. for every
k ∈ {i0 + 1, . . . ,m}. The set of all π-admissible strategies for Player I on
[t, T ) will be denoted by Aπ(t, T ). A π-admissible strategy β for Player II
on [t, T ] is defined similarly and the set of all such strategies will be denoted
by Bπ(t, T ).

Let W̄ 1,∞(RN × S) denote the space of real-valued functions ϕ(x, a) such
that for every fixed a ∈ S, ϕ(·, a) ∈ W 1,∞(RN ). For every t ∈ [0, T ) and
t̂ ∈ (t, T ], define the operator F−

t,t̂
: W̄ 1,∞(RN × S) → W̄ 1,∞(RN × S) by

F−
t,t̂
ϕ(x, a) = sup

u∈U
inf

v(·)∈V(t,t̂)
EPt,T

[
ϕ(X u,v

t,x,a(t̂))

+

∫ t̂

t
L(s,X u,v

t,x,a(s), u, v(s)) ds

]
, (48)

where V(t, t̂) denotes the set of admissible controls for Player II on [t, t̂) and
X u,v
t,x,a(·) is the solution of (5) on [t, t̂) associated with the choice of admissible

controls u(·) ≡ u and v(·) ∈ V(t, t̂) having initial condition (x, a) at time t.
Similarly, define the operator F+

t,t̂
: W̄ 1,∞(RN × S) → W̄ 1,∞(RN × S) as

F+
t,t̂
ϕ(x, a) = inf

v∈V
sup

u(·)∈U(t,t̂)

EPt,T

[
ϕ(X u,v

t,x,a(t̂))

+

∫ t̂

t
L(s,X u,v

t,x,a(s), u(s), v) ds

]
,
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where U(t, t̂) denotes the set of admissible controls for Player I on [t, t̂) and
X u,v
t,x,a(·) is the solution of (5) on [t, t̂) associated with the choice of admissible

controls v(·) ≡ v and u(·) ∈ U(t, t̂) having initial condition (x, a) at time t.
Let w−

π : [0, T ]× RN × S → R be such that w−
π (T, x, a) = Ψ(x, a) and

w−
π (t, x, a) = F−

t,ti0+1

m∏
k=i0+2

F−
tk−1,tk

Ψ(x, a) (49)

whenever t ∈ [ti0 , ti0+1), and similarly, let w+
π : [0, T ]×RN ×S → R be such

that w+
π (T, x, a) = Ψ(x, a) and

w+
π (t, x, a) = F+

t,ti0+1

m∏
k=i0+2

F+
tk−1,tk

Ψ(x, a) (50)

whenever t ∈ [ti0 , ti0+1). Under Assumptions (A1)-(A5), w−
π and w+

π are
both well defined and admit the stochastic game characterization described
below.

Proposition 3.10. Let Assumptions (A1)-(A5) hold. For every (t, x, a) ∈
[0, T ]× RN × S, we have

w−
π (t, x, a) = inf

β∈B(t,T )
sup

u(·)∈Uπ(t,T )
J(t, x, a;u(·), β[u(·)]) (51)

and
w+
π (t, x, a) = sup

α∈A(t,T )
inf

v(·)∈Vπ(t,T )
J(t, x, a;α[v(·)], v(·)) . (52)

Proof. We will only prove identity (51). The proof of (52) is similar and we
skip it. In order to prove (51) we will establish that the following two claims
hold:

1) For every (t, x, a) ∈ [0, T ] × RN × S and every ϵ > 0, there exist
αϵ ∈ Aπ(t, T ) and βϵ ∈ Bπ(t, T ) such that

J (t, x, a;u(·), βϵ[u(·)])− ϵ ≤ w−
π (t, x, a) ≤ J (t, x, a;αϵ[v(·)], v(·)) + ϵ (53)

for all u(·) ∈ Uπ(t, T ) and v(·) ∈ Vπ(t, T ).
2) For any β ∈ B(t, T ), the pair of strategies αϵ ∈ Aπ(t, T ) and β ∈

B(t, T ) define controls uϵ(·) ∈ Uπ(t, T ) and vϵ(·) ∈ V(t, T ) for which

J(t, x, a;αϵ[v
ϵ(·)], vϵ(·)) = J(t, x, a;uϵ(·), β[uϵ(·)]) . (54)

The result follows from these two claims by observing that the left hand
side of (53) guarantees that

w−
π (t, x, a) ≥ inf

β∈B(t,T )
sup

u(·)∈Uπ(t,T )
J(t, x, a;u(·), β[u(·)]) ,

while combining the right hand side of (53) with (54) yields the reverse
inequality.

We will establish claim 2) first. For that purpose, it is enough that controls
uϵ(·) ∈ Uπ(t, T ) and vϵ(·) ∈ V(t, T ) are constructed in such a way that (54)
holds. Let t ∈ [ti0 , ti0+1] and v0 ∈ V . For simplicity of presentation, in what
follows we will assume that t = ti0 , with the case t ∈ (ti0 , ti0+1) following
similarly after appropriate adjustments are performed. Let ui0 = αϵ[v0] and
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vi0 = β[ui0 ] and define vk ∈ V(t, T ) and uk ∈ Uπ(t, T ), for k = i0 +1, . . . ,m,
through the recursive relation

vk = β[uk] and uk = αϵ[vk−1] .

It is enough to check that uk+1 ≈ uk and vk+1 ≈ vk on [ti0 , tk] for k =
i0 + 1, . . . ,m − 1. We resort to induction here. Start by noting that the
case k = i0 + 1 follows from the fact that αϵ is independent of the V -valued
control on [ti0 , ti0+1). Assume that uk ≈ uk−1 and vk ≈ vk−1 on [ti0 , tk−1].
Since uk+1 = αϵ[vk] and uk = αϵ[vk−1], using the definition of π-admissible
control, uk+1(tk−1) = uk(tk−1), which combined with the fact that uk+1 and
uk are constant on [tk−1, tk), yields uk+1 ≈ uk on [ti0 , tk]. Similarly, since
vk = β[uk] and vk+1 = β[uk+1], we get that vk+1 ≈ vk on [ti0 , tk].

We will now prove claim 1). For φ ∈ W̄ 1,∞(RN × S), (x, a) ∈ RN × S,
u ∈ U , t ∈ [0, T ] and t̂ ∈ (t, T ], define

ψ(x, a, u, t, t̂, φ) = inf
v(·)∈V(t,t̂)

EPt,T

[
φ(X u,v

t,x,a(t̂))

+

∫ t̂

t
L(s,X u,v

t,x,a(s), u, v(s)) ds

]
,

where X u,v
t,x,a(·) is the solution of (5) under the choice of the admissible con-

trols u(s) ≡ u and v(·) ∈ V(t, t̂) and initial condition (x, a) at time t. Using
Assumptions (A1)-(A5), we obtain that ψ(·, a, ·, t, t̂, φ) ∈W 1,∞(RN ×U) for
every a ∈ S, and

F−
t,t̂
φ(x, a) = sup

u∈U
ψ(x, a, u, t, t̂, φ) ,

where Ft,t̂ is the operator defined in (48).
If t ∈ [ti0 , ti0+1) for i0 ∈ {0, 1, . . . ,m− 1}, let

φm = Ψ(·, ·)
φj = F−

tj ,tj+1
φj+1 , j = i0 + 1, . . . ,m− 1

φi0 = F−
t,ti0+1

φi0+1 ,

to obtain that

φi0(x, a) = w−
π (t, x, a) .

We partition RN × S and U into Borel sets of diameter less than some
positive constant δ, to be determined below. Denote such partitions by {Ak :
k = 1, 2, . . .} and {Bℓ : ℓ = 1, 2, . . . , L}, respectively, and pick (xk, ak) ∈ Ak

and uℓ ∈ Bℓ for each k = 1, 2, . . . and ℓ = 1, 2, . . . , L. For any γ > 0
there exists δ small enough and u∗kj = uℓ(k,j) ∈ U , k = 1, 2, . . . and j =
i0 + 1, . . . ,m, such that

ψ(xk, ak, u
∗
kj , tj−1, tj , φj) > F−

tj−1,tj
φj(xk, ak)− γ . (55)
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In addition, we choose vℓkj(·) ∈ V (tj−1, tj) such that for u(·) identically equal
to uℓ ∈ U on the interval [tj−1, tj) we have

EPtj−1,T

[
φ(X ℓ

tj−1,xk,ak
(tj))

+

∫ tj

tj−1

L(s,X ℓ
tj−1,xk,ak

(s), uℓ, v
ℓ
kj(s)) ds

]
< ψ (xk, ak, uℓ, tj−1, tj , φj) + γ ,

with ti0 = t whenever j = i0 + 1. The notation X ℓ
tj−1,xk,ak

(·) stands for
the solution of (5) with initial condition (xk, ak) at time tj−1 subject to the
admissible controls u(·) ≡ uℓ and vℓkj(·).

We will now exhibit the strategies αϵ and βϵ in (53). Fix (t, x, a) ∈ [0, T )×
RN × S. For v(·) ∈ V(t, T ), we define

αϵ[v(·)](s) = I[t,ti0+1)(s)
∑
k

u∗ki0IAk
(x, a)

+
m−1∑

j=i0+1

I[tj ,tj+1)(s)
∑
k

u∗kjIAk
(X (tj)) ,

where X (·) is defined on each of the intervals [t, ti0+1] and [tj , tj+1], j =
i0+1, . . . ,m−1, as the solution of (5) with u(·) = αϵ[v(·)]. For u(·) ∈ U(t, T ),
we define

βϵ[u(·)](s) = I[t,t0+1)(s)
∑
k,ℓ

v̂ℓki0(s)IAk
(x, a)IBℓ

(u(s))

+

m−1∑
j=i0+1

∑
k,ℓ

I[tj ,tj+1)(s)v̂
ℓ
kj(s)IAk

(X (tj))IBℓ
(u(s)) ,

where X (·) is now defined on each of the intervals [t, ti0+1] and [tj , tj+1],
j = i0+1, . . . ,m−1, as the solution of (5) with v(·) = βϵ[u(·)], and v̂ℓkj(·, ω) =
vℓkj(·, ωtj ,T ) using the identification of Ωt,T with Ωt,tj × Ωtj ,T provided by
π(ω) = (ωt,tj , ωtj ,T ) discussed in Section 2.1.

Let J stand either for J(t, x, a;αϵ[v(·)], v(·)) or J(t, x, a;u(·), βϵ[u(·)]). For
any v(·) ∈ V(t, T ) and u(·) = αϵ[v(·)] or u(·) ∈ Uπ(t, T ) and v(·) = βϵ[u(·)],
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we have

w−
π (t, x, a)− J

= φi0(x, a)− EPt,T

[∫ T

t
L (s,X (s), u(s), v(s)) ds+ φm(X (T ))

]
=

m∑
j=i0+1

{
EPt,T

[φj−1 (X (tj−1))]− EPt,T
[φj(X (tj))]

}
−EPt,T

[∫ T

t
L (s,X (s), u(s), v(s)) ds

]
=

m∑
j=i0+1

{
EPt,T

[φj−1(X (tj−1))]− EPt,T

[
φj(X (tj))

+

∫ tj

tj−1

L (s,X (s), u(s), v(s)) ds
]}

= EPt,T

[
m∑

j=i0+1

{
φj−1(X (tj−1))− EPt,T

[
φj(X (tj)) (56)

+

∫ tj

tj−1

L (s,X (s), u(s), v(s)) ds
∣∣∣Ft,tj−1

]}]
.

Using the identity above, we obtain (53) by checking that the following two
statements hold Pt,T -a.s.:
(A) For any v(·) ∈ V(t, T ) and u(·) = αϵ[v(·)], we have that

φj−1(X (tj−1)) ≤ EPt,T

[
φj(X (tj))

+

∫ tj

tj−1

L (s,X (s), u(s), v(s)) ds
∣∣∣Ft,tj−1

]
+ ϵ(tj − tj−1) .

(B) For any u(·) ∈ Uπ(t, T ) and v(·) = βϵ[u(·)], we have that

EPt,T

[
φj(X (tj)) +

∫ tj

tj−1

L (s,X (s), u(s), v(s)) ds
∣∣∣Ft,tj−1

]
≤ φj−1(X (tj−1)) + ϵ(tj − tj−1) .

Using identity (18), the conditional expectations in the two statements (A)
and (B) above can be replaced by expectations with respect to Ptj−1,T . In
addition, taking t̂ = tj−1 in (17) we have that X (ωt,tj−1 , ·)(s), s ∈ [tj−1, T ], is
a solution of the stochastic differential equation (17) for Pt,tj−1-a.e. ωt,tj−1 ∈
Ωt,tj−1 . Finally, for X (tj−1) ∈ Ak and u(tj−1) ∈ Bℓ, there exists a positive
constant C (depending on the constants of assumption (A3)) such that the
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following inequalities hold simultaneously:

dN,S (X (tj−1), (xk, ak)) < Cδ ,

EPtj−1,T

[
dN,S

(
X (tj),X ℓ

tj−1,xk,ak
(tj)
)]

< Cδ ,

|φj−1(X (tj−1))− φj−1(xk, ak)| < Cδ , and (57)∣∣∣EPtj−1,T
[φj (X (tj))]− EPtj−1,T

[φj

(
X ℓ
tj−1,xk,ak

(tj)
)
]
∣∣∣ < Cδ .

Using (55), we obtain that for each positive integer k and each v(·) ∈
V(tj−1, T ), we have

φj−1(xk, ak) < EPtj−1,T

[
φj

(
X

u∗
kj ,v(·)

tj−1,xk,ak
(tj)

)
+

∫ tj

tj−1

L

(
s,X

u∗
kj ,v(·)

tj−1,xk,ak
(s), u∗kj , v(s)

)
ds
∣∣∣Ft,tj−1

]
+ γ . (58)

Recalling that any v(·) ∈ V(t, T ) determines an element of V(tj−1, T ) of the
form v(ωt,tj−1 , ·)|[tj−1,T ], and combining the estimates in (57) and (58) with
assumption (A3), we obtain that

φj−1 (X (tj−1)) ≤ φj−1(xk, ak) + Cδ

≤ EPtj−1,T

[
φj

(
X

u∗
kj ,v(·)

tj−1,xk,ak
(tj)

)
+

∫ tj

tj−1

L

(
s,X

u∗
kj ,v(·)

tj−1,xk
(s), u∗kj , v(s)

)
ds
∣∣∣Ft,tj−1

]
+ γ + Cδ

≤ EPt,T

[
φj (X (tj))

+

∫ tj

tj−1

L (s,X (s), u(s), v(s)) ds
∣∣∣Ft,tj−1

]
+γ + (2C + C ′(tj − tj−1))δ ,

where C ′ depends on the constants of assumption (A3). We conclude that
statement (A) holds as long as γ + (2C + C ′(tj − tj−1))δ < ϵ(tj − tj−1).

Statement (B) follows from a similar argument, completing the proof. □

The lemma below follows as a consequence of Assumptions (A1)-(A5) and
the characterizations of w−

π and w+
π obtained above.

Lemma 3.11. There exists a positive constant C, depending solely on As-
sumptions (A1)-(A5), such that the inequalities

|w±
π (t, x, a)| ≤ C , and

|w±
π (t, x, a)− w±

π (t̂, x̂, â)| ≤ C
(
dN,S ((x, a), (x̂, â)) + |t− t̂|1/2

)
hold for all (x, a), (x̂, â) ∈ RN × S and t, t̂ ∈ [0, T ].

Combining Lemma 3.11 with the Arzela-Ascoli Theorem, we obtain that
the families of functions {w−

π } and {w+
π } converge uniformly as ∥π∥ → 0

along subsequences to bounded uniformly continuous functions. The result
below guarantees that such uniform limits are viscosity solutions of (12) and
(13).
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Proposition 3.12. Assume that (A1)-(A5) hold and let w−
π and w+

π be given
by (49) and (50), respectively. Then the limits

w− = lim
∥π∥→0

w−
π and w+ = lim

∥π∥→0
w+
π

exist locally uniformly and are the unique viscosity solution of (12) and (13),
respectively.

Proof. We only prove the statement concerning w−, with the proof of the
corresponding statement for w+ being similar.

Existence of w− follows from a comparison theorem (Theorem A.1 in
the Appendix) together with Lemma 3.11, provided we guarantee that any
subsequential limit of the family {w−

π } as ∥π∥ → 0 is a viscosity solution
of (12). To see that this is indeed the case, let w− be a locally uniform
limit of a subsequence of the family {w−

π }. We will only argue that w− is
a viscosity subsolution of (12), with the proof that w− is also a viscosity
supersolution being similar. To achieve such goal, we will use what is now a
classical argument [58, 59].

Let ϕ be a smooth test function such that w− − ϕ has a strict local
maximum at (t0, x0, a0). We need to show that

ϕt(t0, x0, a0) +H− (t0, x0, a0, ϕ(t0, ·, ·), ϕx(t0, x0, a0), ϕxx(t0, x0, a0)) ≥ 0 .
(59)

Since w−
π → w− locally uniformly as ∥π∥ → 0, there exists a family {(tπ, xπ, aπ)}π

with the property that (tπ, xπ, aπ) → (t0, x0, a0) as ∥π∥ → 0 and w−
π − ϕ at-

tains a local maximum at (tπ, xπ, aπ) which, without loss of generality, may
be assumed to be global. Using the definition of w−

π in (49), if tπ ∈ [tπi0 , t
π
i0+1),

we have that

w−
π (tπ, xπ, aπ) = F−

tπ ,tπi0+1
w−
π (t

π
i0+1, ·, ·)(xπ, aπ) .

Hence, we conclude that

ϕ(tπ, xπ, aπ) ≤ F−
tπ ,tπi0+1

ϕ(tπi0+1, ·, ·)(xπ, aπ) . (60)

Using Itô-Lévy’s formula, for any smooth test function ϕ we have that

lim
s↓t

F−
t,sϕ(·, ·)− ϕ(·, ·)

s− t
= H−(t, ·, ·, ϕ(t, ·, ·), ϕx, ϕxx) . (61)

The proof is completed by noticing that (59) follows as a consequence of (60)
and (61). □

3.5. Completing the proofs of Theorems 2.1 and 2.2. We will now
combine the results obtained so far to complete the characterization of the
value functions V − and V + as the unique viscosity solutions of (12) and
(13), respectively, leading us, also, to the proof of the Dynamic Programming
Principle of Theorem 2.1.

The first step is based on the observation that since the limit functions w−

and w+ of Proposition 3.12 are, respectively, the unique viscosity solutions
of (12) and (13), combining the Comparison theorem A.1 (in the Appendix)
with Proposition 3.9 yields the inequalities in following lemma.
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Lemma 3.13. Assume that (A1)-(A5) hold. For every (t, x, a) ∈ [0, T ] ×
RN × S we have that

V −
r (t, x, a) ≤ w−(t, x, a) and V +

r (t, x, a) ≥ w+(t, x, a) .

The next step consists in showing that V −(t, x, a) ≥ w−(t, x, a) and that
V +(t, x, a) ≤ w+(t, x, a) for every (t, x, a) ∈ [0, T ] × RN × S. As a conse-
quence, we complete the proof of Theorem 2.2, which states that the lower
and upper value functions V − and V + are the unique viscosity solutions of
(12) and (13), respectively.

Proof of Theorem 2.2. We will focus on proving the part of the statement
concerning V −, with a similar proof holding for the corresponding statement
concerning V +. Putting together Corollary 3.5 and Lemma 3.13, we obtain
that V − ≤ V −

r ≤ w− on [0, T ] × RN × S. On the other hand, combining
identities (9) and (51), we obtain that for every partition π of [0, T ], the
inequality w−

π ≤ V − holds on [0, T ]×RN ×S. In addition, Proposition 3.12
implies that w− ≤ V − on [0, T ] × RN × S, guaranteeing that w− = V − on
[0, T ]× RN × S. □

Proof of Corollary 2.3. If the Isaacs condition holds, then the HJBI equa-
tions (12) and (13) coincide. Hence, uniqueness of the viscosity solutions, as
guaranteed by the Comparison theorem A.1, ensures that V − and V + are
identical. □

We are finally ready to complete the proof of the dynamic programming
principle of Theorem 2.1.

Proof of Theorem 2.1. We will prove that the lower value function of the
SDG determined by (5) and (6) satisfies identity (9). The corresponding
proof for the upper value function is similar and we omit it here.

Let t̂ ∈ (0, T ] be fixed and let V (t, x, a) denote the right hand side of
(9). It is enough to consider in (9) controls u(·) and strategies β defined in
[t, t̂]. By Theorem 2.2, we have that V is the viscosity solution of (12) on
[0, t̂]×RN×S with V (t̂, x, a) = V −(t̂, x, a). Uniqueness of viscosity solutions
yields that V = V −. □

4. Conclusions

In this paper, we have analyzed a two-player zero-sum stochastic differ-
ential game with Markov-switching jump-diffusion state variable dynamics.
Employing dynamic programming and viscosity solution techniques, we have
rigorously established the existence of value for the problem under considera-
tion and demonstrated that it satisfies a nonlinear partial integro-differential
HJBI equation as its unique viscosity solution. These results contribute to
the theory of stochastic differential games by extending more classical for-
mulations to a broader setting, thereby allowing for the modeling of a wider
range of real-world phenomena.

Combining Markov-switching dynamics and jump-diffusion processes into
a single framework is particularly relevant in applications whose system be-
havior is influenced by both abrupt random events and underlying structural
changes. Such models arise naturally in areas such as financial markets,
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where asset prices are subject to sudden jumps and macroeconomic regime
shifts; in energy markets, where electricity prices and demand fluctuate based
on external shocks and policy shifts; and in engineering and control systems,
where operational modes switch due to external interventions or failures.

Our results provide a theoretical foundation for analyzing optimal strate-
gies within such elaborate stochastic settings, offering a framework for decision-
making under uncertainty when multiple sources of randomness are present.
Future research directions could explore extensions to non-zero-sum games,
learning-based approaches for estimating transition dynamics, and numeri-
cal methods for solving the associated HJBI equations in high-dimensional
settings.

Appendix A. Comparison theorem for viscosity solutions

We will now state the comparison theorem for non-local equations that
plays a key role in establishing the proof of Proposition 3.12 and Lemma
3.13, both of which lead to the proof of the dynamic programming principle
in Theorem 2.1. The statement provided below can be obtained from the
comparison principle due to Pham [50, Theorem 4.1] by taking into account
the stochastic integral representation for the Markov process µt(·), described
in Section 2.1 and given in (1), and the associated embedding of its state
space S into Rn.

Before proceeding to the statement of the comparison theorem, we need to
introduce additional notation. Namely, we will denote by UCx

(
[0, T ]× RN × S

)
the set of continuous functions in [0, T ] × RN × S, uniformly continuous in
x, uniformly in (t, a) ∈ [0, T ]× S.

Theorem A.1 (Comparison Theorem). Assume that (A1)-(A5) hold. If
v, ṽ ∈ UCx

(
[0, T ]× RN × S

)
(resp. u, ũ ∈ UCx

(
[0, T ]× RN × S

)
) are

bounded viscosity sub- and super-solutions of (12) (resp. (13)) with boundary
conditions Ψ and Ψ̃ and if Ψ ≤ Ψ̃ on RN × S, then v ≤ ṽ (resp. u ≤ ũ) on
[0, T ]× RN × S.
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