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Abstract. We study the optimal consumption, investment and life-
insurance purchase and selection strategies for a wage-earner with an
uncertain lifetime with access to a financial market comprised of one risk-
free security and one risky-asset whose prices evolve according to linear
diffusions modulated by a continuous-time stochastic process determined
by an additional diffusive nonlinear stochastic differential equation. The
process modulating the linear diffusions may be regarded as an indicator
describing the state of the economy in a given instant of time. Addition-
ally, we allow the Brownian motions driving each of these equations to
be correlated. The life-insurance market under consideration herein con-
sists of a fixed number of providers offering pairwise distinct contracts.
We use dynamic programming techniques to characterize the solutions
to the problem described above for a general family of utility functions,
studying the case of discounted constant relative risk aversion utilities
with more detail.
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1. Introduction

We consider the problem of optimal consumption, investment and life-
insurance selection and purchase subject to an underlying financial market
whose asset prices evolve according to a linear SDE with coefficients depend-
ing on an additional real-valued continuous-time stochastic process reflecting
the state of the overall economy. Such process may be regarded as an index
aggregating economic information such as the GDP growth rate, interest
rates, inflation rates, unemployment rate, government debt to GDP, trade
balance, prices of natural resources and commodities, among many other
pieces of relevant information. Given the regular flow of such economic in-
formation available to financial market observers nowadays – multiple pieces
of information published daily – as well as the market agents’ expectations
towards the future evolution of such pieces of information, it seems only
natural to model the time-evolution of such a process by a stochastic differ-
ential equation of diffusive type. Our goal is to better understand the choices
of a rational wage-earner, who is simultaneously a saver and investor, with
access to both a financial market such as described above and an insur-
ance market composed by multiple competing insurance companies. The
wage-earner aims to maximize a given expected utility which encodes his
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preferences regarding consumption, wealth and protection against untimely
death as provided by life-insurance.

The class of problems under consideration here has received substantial
attention by the scientific community. Such attention dates back to the ini-
tial work of Yarri [44], who introduced an optimal consumption problem for
an individual with uncertain time of death within the setup of a pure deter-
ministic investment environment, Hakansson [14, 15], who extended Yaari’s
model to a discrete-time setup with stochastic risky-assets, Merton [27, 28],
who studied a continuous-time optimal consumption and investment prob-
lem with no life-insurance purchase component, and Richard [33], who com-
bined the earlier approaches to obtain a continuous-time model for optimal
consumption, investment and life-insurance purchase. More recently, Pliska
and Ye [32, 45] considered the problem faced by a wage-earner with an uncer-
tain lifetime having to reach decisions concerning consumption, investment
and life-insurance purchase. Blanchet-Scalliet et al. [7], on the other hand,
considered the problem of optimal portfolio selection with an uncertain exit
time without considering any kind of life-insurance purchase. Other recent
and interesting studies on the subject of optimal life-insurance purchase
include [8, 9, 13, 16, 17, 20, 21, 22, 29, 31].

Financial markets with random coefficients such as the one considered
herein have also received plentiful attention recently. Liu [24] considers the
problem of dynamic portfolio selection in stochastic enviroments when the
asset returns are quadratic and the agent has a constant relative risk aver-
sion. Therein, Liu defines asset returns to be quadratic when all four char-
acteristics of their dynamics (the short rate, the maximal squared-Sharpe
ratio, the hedging covariance vector, and the unspanned covariance ma-
trix) are quadratic functions of what Liu refers to as a quadratic process
– a Markovian diffusion process whose drift and diffusion coefficients are
quadratic functions of such process themselves. We also mention Souza
and Zubelli [40], who used the hypothesis of fast mean-reversion in an in-
vestment decision problem to show that stochastic volatility can alter the
optimal time investment curve, and Fouque et al. [12], who studied the
Merton portfolio optimization problem with stochastic volatility relying on
asymptotic approximations when the volatility process is characterized by
its timescales of fluctuation. Bichuch and Sircar [6, 5] considered Merton
problems with stochastic volatility and transaction costs, while Lorig and
Sircar [25] considered a finite horizon Merton portfolio optimization problem
in the presence of stochastic volatility and derived series approximations for
both the value function and the optimal investment strategy. Finally, back
within the setup of optimal life-insurance purchase, Liang and Guo [23] con-
sidered the optimal life insurance problem with an underlying incomplete
market, for which the stock price has mean-reverting drift, while Shen and
Wei [38] treated such problem with an underlying complete financial mar-
ket for which parameters governing the market model and the wage earner
income are random processes adapted to the Brownian motion filtration.

Before proceeding, we should mention alternative interesting formulations
for the problem under consideration herein. These may include different
forms of coefficient randomness such as, for instance, Markov-switching state
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variable dynamics as in Azevedo et al. [2] and Temoçin and Weber [41]
or semi-Markov modulated state variable dynamics as in Azevedo et al.
[1], as well as the presence of terms with delay as considered by Savku
and coauthors [35, 36, 37]. In what concerns the form of the objective
functional, one could consider the case of robust utilities as done by Baltas
and coauthors [4, 3] and by Uğurlu [42, 43] in lieu of the expected utilities
treated here.

At this point, we should stress some of the innovative aspects introduced
in this paper:

(i) To the best of our knowledge, this is the first time the dependence of
life-insurance purchase on an external factor, which may be regarded
as the overall state of the economy, is considered and comprehen-
sively analyzed. We perform such analysis by a variety of means.
Firstly, we derive feedback controls depending on the optimal con-
trol problem value function and its derivatives for general families
of utility functions. Secondly, we find explicit closed-form formulas
for both the optimal controls and the value function in the case of
discounted constant relative risk aversion utilities and “frozen econ-
omy dynamics”. This allow us to perform a rather detailed analysis
of the parametric dependence of both the value function and the op-
timal controls with respect to the variable representing the state of
the economy. Finally, considering again discounted constant relative
risk aversion utilities, we perform an illustrative numerical experi-
ment under the assumption that the economy dynamics are given by
an Ornstein-Uhlenbeck process, well known to be a mean-reverting
Gaussian and Markov process.

(ii) We consider a more general class of utility functions than used in
the current literature to describe the wage-earner preferences con-
cerning the eventual life-insurance payment to his family in case he
dies before retirement. The common choice in the literature is to
evaluate the wage-earner’s utility regarding the bequest to his es-
tate at a value equal to his full wealth at time of death plus any
payment arising from life-insurance contracts. However, we feel that
such choice might have a drastic influence on what concerns deci-
sions regarding life-insurance purchase, mainly due to the debasing
of the life-insurance payment caused by the wealth term in the full
bequest size. Instead, we allow for the utility describing the life-
insurance payment preferences to be evaluated at a quantity of the
form z−χ(t, x), where z denotes the total life-insurance payment to
the wage-earner estate in case of premature death, and χ(t, x) de-
notes some relevant benchmark value. As noted above, the current
choice in the literature corresponds to taking χ(t, x) = −x, i.e. the
wage-earner chooses how much life-insurance his family would need
in addition to the accumulated wealth at the time of his eventual
death. On one hand, we feel that this choice somewhat debases life-
insurance in comparison with consumption. On the other hand, it
is widely accepted that a large portion of the population reaches re-
tirement age with an inadequately small amount of savings. Among
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such individuals, the life-insurance payout is much more of a re-
placement to the loss of income due to a premature death of the
wage-earner, than it is a complement to the accumulated wealth at
the time of the eventual death. Henceforth, we believe it is highly
relevant to consider and study also the case where χ(t, x) = 0 for all
time t and wealth value x. Such choice places life-insurance purchase
in a role akin to consumption, a point of view we believe might be
appropriate to model the decision-making process of wage-earners
with low to moderate levels of wealth. Other reasonable choices
are also included in our analysis. For instance, one could also take
χ(t, x) to be the time t present value of the wage-earner future in-
come up until retirement. In such case, the utility of the amount
z−χ(t, x) would be measuring how large the life-insurance payment
z should be to compensate the family for the loss of this future
income. More generally, the benchmark χ(t, x) may be regarded
as a value of wealth that, ideally, ought to be exceeded by the life-
insurance payment if the wage-earner happens to die during the term
of the corresponding contract. Such modeling point of view should
yield positive optimal life-insurance purchase rates for non-negative
χ(t, x), unlike the standard benchmark χ(t, x) = −x, known to yield
negative optimal life-insurance purchase rates for certain choices of
time t and wealth x. Finally, it should be added that, for increas-
ing and concave utility functions evaluated at z − χ(t, x), a larger
benchmark χ(t, x) decreases the wage-earner risk-aversion regarding
life-insurance purchase, thus increasing the corresponding purchase
rate.

This article is organized as follows. In Section 2 we introduce the under-
lying financial and insurance markets and formulate the problem we wish to
address within the framework of a stochastic optimal control problem with
a random horizon. We then proceed to restate such problem as one with a
fixed planning horizon, providing the corresponding dynamic programming
principle and Hamilton-Jacobi-Bellman (HJB) equation. Section 3 is de-
voted to a characterization of the optimal strategies associated with general
utility functions. Section 4 contains a discussion of the optimal strategies in
the special case of discounted constant relative risk aversion utility functions.
We conclude in Section 5.

2. Problem formulation

In this section, we will introduce the underlying financial market available
to the wage-earner, as well as the setup describing the insurance contracts
under consideration herein. We will then formulate the problem faced by a
wage-earner with an uncertain lifetime seeking to optimize his decisions re-
garding consumption, investment and life-insurance purchase and selection.

2.1. The financial market model. Let (Ω,F , P ) be a complete probabil-
ity space equipped with a filtration F = (Ft)t∈[0,T ], where each sub-σ-algebra

Ft represents the information available to any given agent observing the fi-
nancial market during the time interval [0, t]. On the filtered probability
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space (Ω,F ,F, P ), define two one-dimensional standard Brownian motions,
B1(·) and B2(·), with correlation ρ ∈ (−1, 1).

Consider a financial market consisting of one risk-free asset and one risky-
asset, where the latter may be regarded as an index representative of the
overall risky-assets performance. Their respective prices, (S0(t))t∈[0,T ] and
(S1(t))t∈[0,T ], evolve according to the following stochastic differential equa-
tions:

dS0(t) = r(t, Y (t))S0(t)dt , S0(0) = s0

dS1(t) = S1(t)
(

µ(t, Y (t))dt+ σ(t, Y (t))dB1(t)
)

, S1(0) = s1 > 0 , (1)

where r(t, y) is the riskless interest rate, µ(t, y) is the risky-asset appreciation
rate, and σ(t, y) is the risky-asset volatility, all of which are assumed to
depend on the time t and on the state of some auxiliary stochastic process
Y (·). Such process Y (·) can be regarded as an economic indicator, with
evolution determined by

dY (t) = α(t, Y (t))dt+ β(t, Y (t))dB2(t) , Y (0) = y0 . (2)

The following assumption ensures the existence and uniqueness of solu-
tions to the SDE (2), and thus, well-posedeness of the process Y (·). Please
see any of the monographs [19, 26] for further information concerning the
theory of SDEs, as well as [46] for its connections with the theory of sto-
chastic optimal control.

Assumption 1. The functions α, β : [0, T ] × R → R are uniformly contin-
uous with respect to both its variables, Lipschitz continuous with respect to
the variable y ∈ R, and bounded with respect to t ∈ [0, T ] when restricted to
y = 0.

It is well known that the two correlated Brownian motions B1(·) and B2(·)
can be written in terms of two independent standard Brownian motions.
For that purpose, let W1(·) and W2(·) be two independent one-dimensional
Brownian motions and set

B1 = ρW1 +
√

1− ρ2W2 ,

B2 = W2 .

Then, the system of SDEs (1)-(2) may be written as

dS0(t) = r(t, Y (t))S0(t)dt

dS1(t) = S1(t)
(

µ(t, Y (t))dt+ σ(t, Y (t))
(

ρdW1(t) +
√

1− ρ2dW2(t)
))

dY (t) = α(t, Y (t))dt+ β(t, Y (t))dW2(t) ,

where ρ ∈ (−1, 1) denotes the correlation of the original Brownian motions
B1(·) and B2(·).

The following assumption ensures market viability.

Assumption 2. The functions r(t, y), µ(t, y) and σ(t, y) are deterministic
continuous real-valued functions on [0, T ] × R. Additionally, the following
conditions hold:

(i) the interest rate r(t, y) is positive for all (t, y) ∈ [0, T ]× R;
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(ii) there exist positive real numbers σ < σ̄ such that σ < σ(t, y) < σ̄ for
all (t, y) ∈ [0, T ]× R;

(iii) there exist F-progressively measurable real-valued processes ξ1(·), ξ2(·)
such that

µ(t, Y (t))−r(t, Y (t)) = σ(t, Y (t))
(

ρξ1(t) +
√

1− ρ2 ξ2(t)
)

, 0 ≤ t ≤ T a.s.

and the following two conditions hold
∫ T

0
ξ21(t) dt <∞ a.s. and

∫ T

0
ξ22(t) dt <∞ a.s. .

The existence of the processes ξ1(t) and ξ2(t), regarded as market price of
risk for the sources of uncertainty W1(·) and W2(·), ensures the absence of
arbitrage opportunities in the financial market defined above. Please see [18]
for further details on market viability and [34] and references therein for the
specific case of financial markets with stochastic volatility.

2.2. The life-insurance market model. The wage-earner is assumed to
be alive at time t = 0 and to have a lifetime determined by a non-negative
continuous random variable τ defined on the probability space (Ω,F , P ).

Assumption 3. The random variable τ is independent of the filtration F

and has distribution function G− : [0,∞) → [0, 1] with a bounded Lipschitz
continuous density g : [0,∞) → R

+ such that

G−(t) = P (τ ≤ t) =

∫ t

0
g(s) ds .

The survival function G+ : [0,∞) → [0, 1] is defined as the probability
for the wage-earner to survive past time t, i.e.

G+(t) = P (τ > t) = 1−G−(t) .

We will also use the hazard rate function λ : [0,∞) → R
+, that is, the

conditional, instantaneous death rate for the wage-earner surviving past
time t, given by

λ(t) = lim
δt→0

P (t < τ ≤ t+ δt | τ > t)

δt
=

g(t)

G+(t)
.

For every 0 ≤ t ≤ s, let G+(s; t) denote the conditional probability for
the wage-earner to be alive at time s conditional upon being alive at time
t ≤ s, given by

G+(s; t) = P
(

{τ > s} | {τ > t}
)

(3)

and let G−(s; t) denote the conditional probability for the wage-earner time
of death to occur before time s conditional upon being alive at time t ≤ s,
given by

G−(s; t) = P
(

{τ ≤ s} | {τ > t}
)

.

Finally, let g−(s; t) denote the density function associated with the condi-
tional distribution function G−(s; t), given by

g−(s; t) =
d

ds
G−(s; t) . (4)
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We remark that

g−(t; t) = λ(t) .

The life-insurance market under consideration here is composed by K

insurance companies, with each insurance company continuously offering
life-insurance contracts. The wage-earner buys life-insurance from insur-
ance company k by paying a premium insurance rate pk(t) for each k =
1, 2, . . . ,K. The insurance contracts are like term insurance, but with an
infinitesimally small term. If the wage-earner dies at time τ ≤ T while buy-
ing insurance at the rate pk(t) from the kth insurance company, then that
insurance company pays an amount

Zk(τ) =
pk(τ)

ηk(τ)

to his estate, where ηk : [0, T ] → R
+ is the kth insurance company premium-

payout ratio.
We shall represent the wage-earner life-insurance purchase rate as a vector

p(t) = (p1(t), p2(t), . . . , pK(t))T ∈ (R+
0 )

K ,

where, for k ∈ {1, 2, . . . ,K}, the quantity pk(t) denotes the life-insurance
purchase rate from the kth insurance company at time t ∈ [0,min{τ, T}]. A
zero component in p(t) represents the absence of any life-insurance contract
between the wage-earner and a certain insurance company.

Assumption 4. For every k ∈ {1, . . . ,K}, the kth insurance company
premium-payout ratio ηk(t) is a continuous and deterministic function. Ad-
ditionally, we will assume that the K insurance companies under consider-
ation here offer pairwise distinct contracts in the sense that ηk1(t) 6= ηk2(t)
for every k1 6= k2 and Lebesgue-almost-every t ∈ [0, T ].

As a consequence of Assumption 4 above, we have that the K ×K sym-

metric matrix η (t)T η(t), where η(t) = (η1(t), η2(t), . . . , ηK(t))T ∈ (R+)
K
,

is non-singular for Lebesgue almost-every t ∈ [0, T ].
The contract ends when the wage-earner dies or achieves retirement age,

whichever happens first. Therefore, in the event of premature death at time
τ ≤ T , the wage-earner’s estate receives an amount Z(τ) given by

Z(τ) =

K
∑

k=1

Zk(τ) =

K
∑

k=1

pk(τ)

ηk(τ)
. (5)

2.3. The wealth process. The wage-earner receives income i(t, y) at a
continuous rate during the period [0,min{τ, T}], i.e. the income will be
terminated either by his death or his retirement, whichever happens first.

Assumption 5. The income function i : [0, T ]×R → R
+
0 is a deterministic

Borel-measurable function satisfying the integrability condition
∫ T

0
i(t, y) dt <∞

for every y ∈ R.
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The consumption process (c(t))0≤t≤T is a F-progressively measurable non-
negative process satisfying the following integrability condition for the in-
vestment horizon T > 0:

∫ T

0
c(t) dt <∞ a.s. .

We assume also that for all k = 1, 2, . . . ,K, the kth company premium
insurance rate (pk(t))0≤t≤T is a non-negative F-predictable process, i.e. pk(t)
is measurable with respect to the smallest σ-algebra on R

+
0 × Ω such that

all left-continuous and adapted processes are measurable.
For each t ∈ [0, T ], let θ(t) denote the fraction of the wage-earner’s wealth

allocated to the risky-asset S1 at time t. The wage-earner portfolio process is
then given by Θ(t) = (1− θ(t), θ(t))T . We assume that the portfolio process
is F-progressively measurable and that for the fixed investment horizon T >

0 we have that
∫ T

0
‖Θ(t)‖2 dt <∞ a.s. ,

where ‖·‖ denotes the Euclidean norm in R
2.

The wealth process X(t), t ∈ [0,min{τ, T}], is then defined by

X(t) = x+

∫ t

0

(

i(s, Y (s))− c(s)−

K
∑

k=1

pk(s)

)

ds

+

∫ t

0

(1− θ(s))X(s)

S0(s)
dS0 (s) +

∫ t

0

θ(s)X(s)

S1(s)
dS1 (s) ,

where x is the wage-earner’s initial wealth and one should keep in mind the
additional dependence of the wealth process X(·) on the economic indicator
Y (·) via the financial asset prices S0(·) and S1(·). This last equation, when
combined with (2), may be rewritten in differential form as

dX(t) =

(

i(t, Y (t))− c(t)−

K
∑

k=1

pk(t)

+ (r(t, Y (t)) + θ(t) (µ(t, Y (t))− r(t, Y (t))))X(t)

)

dt

+θ(t)σ(t, Y (t))X(t)
(

ρdW1(t) +
√

1− ρ2dW2(t)
)

, (6)

dY (t) = α(t, Y (t))dt+ β(t, Y (t))dW2(t) ,

where 0 ≤ t ≤ min{τ, T}.
Finally, we describe the class of constraints on the portfolio process Θ(·).

For that purpose, we introduce an interval-valued function, which we de-
note as Iθ, assigning to the wage-earner level of wealth x an interval of real
numbers Iθ(x) ⊆ R to which the fraction θ of the wage-earner’s wealth allo-
cated to the risky-asset must belong. Hence, given the wage-earner wealth
X(t) at time t, the interval-valued function Iθ determines the constraint
θ(t) ∈ Iθ(X(t)) as well as the respective constraint on the portfolio process

Θ(t) = (1− θ(t), θ(t))T at time t. To be more concrete, we mention some
possible simple portfolio constraints (or lack thereof) within the setup just
described. First, the absence of any sort of constraint corresponds to the
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choice where Iθ(x) = R for every x ∈ R, that is, the fraction of the wage-
earner’s wealth allocated to the risky-asset can take any real value (where
we are abusing language while referring to θ as a fraction). A second simple
choice, corresponding to the case where the wage-earner is not allowed to
take short positions on any of the two underlying financial assets, corre-
sponds to setting Iθ(x) = [0, 1] for every x ∈ R. Finally, the requirement
that θ is constrained to be zero whenever the wage-earner’s wealth is neg-
ative and unconstrained whenever the wage-earner’s wealth is nonnegative,
corresponds to the choice

Iθ(x) =

{

R x ≥ 0

{0} x < 0
,

which models the case where a wage-earner in debt does not take any long
position on the risky asset, paying the risk-free interest rate on the accumu-
lated debt.

2.4. Utility functions and admissible strategies. The wage-earner is
faced with the problem of finding strategies that jointly maximize the ex-
pected utility obtained from: his family consumption for all t ≤ min{τ, T};
his wealth at retirement date T if he lives that long; and the life-insurance
payment to his estate in the event of premature death.

This problem can be formulated by means of optimal control theory. The
wage-earner goal is to maximize some cost functional subject to the (sto-
chastic) dynamics of the state variables, i.e. the dynamics of the wealth
process X(t) and the economic indicator Y (t) given by (6); constraints on
the control variables, i.e. the consumption process c(t), the premium insur-
ance rates p(t) and the portfolio process θ(t); and boundary conditions on
the state variables.

We will assume that the utility functions U , B and W describing the
wage-earner’s preferences regarding, respectively, his family consumption
level, the life-insurance payout in the event of premature death, and his
wealth at retirement time, satisfy the following conditions.

Assumption 6. The following conditions hold for the utility functions U ,
B and W :

a) U : D(U) ⊆ [0, T ] × R
+
0 → R is such that for every t ∈ [0, T ]

the function U(t, ·) is twice differentiable, strictly increasing, strictly
concave, and its first derivative maps R

+ onto R
+. Additionally,

both U and the partial derivative of U with respect to its second
variable are continuous functions of t ∈ [0, T ].

b) B : D(B) ⊆ [0, T ]×R×R → R is such that for every (t, x) ∈ [0, T ]×R

there exists an interval I(t, x) of the form (a(t, x),+∞) on which
B(t, ·, x) is twice differentiable, strictly increasing, strictly concave,
and its first derivative maps I(t, x) onto R

+. Additionally, both B
and the partial derivative of B with respect to its second variable are
continuous functions of (t, x) ∈ [0, T ]× R.

c) W : R → R is a twice differentiable, strictly increasing and strictly
concave function.
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In Section 4 we will specialize our analysis to the case where the wage-
earner’s preferences are described by discounted CRRA utility functions.

We now recall the notion of admissible control in use here. Please see the
monographs [30, 46] for further information.

Admissible control Given t ∈ [0, T ], we say that the three-tuple ν =
(c(s), θ(s), p(s))s∈[t,T ] is an admissible control, if:

i) ν is (Fs)s∈[t,T ]-adapted and the following integrability conditions

hold:
∫ T

t
c(s) ds <∞ ,

∫ T

t
θ2(s) ds <∞ ,

∫ T

t
pk(s) ds <∞ , k = 1, . . . K ;

ii) the SDE (6) subject to the boundary conditionsX(t) = x and Y (t) =
y has a unique solution

(

Xν
t,x,y(·), Yt,y(·)

)

;
iii) the following integrability conditions hold:

E

[
∫ T

t
|U(s, c(s))| ds

]

<∞ , E
[
∣

∣W (Xν
t,x,y(T ))

∣

∣

]

<∞ ,

E

[
∫ T

t

∣

∣B
(

s, Zν
t,x,y(s),X

ν
t,x,y(s)

)
∣

∣ ds

]

<∞ ,

where Zν
t,x,y(·) is as given in (5) under the choice of controls ν =

(c(s), θ(s), p(s))s∈[t,T ] subject to the boundary conditions X(t) = x

and Y (t) = y.

We will denote by A[t, T ] the set of admissible controls defined on [t, T ].

2.5. Main optimal control problem. The wage-earner’s problem can
now be stated as follows: find ν ∈ A[0, T ] which maximizes the expected
utility

E

[
∫ τ∧T

0
U(s, c(s)) ds+B(τ, Zν

0,x,y(τ),X
ν
0,x,y(τ))I[0,T ](τ)

+W (Xν
0,x,y(T ))I(T,+∞)(τ)

]

,(7)

where the random time horizon is of the form τ ∧ T = min{τ, T}, IA(·)
denotes the indicator function of the set A, U(t, ·) is the utility function
describing the wage-earner’s family preferences regarding the consumption
level c at a certain time t ∈ [0, T ], W (·) is the utility function for the termi-
nal wealth X(T ) at retirement time T , and B(τ, ·, ·) is the utility function
associated with the size of the life-insurance payout Z(τ) in the event of
premature death, at time τ ≤ T , of an agent with wealth X(τ).

2.6. The dynamic programming principle. We use the techniques in-
troduced in [32, 45] to restate the stochastic optimal control problem formu-
lated above as one with a fixed planning horizon. We then state a dynamic
programming principle and the corresponding HJB equation for the result-
ing optimal control problem with deterministic horizon.
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Recall the definition of the set of admissible controls A[t, T ] given above.
For any ν ∈ A[t, T ], we define the objective functional

J(t, x, y; ν) = E

[
∫ τ∧T

t
U (s, c(s)) ds+B(τ, Zν

t,x,y(τ),X
ν
t,x,y(τ))I[0,T ](τ)

+W (Xν
t,x,y(T ))I(T,+∞)(τ)

∣

∣

∣
Ft

]

(8)

and observe that the objective functional above reduces to the expected
utility (7) when t = 0.

The following lemma enables the transformation of the optimal control
problem described above to an equivalent one with a fixed planning hori-
zon. The statement presented below extends the analogous result in [45] by
removing an assumption concerning the sign of the utility function U .

Lemma 2.1. Suppose that Assumptions 1–6 hold and let ν ∈ A[t, T ]. We
have that

J(t, x, y; ν) = E

[
∫ T

t

(

G+(s; t) U(s, c(s)) + g−(s; t)B
(

s, Zν
t,x,y(s),X

ν
t,x,y(s)

))

ds

+G+(T ; t) W (Xν
t,x,y(T ))

∣

∣

∣
Ft

]

,

where the conditional probabilities G+(s; t) and g−(s; t) are as given in (3)
and (4), respectively.

Proof. Let t ∈ [0, T ] and take ν ∈ A[t, T ]. Start by rewriting the functional
J in (8) as

J(t, x, y; ν) = E

[

I(T,+∞)(τ)

(
∫ T

t
U (s, c(s)) ds+W (Xν

t,x,y(T ))

)

+I[0,T ](τ)

(
∫ τ

t
U(s, c(s)) ds+B(τ, Zν

t,x,y(τ),X
ν
t,x,y(τ))

)

∣

∣

∣
Ft

]

.

Resorting to the probability density function g(·) of the random variable τ
and noting that τ is independent of the filtration F, it follows that

J(t, x, y; ν) = E

[

G+(T ; t)

(
∫ T

t
U(s, c(s)) ds+W (Xν

t,x,y(T ))

)

+

∫ T

t
g−(u; t)

∫ u

t
U(s, c(s)) dsdu (9)

+

∫ T

t
g−(s; t)B(s, Zν

t,x,y(s),X
ν
t,x,y(s)) ds

∣

∣

∣
Ft

]

.

We will now show that the order of integration in the second term of (9)
can be interchanged. By Assumption 3 the density function g(·) is contin-
uous. As a consequence, for each fixed t ∈ [0, T ], the conditional density
g−(·; t) is also continuous, and thus bounded on [t, T ]. Denoting by K(t)
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the upper bound of |g−(·; t)| on [t, T ], we obtain that

E

[
∫ T

t

∫ T

s

∣

∣g−(u; t)U(s, c(s))
∣

∣ duds

]

≤ K(t)E

[
∫ T

t

∫ T

s
|U(s, c(s))| duds

]

≤ K(t)(T − t)E

[
∫ T

t
|U(s, c(s))| ds

]

<∞ ,

where finiteness of the third term in the sequence of inequalities above follows
from admissibility of the control ν ∈ A[t, T ]. Therefore, Fubini-Tonelli
theorem can be applied to interchange the order of integration and yield

E

[
∫ T

t

∫ u

t
g−(u; t)U(s, c(s)) dsdu

]

= E

[
∫ T

t

∫ T

s
g−(u; t)U(s, c(s)) duds

]

.

(10)
Observing that

G+(s; t)−G+(T ; t) =

∫ T

s
g− (u; t) du ,

we rewrite (10) as

∫ T

t

∫ u

t
g−(u; t)U(s, c(s)) dsdu =

∫ T

t

(

G+(s; t)−G+(T ; t)
)

U(s, c(s)) ds .

Combining the identity above with (9), we obtain

J(t, x, y; ν) = E

[

G+(T ; t)

(
∫ T

t
U(s, c(s)) ds +W (Xν

t,x,y(T ))

)

+

∫ T

t

(

G+(s; t)−G+(T ; t)
)

U(s, c(s)) ds

+

∫ T

t
g−(s; t)B(s, Zν

t,x,y(s),X
ν
t,x,y(s)) ds

∣

∣

∣
Ft

]

.

We complete the proof by rearranging the terms in the identity above. �

The transformation to a fixed planning horizon provided above can be
given the following interpretation: a wage-earner facing unpredictable death
acts as if he will live until time T , but with a subjective rate of time prefer-
ences equal to his “force of mortality”, that is, the conditional, instantaneous
death rate for the wage-earner surviving past time t, for the consumption of
his family and his terminal wealth.

Note that the optimal control problem (7) can be restated in dynamic
programming form as







V (t, x, y) = sup
ν∈A[t,T ]

J(t, x, y; ν)

V (T, x, y) =W (x)
.

Using the previous lemma, one can state a dynamic programming princi-
ple, obtaining a recursive relationship for the value function V (t, x, y) defined
above. Its proof is similar to the corresponding result in [45] and we omit it
here.
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Lemma 2.2 (Dynamic programming principle). Suppose that Assumptions
1–6 hold. For 0 ≤ t < s ≤ T , the maximum expected utility V (t, x, y)
satisfies the recursive relation

V (t, x, y) = sup
ν∈A[t,T ]

E

[

G+(s; t)V (s,Xν
t,x,y(s), Yt,y(s))

+

∫ s

t

(

G+(u; t) U(u, c(u)) + g−(u; t)B
(

u,Zν
t,x,y(u),X

ν
t,x,y(u)

))

du
∣

∣

∣
Ft

]

.

The dynamic programming principle above can be used to derive the
following HJB equation







Vt − λ(t)V + sup
(c,θ,p)∈R+

0
×Iθ(x)×(R+

0
)K
H(t, x, y; c, θ, p) = 0

V (T, x, y) =W (x)
, (11)

where the Hamiltonian function H is given by

H(t, x, y; c, θ, p) = U(t, c) + λ(t)B

(

t,

K
∑

k=1

pk

ηk(t)
, x

)

+

(

i(t, y)− c(t)−

K
∑

k=1

pk + (r(t, y) + θ(µ(t, y)− r(t, y))) x

)

Vx(t, x, y)

+α(t, y) Vy(t, x, y) +
1

2
β2(t, y) Vyy(t, x, y) +

1

2
(xθσ(t, y))2 Vxx(t, x, y)

+xθσ(t, y)β(t, y)
√

1− ρ2 Vxy(t, x, y) . (12)

The techniques used in the derivation of the HJB equation above and the
proof of the next theorem follow closely those in [10, 45, 46].

Theorem 2.3 (Verification Theorem). Suppose that Assumptions 1–6 hold
and that V is of class C1,2,2 ([0, T ] × R× R,R). Then V satisfies the Hamilton-
Jacobi-Bellman equation (11) and, moreover, the inequality

V (t, x, y) ≥ J(t, x, y; ν)

holds for every ν ∈ A[t, T ] and (t, x, y) ∈ [0, T ] × R × R. Furthermore,
an admissible strategy ν∗ = (c∗(·), θ∗(·), p∗(·)) ∈ A[t, T ] associated with the
state values (X∗, Y ∗) is optimal if and only if for a.e. s ∈ [t, T ] and P -a.s.
we have

Vt(s,X
∗(s), Y ∗(s))− λ(s)V (s,X∗(s), Y ∗(s)) +H(s,X∗(s), Y ∗(s); ν∗) = 0 .(13)

3. The optimal strategies

We will now employ Theorem 2.3 to compute the optimal life-insurance
selection and purchase, portfolio and consumption strategies for the wage-
earner with uncertain lifetime under consideration herein.

For each (t, x) ∈ [0, T ]×R, let Uc(t, ·) and Bz(t, ·, x) denote, respectively,
the derivatives of the utility functions U(t, ·) and B(t, ·, x). By Assumption
6, both U(t, ·) and B(t, ·, x) are strictly concave, and the corresponding
derivatives are invertible on appropriate intervals. Hence, we define I1 and
I2 to be the (unique) functions such that

I1(t, Uc(t, a)) = a and Uc(t, I1(t, a)) = a , for a ∈ R
+ (14)



14 A.S. MOUSA, D. PINHEIRO, S. PINHEIRO, AND A.A. PINTO

for every t ∈ [0, T ], and

I2(t, Bz(t, a, x), x) = a for a ∈ I(t, x)

Bz(t, I2(t, a, x), x) = a for a ∈ R
+ (15)

for every (t, x) ∈ [0, T ] ×R.

Before proceeding, let us define the function θ̂ : [0, T ]×R×R → R, given
by

θ̂(t, x, y) = −
(µ(t, y)− r(t, y))Vx(t, x, y) + σ(t, y)β(t, y)

√

1− ρ2Vxy(t, x, y)

xσ2(t, y)Vxx(t, x, y)
.

(16)
The next result provides a characterization for the optimal strategies in

terms of the value function and its derivatives.

Theorem 3.1. Suppose that Assumptions 1–6 hold and that the value func-
tion V is of class C1,2,2 ([0, T ] ×R× R,R). Then the Hamiltonian function
H given in (12) has a unique maximum. Moreover, the optimal strategies
are given by

c∗(t, x, y) = I1

(

t, Vx(t, x, y)
)

θ∗(t, x, y) =







sup Iθ(x) , if θ̂(t, x, y) ≥ sup Iθ(x)

θ̂(t, x, y) , if θ̂(t, x, y) ∈ Iθ(x)

inf Iθ(x) , if θ̂(t, x, y) ≤ inf Iθ(x)

,

and, for each k ∈ {1, 2, . . . ,K}, we have that

p∗k(t, x, y) =

{

max
{

0, ηk(t)I2

(

t, ηk(t) (λ(t))
−1 Vx(t, x, y), x

)}

, if k = k∗(t)

0 , otherwise
,

where

k∗(t) = argmin
k∈{1,2,...,K}

{ηk(t)} . (17)

Proof. Using the second part of Theorem 2.3, an optimal admissible strategy
ν∗ = (c∗, θ∗, p∗) ∈ A[t, T ] with wealth processX∗ and economic indicator Y ∗

must satisfy (13). Therefore, ν∗ must be such that H given in (12) attains
its supremum. We start by remarking that the optimality condition on H
decouples into three independent conditions:

sup
(c,θ,p)∈R+

0
×Iθ(x)×(R+

0
)K

H(t, x, y; ν) = sup
c∈R+

0

{U(t, c)− cVx(t, x, y)} + r(t, y)xVx(t, x, y)

+ sup
p∈(R+

0
)K

{

λ(t)B

(

t,

K
∑

k=1

pk

ηk(t)
, x

)

− Vx(t, x, y)

K
∑

k=1

pk

}

+ i(t, y)Vx(t, x, y)

+ sup
θ∈Iθ(x)

{

1

2
(xθσ(t, y))2 Vxx(t, x, y) + θ (µ(t, y)− r(t, y))xVx(t, x, y)

+xθσ(t, y)β(t, y)
√

1− ρ2Vxy(t, x, y)

}

+α(t, y)Vy(t, x, y) +
1

2
β2(t, y)Vyy(t, x, y) .
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Therefore, it is enough to study the variation of H with respect to each one
of the variables c, θ and p independently. We deal with the optimization
problem associated with c first. Computing the first-order conditions with
respect to c we obtain

−Vx(t, x, y) + Ux(t, c
∗) = 0 . (18)

Resorting to the inverse functions introduced before the statement of The-
orem 3.1, we can solve equation (18) for the control variable c∗ and get

c∗(t, x, y) = I1 (t, Vx(t, x, y)) .

Given the smoothness assumption on V and the monotonicity and concav-
ity properties of the utility functions under consideration, we obtain that
Vx(t, x, y) is positive, and thus, given that I1 is a bijection of R+ onto R

+,
so is the optimal consumption c∗.

We now consider the optimization problem associated with the variable θ.
The unconstrained case associated with Iθ(x) = R is straightforward. Let
us instead focus on the constrained case where the constraint is given by a
bounded interval. Recalling that we seek to determine the supremum of a
function (which is quadratic on the relevant variable θ) over a bounded inter-
val, the solution technique in the case where the constraint is determined by
a closed interval applies also to the cases where the constraint is an interval
that is not necessarily closed. Thus, and without loss of generality, in what
follows we restrict our attention to the case where Iθ(x) = [θ−(x), θ+(x)],
where θ−(x), θ+(x) ∈ R are such that θ−(x) < θ+(x) for every x ∈ R, with
the cases where Iθ(x) is open at one or both of its endpoints following in a
similar fashion. Resorting to the Kuhn-Tucker conditions, we seek to find
a solution (θ(t, x, y), µ1(t, x, y), µ2(t, x, y)) to the following set of equalities
and inequalities:

(µ(t, y)− r(t, y)) xVx(t, x, y) + xσ(t, y)β(t, y)
√

1− ρ2Vxy(t, x, y)

+ (xσ(t, y))2Vxx(t, x, y) θ = µ1 − µ2

θ − θ+(x) ≤ 0

−θ + θ−(x) ≤ 0

µ1 ≥ 0

µ2 ≥ 0

µ1
(

θ − θ+(x)
)

= 0

µ2
(

−θ + θ−(x)
)

= 0 .

We start by noting that µ1 and µ2 can not both be positive simultaneously.
The remaining three cases lead us to the desired description for θ∗(t, x, y)
given in the statement. Namely, if µ1 = 0 and µ2 is positive, we get

θ∗(t, x, y) = θ−(x) = inf Iθ(x) .

On the other hand, if µ2 = 0 and µ1 is positive, we obtain

θ∗(t, x, y) = θ+(x) = sup Iθ(x) .

Finally, whenever µ1 and µ2 are both zero, we obtain that θ∗(t, x, y) is given

by the expression θ̂(t, x, y) given in (16). The cases where Iθ(x) is only
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bounded above or only bounded below may be dealt with in an analogous
fashion. We skip their discussion for the sake of brevity.

To solve the constrained optimization problem associated with the vari-
able p ∈ (R+

0 )
K , we resort to the Kuhn-Tucker conditions once more. Namely,

we look for a solution (p1(t, x, y), . . . , pK(t, x, y), µ1(t, x, y), . . . , µK(t, x, y))
to the following set of equalities and inequalities:

λ(t)

ηk(t)
Bz

(

t,

K
∑

k=1

pk

ηk(t)
, x

)

− Vx(t, x, y) = −µk

pk ≥ 0 (19)

µk ≥ 0 , k = 1, 2, . . . ,K

pkµk = 0 .

We start by noting that for k1 6= k2, if we have µk1(t, x, y) = µk2(t, x, y)
for some (t, x, y) ∈ [0, T ] × R × R, one must have that ηk1(t) = ηk2(t).
Thus, relying on the assumption that all insurance companies offer pairwise
distinct contracts, we obtain that for every k1, k2 ∈ {1, 2, . . . ,K} such that
k1 6= k2 and every x ∈ R, µk1(t, x, y) 6= µk2(t, x, y) for Lebesgue a.e. t ∈
[0, T ]. In particular, we obtain that for every x ∈ R and Lebesgue a.e.
t ∈ [0, T ], there is at most one k ∈ {1, 2, . . . ,K} such that µk(t, x, y) = 0.
Therefore, for Lebesgue a.e. t ∈ [0, T ], there is at most one k ∈ {1, 2, . . . ,K}
such that pk(t, x, y) 6= 0.

Using once again the first identity in (19), we get that

ηk1(t) (Vx(t, x, y)− µk1) = ηk2(t) (Vx(t, x, y) − µk2) .

As a consequence of the identity above, we conclude that if µk1(t, x, y) >
µk2(t, x, y) for (t, x, y) ∈ [0, T ] × R × R, then ηk1(t) > ηk2(t). Furthermore,
if for some t ∈ [0, T ] we have µk1(t, x, y) = 0, then ηk1(t) < ηk2(t) for every
k2 ∈ {1, 2, . . . ,K} such that k1 6= k2.

From this point onwards, let k∗(t) be as given in (17). Then, either
pk(t, x, y) = 0 for every k ∈ {1, 2, . . . ,K} or else pk∗(t)(t, x, y) > 0 is a
solution to

λ(t)

ηk∗(t)(t)
Bz

(

t,
pk∗(t)

ηk∗(t)(t)
, x

)

= Vx(t, x, y) ,

yielding

p∗k(t, x, y) =

{

max
{

0, ηk(t)I2

(

t,
ηk(t) Vx(t,x,y)

λ(t) , x
)}

, if k = k∗ (t)

0 , otherwise .

Computing the second derivative of the Hamiltonian (12) with respect to
each control variable, we obtain

Hcc(t, x, y; ν
∗) = Ucc(t, c

∗)

Hpk1pk2
(t, x, y; ν∗) =

λ(t)

ηk1(t)ηk2(t)
Bzz

(

t,
p∗k∗(t)

ηk∗(t)(t)
, x

)

, k1, k2 = 1, . . . ,K

Hθθ(t, x, y; ν
∗) = (xσ(t, y))2Vxx(t, x, y) . (20)

Optimality of c∗ and p∗ follows from strict concavity of the functions U
and B with respect to their second variables, which makes the first-order
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conditions and the Kuhn-Tucker conditions not only necessary, but also
sufficient.

Optimality of θ∗ follows from the smoothness assumption on the value
function V , as we will now describe. First, we observe that the value function
V is concave in the variable x, a consequence of the strict concavity of the
utility functions described in Assumption 6. The proof of such fact follows
standard methods (see e.g. [10, Section IV.10]) and we omit it. Combining
concavity of V with respect to x with the smoothness assumption on V ,
we obtain that the second derivative Vxx is nonpositive. At this point, we
break our analysis into the following two cases: (i) the unconstrained case
associated with Iθ(x) = R; and (ii) the case where the constraint is a closed
and bounded interval of real numbers, that is, Iθ(x) = [θ−(x), θ+(x)], where
θ−(x), θ+(x) ∈ R are such that θ−(x) < θ+(x).

Let us deal with the unconstrained case first, for which it is enough to
guarantee that the second derivative Vxx must be negative. Suppose this
is not the case. We have already established that Vxx is nonpositive. If
Vxx is zero, then the Hamiltonian H, being a linear function in θ, would
not be bounded above. As a consequence of the HJB equation, we would
then conclude that either Vt or V would be unbounded, contradicting the
smoothness assumption on the value function V . Therefore, Vxx must be
strictly negative in this case, ensuring that Hθθ, as given in (20), is negative

and θ∗ = θ̂(t, x, y) actually yields an interior maximum of H.
We now consider the case where the constraint is of the form Iθ(x) =

[θ−(x), θ+(x)], where θ−(x), θ+(x) ∈ R are such that θ−(x) < θ+(x). This is
simpler than the unconstrained case, as we are now looking for the supremum
of a quadratic function over a closed and bounded interval. Indeed, if Vxx is
zero such function is linear in θ and the supremum is attained at either θ−(x)
or θ+(x) as determined by the Kuhn-Tucker conditions discussed earlier in
the proof. In the case where Vxx is negative, it may also happen that the
supremum (maximum, really, in such case) is attained in an interior point
of the interval besides its endpoints θ−(x) or θ+(x). Which of these three
possibilities yields the desired supremum is again determined by the Kuhn-
Tucker conditions for this problem.

Finally, we observe that the cases where Iθ(x) is bounded but not closed,
and the cases where Iθ(x) is only bounded above or only bounded below
may be addressed in a way similar to what was done above. �

We should remark that the optimal life-insurance selection and purchase
strategy given in Theorem 3.1 calls for the wage-earner to concentrate all of
his purchases on the life-insurance company offering the highest premium for
the same price, i.e. the insurance company with the lowest premium-payout
ratio ηk(t), k = 1, 2, . . . ,K. This is unlike the usual diversification associated
with investment on financial markets, but completely natural once one notes
that, under the assumptions used herein, the life-insurance contracts carry
no default risk.

4. The family of discounted CRRA utilities

We will now consider the special case where the wage-earner has the same
discounted CRRA-type utility functions for the consumption of his family,
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the life-insurance payment to his estate in the event of premature death,
and his terminal wealth. Henceforth, we assume that the utility functions
are given by

U(t, c) = e−̺t c
γ1

γ1
W (x) = e−̺T x

γ2

γ2
B(t, z, x) =

e−̺t

γ3
(z − χ(t, x))γ3 ,

(21)
where the risk aversion parameters γi are such that γi < 1, with γi 6= 0
for all i = 1, 2, 3, the discount rate ̺ is positive, and the function χ(t, x)
reflects a benchmark with respect to which the wage-earner evaluates his
family needs concerning life-insurance protection in the event of premature
death. The case where χ(t, x) = 0 corresponds to an absolute evaluation
of life-insurance needs, while χ(t, x) = −x reflects the family life-insurance
needs in addition to the wage-earner wealth x at the eventual premature
time of death. The latter is the most common choice in the literature. A
third possible interesting choice would be to set χ(t, x) equal to the time t
value of the wage-earner accumulated future income.

We will also assume that the value function V is of class C1,2,2 ([0, T ] × R× R,R),
that no short-selling constraints are in place (i.e., Iθ(x) = R for every x),
that the life-insurance market has only one company with premium-payout
ratio η(t), and that the nonnegativity constraint for the life-insurance pur-
chase is disregarded. According to Theorem 3.1 and its proof, the optimal
strategies are given in terms of the value function V as

c∗(t, x, y) =
(

e̺tVx(t, x, y)
)−1/(1−γ1)

θ∗(t, x, y) = θ̂(t, x, y) (22)

p∗(t, x, y) =

(

(

η(t)e̺tVx(t, x, y)

λ(t)

)−1/(1−γ3)

+ χ(t, x)

)

η(t) ,

where θ̂(t, x, y) is as given in (16). Indeed, under the assumptions listed
above, the optimal strategies can be readily obtained from the statement
of Theorem 3.1 after observing that, for the family of discounted CRRA
utilities (21), the functions I1 and I2 defined in (14) and (15), respectively,
are given by

I1(t, c) =
(

e̺tc
)−1/(1−γ1) and I2(t, z, x) =

(

e̺tz
)−1/(1−γ3) + χ(t, x) .

Substituting c, θ and pk in the HJB equation (11) by the optimal strate-
gies given in (22) and combining similar terms, we arrive at the following
nonlinear second order partial differential equation

Vt(t, x, y)− λ(t)V (t, x, y) +
(

i(t, y) + r(t, y)x− η(t)χ(t, x)
)

Vx(t, x, y)

+
1− γ3

γ3
e−̺t/(1−γ3)(Vx(t, x, y))

−γ3/(1−γ3)

(

λ(t)

(η(t))γ3

)1/(1−γ3)

+
1− γ1

γ1
e−̺t/(1−γ1)(Vx(t, x, y))

−γ1/(1−γ1) +
1

2
β2(t, y)Vyy(t, x, y) (23)

+ α(t, y)Vy(t, x, y)−

(

Σ(t, y)Vx(t, x, y) + β(t, y)
√

1− ρ2Vxy(t, x, y)
)2

2Vxx(t, x, y)
= 0 ,
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where Σ(t, y) is given by

Σ(t, y) =
µ(t, y)− r(t, y)

σ(t, y)
,

and the boundary condition is

V (T, x, y) =W (x) .

4.1. A limit case with closed-form solutions. In this subsection we
consider the case where:

a) the evolution of the economic indicator is “frozen” but the financial
market still depends on the state of the economy in a parametric
fashion;

b) investment in the financial market is unconstrained, i.e. Iθ(x) = R

for every x;
c) the life-insurance market has only one reference company, trading

life-insurance contracts with premium-payout ratio given by

η(t) = ηk∗(t)(t) ,

and the life-insurance purchase rate is allowed to be any real value.

To proceed with such analysis, we set the functions α(t, y) and β(t, y) con-
stant and equal to zero and regard y ∈ R as a fixed parameter representative
of the economy strength. This will enable us to derive an explicit solution
to the optimal control problem under consideration herein and to character-
ize the corresponding optimal strategies in the case where the benchmark
function χ(t, x) is of the form

χ(t, x) = f1(t)x+ f2(t) , (24)

where f1(t) and f2(t) are (eventually nonlinear) continuous real-valued func-
tions on [0, T ].

Proposition 4.1. Suppose that Assumptions 1–6 hold and χ(t, x) is as given
in (24). Then, under the setup described in items a), b) and c) above, the
optimal strategies associated with utility functions of the form (21) with
identical risk aversion parameters γ1 = γ2 = γ3 = γ are given by

c∗(t, x, y) =
1

E(t, y)
(x+ b(t, y)) ,

θ∗(t, x, y) =
1

1− γ

x+ b(t, y)

x

Σ(t, y)

σ(t, y)
,

p∗(t, x, y) = η(t)
(

(D(t, y) + f1(t)) x+D(t, y)b(t, y) + f2(t)
)



20 A.S. MOUSA, D. PINHEIRO, S. PINHEIRO, AND A.A. PINTO

where

b(t, y) =

∫ T

t
(i(s, y)− f2(s)) exp

(

−

∫ s

t
(r(v, y)− η(v)f1(v)) dv

)

ds

D(t, y) =
1

E(t, y)

(

λ(t)

η(t)

)1/(1−γ)

E(t, y) = exp

(

−

∫ T

t
H̄(v, y) dv

)

+

∫ T

t
exp

(

−

∫ s

t
H̄(v, y) dv

)

L(s) ds

H̄(t, y) =
λ(t) + ̺

1− γ
−
γ

2

(

Σ(t, y)

1− γ

)2

−
γ

1− γ
(r(t, y)− η(t)f1(t))

L(t) = 1 +

(

λ(t)

(η(t))γ

)1/(1−γ)

Σ(t, y) =
µ(t, y)− r(t, y)

σ(t, y)
.

Proof. Assume that the utility functions U , B and W are as given in (21).
Combining the optimal strategies given in (22) with the representation (24)
for χ(t, x) and the “frozen” dynamics assumption of item a), which corre-
sponds to setting α(t, y) and β(t, y) constant and equal to zero, we obtain
that the optimal strategies, in terms of the value function V , are given by

c∗(t, x, y) =
(

e̺tVx(t, x, y)
)−1/(1−γ)

θ∗(t, x, y) = −
(µ(t, y)− r(t, y))Vx(t, x, y)

xσ2(t, y)Vxx(t, x, y)
(25)

p∗(t, x, y) =

(

(

η(t)e̺tVx(t, x, y)

λ(t)

)−1/(1−γ3)

+ f1(t)x+ f2(t)

)

η(t) .

We are now going to find an explicit solution for the HJB equation (11). We
substitute c, θ and pk in the HJB equation by the optimal strategies in (25)
and combine similar terms to arrive at the following second order nonlinear
partial differential equation

Vt(t, x, y)− λ(t)V (t, x, y) +
(

i(t, y) + r(t, y)x− η(t)f1(t)x− f2(t)
)

Vx(t, x, y)

−Σ2(t, y)
(Vx(t, x, y))

2

2Vxx(t, x, y)
+

1− γ

γ
e−̺t/(1−γ)L(t)(Vx(t, x, y))

−γ/(1−γ) = 0 , (26)

where Σ(t, y) and L(t) are as given in the statement of this proposition, and
the terminal condition is given by

V (T, x, y) = e−̺T x
γ

γ
. (27)

We consider an ansatz of the form

V (t, x, y) =
a(t, y)

γ
(x+ b(t, y))γ , (28)
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and substitute it in (26) so that a(t, y) and b(t, y) are determined by the
differential equation

1

γ

da

dt
(t, y) +

a(t, y)

x+ b(t, y)

db

dt
(t, y) +

i(t, y) + r(t, y)x− η(t)f1(t)x− f2(t)

x+ b(t, y)
a(t, y)

−
λ(t)

γ
a(t, y)−

Σ2(t, y)

2(γ − 1)
a(t, y) +

1− γ

γ
e−̺t/(1−γ)L(t)(a(t, y))−γ/(1−γ) = 0 .(29)

Rewrite the third term in (29) as

i(t, y) + r(t, y)x− η(t)f1(t)x− f2(t)

x+ b(t, y)
a(t, y)

= (r(t, y)− η(t)f1(t)) a(t, y) (30)

+
i(t, y)− (r(t, y)− η(t)f1(t)) b(t, y)− f2(t)

x+ b(t, y)
a(t, y) ,

and combine (29) and (30) to get

1

γ

da

dt
(t, y) +

(

r(t, y)− η(t)f1(t)−
λ(t)

γ
+

Σ2(t, y)

2(1− γ)

)

a(t, y)

+
1− γ

γ
e−̺t/(1−γ)L(t)(a(t, y))−γ/(1−γ)

+
a(t, y)

x+ b(t, y)

(

db

dt
(t, y)− (r(t, y)− η(t)f1(t)) b(t, y) + i(t, y) − f2(t)

)

= 0 .

Note that the previous differential equation and the terminal condition (27)
decouple into two independent boundary value problems for a(t, y) and
b(t, y) which are given, respectively, by

1

γ

da

dt
(t, y) +

(

r(t, y)− η(t)f1(t)−
λ(t)

γ
+

Σ2(t, y)

2(1− γ)

)

a(t, y)

+
1− γ

γ
e−̺t/(1−γ)L(t)(a(t, y))−γ/(1−γ) = 0(31)

a(T, y) = e−̺T ,

and

db

dt
(t, y)− (r(t, y)− η(t)f1(t)) b(t, y) + i(t, y)− f2(t) = 0

(32)

b(T, y) = 0 .

To find a solution to the boundary value problem (31), we write a(t, y) in
the form

a(t, y) = e−̺t(E(t, y))1−γ ,

obtaining a new boundary value problem for the function E(t, y) of the form

dE

dt
(t, y)− H̄(t, y)E(t, y) + L(t) = 0

E(T, y) = 1 , (33)
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where L(t) and H̄(t, y) are as given in the statement of this Proposition.
Since equation (33) is a linear, non-autonomous, first order ordinary differ-
ential equation with respect to the independent variable t, we can find an
explicit solution of the form

E(t, y) = exp

(

−

∫ T

t
H̄(v, y) dv

)

+

∫ T

t
exp

(

−

∫ s

t
H̄(v, y) dv

)

L(s) ds .

Therefore, we obtain that the solution of (31) is given by

a(t, y) = e−̺t

[

exp

(

−

∫ T

t
H̄(v, y) dv

)

+

∫ T

t
exp

(

−

∫ s

t
H̄(v, y) dv

)

L(s) ds

]1−γ

.(34)

To find a solution for the boundary value problem (32), we just note that
this is again a linear, non-autonomous, first order differential equation and
its solution is given by

b(t, y) =

∫ T

t
(i(s, y)− f2(s)) exp

(

−

∫ s

t
(r(v, y)− η(v)f1(v)) dv

)

ds . (35)

Combining (25) with (28), (34) and (35), we obtain the optimal strategies

c∗(t, x, y) =
1

E(t, y)
(x+ b(t, y)) ,

θ∗(t, x, y) =
1

1− γ

x+ b(t, y)

x

Σ(t, y)

σ(t, y)
,

p∗(t, x, y) = η(t)
(

(D(t, y) + f1(t)) x+D(t, y)b(t, y) + f2(t)
)

where E(t, y) and D(t, y) are as given in the statement of this Proposition.
�

The quantities b(t, y) and x+b(t, y) play a central role in the interpretation
of the optimal strategies obtained in Proposition 4.1. The quantity b(t, y)
can be seen as the time t value of the wage earner future income from time
t to time T with respect to the adjusted discount factor r(t, y) − η(t)f1(t),
while the quantity x + b(t, y) might be regarded as the wage-earner full
potential wealth (present wealth plus future income).

The next Corollary is a consequence of Proposition 4.1. It states that
the optimal consumption rate increases with wealth, while the proportion of
wealth allocated to the risky asset decreases with increasing wealth. More
importantly, it provides conditions determining the monotonicity of the op-
timal life-insurance purchase with respect to wealth.

Corollary 4.2. Assume that the conditions of Proposition 4.1 are satisfied.
Then, the following also hold:

(i) the maximum expected utility V (t, x, y) is increasing with x;
(ii) the optimal consumption rate c∗(t, x, y) is increasing with x;
(iii) the optimal risky-asset allocation θ∗(t, x, y) is decreasing with x; and
(iv) the optimal life-insurance purchase p∗(t, x, y) is increasing with x

whenever D(t, y) + f1(t) is non-negative and decreasing whenever
D(t, y) + f1(t) is non-positive.
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We will now consider the dependence of the value function and the corre-
sponding optimal strategies with respect to the economic indicator. Namely,
we provide condition under which the optimal consumption rate, the opti-
mal life-insurance purchase and the optimal risky-asset allocation all increase
with an improving state of the economy.

Corollary 4.3. Suppose that the hypotheses of Proposition 4.1 hold. More-
over, assume that the following additional conditions are satisfied:

(i) the discounted CRRA utilities risk aversion parameters γ1 = γ2 = γ3
are negative;

(ii) r(t, y), µ(t, y) and (µ− r)(t, y) are all increasing functions of y ∈ R

for every fixed t ∈ [0, T ];
(iii) σ(t, y) is a decreasing function of y ∈ R for every fixed t ∈ [0, T ];
(iv) for every 0 ≤ t ≤ s ≤ T , the function

ln (i(s, y)− f2(s))−

∫ s

t

(

r(v, y)− ηk∗(v)(v)
)

dv

is increasing with y ∈ R.

Then, the following hold:

(i) the maximum expected utility V (t, x, y) is increasing with y; and
(ii) the optimal consumption rate c∗(t, x, y), the optimal life-insurance

purchase p∗(t, x, y) and the optimal risky-asset allocation θ∗(t, x, y)
are all increasing with y.

Proof. The result follows from the closed-form expressions provided in Propo-
sition 4.1 after noting that, under the monotonicity assumptions on r, µ and
σ, for γ1 = γ2 = γ3 < 0, we have that:

(a) Σ(t, y), H(t, y) and b(t, y) as given in the statement of Proposition
4.1 are increasing functions of y; and

(b) E(t, y) as given in the statement of Proposition 4.1 is a decreasing
functions of y.

�

4.2. Numerical study. An explicit solution for the nonlinear second order
partial differential equation (23) is, in general, not available in closed form.
Hence, we resort to a numerical solution of (23) in order to study how the
optimal strategies of the problem under consideration herein depend upon
the indicator Y (·) modeling the state of the overall economy.

We will consider a financial market as described in Section 2.1, with co-
efficient functions which are independent of time and affine functions of the
state y of the economic indicator. More concretely, we assume that the
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financial market coefficients have the form

r(y) = r0 + r1y

µ(y) = µ0 + µ1y

σ(y) =











σ0 + σ1y
∗ if y ≤ −y∗

σ0 − σ1y if −y∗ < y < y∗

σ0 − σ1y
∗ if y ≥ y∗

α(y) = α0 − α1y

β(y) = β0 ,

where the parameters r0, r1, µ0, µ1, σ0, σ1, α0, α1, β0, and y∗, are all
positive and, additionally, σ0, σ1 and y∗ are such that σ0 − σ1y

∗ > 0. The
choices listed above for the coefficient functions aim at modeling the follow-
ing practical feature: with an improving state of the economy, as reflected
by a larger value of the economic indicator, we have that

a) the riskless interest rate increases;
b) the risky-asset mean appreciation rate increases;
c) the volatility decreases, but remains bounded away from zero.

In what concerns the dynamics of the economic indicator Y (·), we note
that the coefficient functions α and β have been chosen in such a way that
Y (·) is an Ornstein–Uhlenbeck process. Given the well-known features of
such process – it is mean-reverting, Gaussian, and Markov – we believe this
constitutes a very simple, yet reasonably realistic, model for the evolution
of the indicator describing the state of the economy. As for the wage-earner
preferences, these are assumed to be described by utility functions such
as those given in (21). For concreteness of exposition, we consider here
the case where χ(t, x) is identically zero. We note that positive values of
χ(t, x) increase the utility that the wage-earner derives from buying larger
increments of life-insurance, thus contributing to a larger allocation of his
savings to the purchase of such protection, with a corresponding decrease
in the amounts allocated to consumption and investment. Clearly, negative
values of χ(t, x) have the opposite effect, lowering the wage-earner eagerness
to purchase life-insurance, and increasing his consumption rate and wealth
invested in the financial market. We also work under the assumption that
the wage-earner is not allowed to hold any leveraged or short position in
the risky-asset and that, if the wage-earner wealth becomes negative, he is
obliged to pay an interest rate equal to the risk-free rate on his debt. Such
investment constraints translate into a restriction of the form θ ∈ Iθ(x),
where Iθ(x) is given by

Iθ(x) =

{

[0, 1] if x ≥ 0

{0} if x < 0
.

The parameters used in the numerical experiment below were selected to fit
the modeling assumptions described above concerning the dependence of the
market coefficients dependence on the economic indicator Y (·). Neverthe-
less, we should stress that the results reported here are robust with respect
to reasonable changes in the choice of such parameter values.
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We should note that the numerical scheme producing the approximate
solutions to both the HJB equation (23) and the corresponding (feedback
form) optimal controls is based on a discretization procedure inspired in the
techniques developed by Souganidis in [39] and Fleming and Souganidis [11]
(see Appendix A for further details), while the solution to the SDEs defining
the financial market and the wage-earner wealth process were obtained using
an Euler-Maruyama numerical integrator combined with the aforementioned
optimal controls numerical approximations. The discretization procedure
leading to the numerical solution of the HJB equation (23) is based on a
three-dimensional grid within the (t, x, y)-space [0, T ] × [2, 152] × [−2, 2],
where T was taken to be either 5 or 20 depending on whether the focus
lied on a short horizon scenario (as in Subsection 4.2.1) or a long horizon
scenario (as in Subsection 4.2.2). Such grid has vertices (ti, xj , yk), where

xj = x0 + j∆x ,with x0 = 2, ∆x = 0.25 and j = 0, . . . , 600

yk = y0 + k∆y ,with y0 = −2, ∆y = 0.05 and k = 0, . . . , 80

and

ti = T − i∆t ,with T = 5, ∆t = 0.0025 and i = 0, . . . , 2000

for a short horizon scenario, or

ti = T − i∆t ,with T = 20, ∆t = 0.005 and i = 0, . . . , 4000

for a long horizon scenario. Approximations for the corresponding optimal
controls c∗(t, x, y), p∗(t, x, y) and θ∗(t, x, y) in feedback form are obtained at
each point of the grid described above as the solution of a steepest descent
algorithm associated with a finite-dimensional optimization problem. No
further discretization besides the one described above is required to deter-
mine the optimal controls. Finally, the Euler-Maruyama numerical integra-
tor employed to obtain numerical solutions to the SDEs defining the financial
market and the wage-earner wealth process uses the same step-size ∆t as
the numerical approximation to the HJB equation (23). Whenever values of
the optimal controls at points not in the grid described above are needed in
the course of the Euler-Maruyama method implementation, a bilinear inter-
polation in the x and y variables is used to numerically approximate such
values.

4.2.1. Short time horizon scenario. In what follows we will fix the maxi-
mum planning horizon as T = 5 (years). Our goal is to analyze the optimal
strategies of wage-earners close to retirement age and still considering the
acquisition of life-insurance, allowing also a comparison with the long time
horizon scenario treated in Section 4.2.2. From an Economics point of view,
the key factor distinguishing the two scenarios – short and long time hori-
zons – is the wage-earner’s “human capital”, i.e. the present value of his
cumulative future income with respect to an appropriately chosen discount
rate. Indeed, as we will see below, the planning horizon has a key influence
in the wage-earner choices, as it significantly limits the available “human
capital” which, when all else remains equal, is a decreasing function of the
time left until retirement age. The substantial influence of such quantity
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can be appreciated both by an inspection of the “frozen dynamics” results
of Section 4.1, as well as the numerical results presented below.
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Figure 1. Histograms for the time T = 5 values of the risk-
free asset S0(T ) (Fig. 1a); the risky-asset price S1(T ) (Fig.
1b); the economic indicator Y (T ) (Fig. 1c); and the wage-
earner wealth X(T ) (Fig. 1d). Each histogram was built us-
ing 10,000 realizations of the corresponding process. The hor-
izontal axes represent the processes time T = 5 values while
the vertical axes represent the corresponding relative frequen-
cies. The initial values used were S0(0) = 1, S1(0) = 1,
Y (0) = 0, and X(0) = 20. The remaining model’s parame-
ters are as follows: r(y) = 0.02 + 0.03y, µ(y) = 0.03 + 0.07y,
σ(y) = 0.17 − 0.06y for y ∈ (−2, 2), α(y) = 0.25 − y,
β(y) = 0.5, ρ = 0.5, γ1 = −0.6, γ2 = −0.5, γ3 = −0.4,

̺ = 0.01, i(t, y) = 50e(0.03+0.03y)t , λ(t) = 0.001e−9.5+0.1t ,
η(t) = 1.05λ(t).

In Figure 1 we present the time T = 5 empirical probability distributions
of the following stochastic processes: the risk-free asset price S0(T ) (Fig.
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1a); the risky-asset price S1(T ) (Fig. 1b); the economic indicator Y (T )
(Fig. 1c); and the wage-earner wealth X(T ) in the event he survives until
retirement time T (Fig. 1d). These histograms are the result of a Monte-
Carlo simulation generating 10, 000 trajectories of the stochastic processes
under consideration herein. Note that the histogram corresponding to the
economic indicator Y (·) is very close to fitting a Gaussian curve, as it should,
since Y (·) is assumed to be an Ornstein–Uhlenbeck process for the purposes
of this experiment. The histogram for S0(T ) inherits all of its randomness
through the dependence of S0(·) on Y (·), as expressed in (1). Indeed, since
Y (·) is Gaussian, S0(T ) has a log-normal distribution. Note also that the
histograms for S1(T ) and X(T ) share some similarities, such as their skew-
ness to the right and a fatter right tail, reflecting the strong dependence that
the final wealth X(T ) has on the financial market performance, as expressed
through the time evolution of S1(·).

In Figure 2 we provide a single realization of the time evolution of some
of the stochastic processes of interest to our analysis: in figure 2a paths are
shown for the risk-free asset S0 (in blue), the risky-asset S1 (in red), and
the economic indicator Y (in green), while paths for the optimal controls θ∗,
c∗ and p∗ are provided in figures 2b, 2c and 2d, respectively. As should be
expected from observing the form of (1) in connection with the modeling as-
sumptions listed above, the rate of growth of the risk-free asset S0 is higher
for correspondingly larger values of the economic indicator, while the value
of the risky-asset trends up when the economic indicator shows high posi-
tive values, and trends down when the economic indicator shows negative
values. In what concerns the optimal strategies, we observe the following:
extreme positive values of the economic indicator translate into an optimal
investment strategy whereby the wage-earner invests all of his savings in the
risky-asset, while extreme negative values of the economic indicator corre-
spond to an optimal investment strategy whereby the wage-earner allocates
all of his savings to the risk-free asset. Intermediate values of the economic
indicator correspond to investment decisions leading to a mixed portfolio.
As for the optimal consumption and life-insurance purchase strategies, we
remark that, up to a factor of scale, their time-evolution looks strikingly sim-
ilar. This is a reasonably natural outcome once one notes that life-insurance
purchase might be regarded as a very specific form of consumption. Other-
wise, both quantities increase with an increasing economic factor, reflecting
a healthier economy and larger disposable income. All of these observations
are in agreement with intuition and our closed-form solutions of Section 4.1.

Figure 3 shows a swarm of 50 realizations of the wealth process over the
time interval [0, 5]. Note that all paths shown are mostly trending up, due
to a conjugation of gains from earned income and investment in the financial
market. We remark that some of the paths in Figure 3 show arc segments
with no volatility, corresponding to intervals of time where the economic
indicator took extreme negative values and the corresponding optimal port-
folio choice was to allocate all savings to the risk-free asset.



28 A.S. MOUSA, D. PINHEIRO, S. PINHEIRO, AND A.A. PINTO

−0.5

0

0

0.5

1

1

1.5

2 3 4 5
t

(a)

0
0

0.2

0.4

0.6

0.8

1

1

2 3 4 5
t

θ∗(t)

(b)

0 1 2 3 4 5

46

48

50

52

54

t

c∗(t)

(c)

0

0.052

0.054

0.056

0.058

0.06

1 2 3 4 5
t

p∗(t)

(d)

Figure 2. One realization yielding the time evolution of
some relevant stochastic processes: risk-free asset S0 (blue),
risky-asset S1 (in red) and economic indicator Y (in green) in
Fig. 2a, optimal portfolio θ∗ in Fig. 2b, optimal consumption
c∗ in Fig. 2c, and optimal life-insurance purchase p∗ in Fig.
2d. The horizontal axes represent time t ∈ [0, 5] and the
vertical axes represent the stochastic processes values. The
initial values and parameters are as given in Figure 1.

Figure 4 shows plots of the value function V , as well as of the optimal
controls θ∗, c∗ and p∗ in feedback form, in terms of the wealth x and the
economic indicator y for fixed time t = 2.5. As expected, in Figure 4a one
can observe that the value function is strictly increasing and strictly concave
with respect to the wealth level x, and strictly increasing with respect to the
economic indicator y. In what concerns the optimal portfolio θ∗, we note
that this is an increasing function of the economic indicator y, switching
rather abruptly from full investment on the risk-free asset to full investment
on the risky asset. As for its dependence on the wealth level x, one can see
that θ∗ is decreasing (note that the steep increase from 0 to 1 occurs at larger
values of y with increasing values of x). Finally, the optimal consumption
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Figure 3. Swarm with 50 realizations of the wealth pro-
cess X(·). The horizontal axis represents time t ∈ [0, 5] and
the vertical axis represents wealth. The initial values and
parameters are as given in Figure 1.

c∗ and the optimal life-insurance purchase p∗ are both stricly increasing and
strictly convex functions of the economic indicator y and increasing functions
of the wealth x. As before, all of these observations are in agreement the
qualitative properties of the closed-form solutions of the special limit case
considered in Section 4.1.

4.2.2. Long time horizon scenario. We will now fix the maximum planning
horizon as being T = 20 (years) and discuss the optimal strategies of a wage-
earner with a larger amount of time until retirement. The “human capital”
of such individuals is very often large when compared to their wealth leading
to interesting, yet very realistic, outcomes.

Figure 5 is the counterpart to Figure 1 when T = 20: it gives histograms
approximating the probability distributions of the risk-free asset price S0(T )
(Fig. 5a), the risky-asset price S1(T ) (Fig. 5b), the economic indicator
Y (T ) (Fig. 5c), and the wage-earner wealth X(T ) in the event he survives
until retirement time (Fig. 5d). As in the short-term horizon case, all
these histograms are based on a Monte-Carlo simulation generating 10, 000
realizations for the corresponding stochastic processes. We remark that the
histogram of Y (20) in figure 5c is almost identical to the corresponding
one for Y (5) in figure 1c, an indication that both of these histograms are
already a very good approximation for the probability density function of
the stationary distribution of the process Y (·). On the other hand, the
histogram associated with S0(20) is slightly more asymmetric than that of
S0(5), showing more clearly its non-Gaussian nature. As for the histograms
describing S1(20) and X(20), it should be noted that the longer planning
horizon allowed for the appearance of more extreme values in both processes,
exacerbating the skewness to the right of both distributions.

Finally, Figure 6 shows a swarm of 50 realizations of the wealth process
over the time interval [0, 20]. Note that for negative values of the wealth
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Figure 4. Plots of the value function V (Fig. 4a), optimal
portfolio θ∗ (Fig. 4b), optimal consumption c∗ ( Fig. 4c),
and optimal life-insurance purchase p∗ (Fig. 4d) in terms
of the wealth x and the economic indicator y for fixed time
t = 2.5. The parameters are as given in Figure 1.

process the paths seem to exhibit little to no volatility. This is due to the
requirement that the wage earner pays the risk-free interest rate on any debts
he might have, eliminating from the wealth process dynamics the risky-asset
volatility. When the wealth is positive most paths show the same volatility
as those from Figure 3 (the scale at which Figure 3 is displayed makes it hard
to see the volatility – zoom in to make such detail more noticeable). More
importantly, we remark that, unlike Figure 3, the paths displayed in Figure 6
are not trending up over the whole time period under consideration. Indeed,
for long planning horizons, the “human capital” is large and the optimal
strategy turns out to be to borrow against future earnings to increase the
utility derived from consumption and life-insurance purchase, paying off
the debt and accumulating savings as the wage-earner income progressively
rises and his retirement time nears. Such behavior is even more notorious
with larger planning horizons and increasing values of the utility functions
discount rate ̺. Even though the model under consideration herein is a
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Figure 5. Histograms for the time T = 20 values of the risk-
free asset S0(T ) (Fig. 5a); the risky-asset price S1(T ) (Fig.
5b); the economic indicator Y (T ) (Fig. 5c); and the wage-
earner wealth X(T ) (Fig. 5d). Each histogram was built
using 10,000 realizations of the corresponding process. The
horizontal axes represent the processes time T = 20 values
while the vertical axes represent the corresponding relative
frequencies. The initial values and parameters are as given
in Figure 1.

simple mathematical idealization of very complex personal and economic
decisions, the conclusions one can draw from it seem very reasonable, and
even natural. While observing Figure 6, one can idealize an agent planning
for the long term, taking loans while young to finance consumption (e.g. the
purchase of a car or a house) and the purchase of life-insurance to guarantee
his family some financial stability, and then slowly but steadily paying down
the corresponding mortgages (corresponding to negative value of wealth)
while progressing in his career, accumulating also enough wealth to retire
later in life.
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Figure 6. Swarm with 50 realizations of the wealth process
X(·). The horizontal axis represents time t ∈ [0, 20] and
the vertical axis represents wealth. The initial values and
parameters are as given in Figure 1.

5. Conclusions

We have studied an optimal consumption, investment and life-insurance
selection and purchase problem for a wage-earner whose lifetime is uncer-
tain. The problem considered here has the special feature of including a
financial market whose assets prices follow a linear SDE with stochastic co-
efficients depending on the evolution of an underlying economic indicator.
We formulated this problem in terms of a stochastic optimal control problem
and used dynamic programming techniques to characterize the wage-earner
decision-making process, paying particular attention to how the wage-earner
decisions are influence by the economic indicator. In the special case of dis-
counted CRRA utility functions we were able to provide a more detailed
characterization, combining analytical techniques yielding closed form solu-
tion for certain special limiting cases, with an illustrative numerical exper-
iment proving validation to our theoretical results and further insights into
the wage-earner decision-making process.

Indeed, based on the “frozen dynamics” limit case for which closed-form
solutions are available, we conclude that the wage-earner optimal consump-
tion rate is an increasing function of his wealth while the fraction of wealth
invested in the risky-asset is a decreasing function of his wealth. In what
concerns the wager-earner life-insurance purchase rate, it may be either in-
creasing with wealth or decreasing with wealth, depending on the sign of
a quantity reflecting the agent preferences regarding life-insurance purchase
as well as the relative size of the wage-earner hazard rate function to the
minimum life insurance contract premium-payout ratio. Under appropriate
conditions on the model parameters, we have also seen that the wage-earner
optimal consumption rate, optimal life-insurance purchase rate and optimal
risky-asset allocation all increase with an improving state of the economy.
In addition to validating these conclusions, the numerical experiments of
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Sections 4.2.1 and 4.2.2 also stress the importance of the wage-earner “hu-
man capital”: when the retirement time is sufficiently far into the future this
quantity is large and the wage-earner is able to borrow against his future
earnings to finance spending in the form of consumption and life-insurance
purchase. However, as the wage-earner retirement age starts to approach
and the planning horizon shortens correspondingly, it is no longer optimal to
borrow against future earnings. Instead, the wage-earner accumulates sav-
ings to optimize also the utility of his wealth at the time of retirement, which
plays a more relevant role as the retirement age approaches, in addition to
the utility derived from his family consumption and from the life-insurance
payout in the event of premature death.

Appendix A. Numerical Method

The numerical method described here is inspired in the techniques devel-
oped by Souganidis [39] and Fleming and Souganidis [11]. Let f : [0, T ] ×
R
N × U → R

N , g : [0, T ] × R
N × U → R

N×M , L : [0, T ] × R
N × U → R

and ψ : RN → R be sufficiently regular functions and let W (·) be an M -
dimensional standard Brownian motion defined on an appropriate probabil-
ity space. Consider a stochastic optimal control problem with state variable
dynamics given by a SDE of the form

dX(t) = f(t,X(t), u(t))dt+ g(t,X(t), u(t))dW (t) , (36)

and objective functional of the form

J(t, x;u) = E

[
∫ T

t
L(s,X(s), u(s))ds + ψ(X(T ))

∣

∣

∣
Ft

]

. (37)

Let π = {0 = t0 < t1 < . . . < tm = T} be a partition of [0, T ]. Perform a
discretization of (36) to arrive at the following (random) recursive relation

Xk+1 = Xk + f(tk,Xk, uk)∆k + g(tk,Xk, uk)(∆k)
1/2ηk , k = i0, . . . ,m− 1

Xt = x ,

where i0 ∈ {0, . . . ,m − 1} is such that t ∈ [ti0 , ti0+1), ∆i0 = ti0+1 − t,
∆k = tk+1 − tk for k = i0 + 1, . . . ,m− 1, and η0, . . . , ηm−1 are independent
and identically distributed random vectors of dimension M with E[ηk] = 0
and E[ηkη

T
k ] = identity. To avoid any measurability issues and simplify the

numerical method, let the random variables ηk, k = 0, . . . ,m− 1, take only
finitely many values.

Denote by C0,1
b (RN ) the set of bounded, Lipschitz continuous functions

on R
N . For any ϕ ∈ C

0,1
b (RN ), ∆ > 0, and random variable η with the same

distribution as the random variables η0, . . . , ηm−1, define the operator

F (t,∆)[ϕ(x)] = max
u∈U

{

E

[

ϕ
(

x+ f(t, x, u)∆ + g(t, x, u)∆1/2η
)]

+ L(t, x, u)∆
}

and approximate the value function associated with the stochastic optimal
control problem (36)-(37) by the function Vπ : [0, T ]× R

N → R, given by

Vπ(t, x) = F (t, ti0+1 − t)
m−1
∏

k=i0+1

F (tk, tk+1 − tk)[ψ(x)] ,
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where ψ ∈ C0,1
b (RN ) is the boundary condition associated with the stochastic

optimal control problem (36)-(37), i.e. J(T, x;u) = ψ(x). We remark that
the definition of the approximated value function Vπ given above mimics a
time-discretization of the dynamic programing principle associated with the
optimal control problem (36)-(37).

Suppose that U is a compact metric space, the functions f , g and L are
bounded, uniformly continuous, and Lipschitz continuous with respect to
(t, x) uniformly in u ∈ U , and the function ψ is bounded and Lipschitz con-
tinuous. Then, it can be proved that the limit V = lim|π|→0 Vπ exists locally
uniformly and is the unique viscosity solution of HJB equation associated
with (36)-(37). The proof of such fact falls outside of the scope of this work,
but we believe that the argument of [11, Thm 3.1 and Prop. 2.5] can be
adjusted to obtain a complete proof.

The numerical solutions discussed in Section 4.2 were obtained using a
Fortran implementation of the method described above to approximate both
the value function and the optimal controls of the problem under consid-
eration herein, coupled with Fortran implementations of a steepest descent
algorithm to solve the finite-dimensional optimization problem defining the
corresponding operator F (t,∆), and of an Euler–Maruyama method to nu-
merically approximate the solutions of the SDE describing the wealth process
time evolution.
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[41] B.Z. Temoçin and G.-W. Weber. Optimal control of stochastic hybrid system with

jumps: A numerical approximation. J. Comput. Appl. Math., 259:443–451, 2014.
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[43] K. Uğurlu. Robust utility maximization of terminal wealth with drift and volatility

uncertainty. Optimization, 70(10):2081–2102, 2021.
[44] M.E. Yaari. Uncertain lifetime, life insurance and the theory of the consumer. The

Review of Economic Studies, 32:137–150, 1965.
[45] J. Ye. Optimal life insurance purchase, consumption and portfolio under an uncertain

life. PhD thesis, University of Illinois at Chicago, Chicago, IL, 2006.
[46] J. Yong and X.Y. Zhou. Stochastic Controls: Hamiltonian Systems and HJB Equa-

tions. Springer-Verlag, New York, NY, 1999.



OPTIMAL LIFE-INSURANCE PURCHASE 37

(A.S. Mousa) Dept. of Mathematics, Faculty of Science, Birzeit University,
Palestine

Email address: asaid@birzeit.edu

(D. Pinheiro) Dept. of Mathematics, Brooklyn College of the City Univer-
sity of New York and Dept. of Mathematics, Graduate Center of the City
University of New York

Email address: dpinheiro@brooklyn.cuny.edu

(S. Pinheiro) Dept. of Mathematics and Computer Science, Queensborough
Community College of the City University of New York

Email address: Spinheiro@qcc.cuny.edu

(A.A. Pinto) LIAAD – INESC TEC, Faculty of Science, University of Porto,
Porto and Dept. of Mathematics, Faculty of Science, University of Porto,
Portugal, Portugal

Email address: aapinto@fc.up.pt


