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Abstract. We study the problem faced by a wage earner with an un-
certain lifetime who has access to a Black-Scholes type financial market
consisting of one risk-free security and one risky asset. His preferences
relative to consumption, investment and life insurance purchase are de-
scribed by a robust expected utility. We rewrite this problem in terms
of a two-player zero-sum stochastic differential game and we derive the
wage earner optimal strategies for a general class of utility functions,
studying the case of discounted constant relative risk aversion utility
functions with more detail.
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1. Introduction

This paper extends the contributions of Yaari (1965), who introduced
an optimal consumption problem for an individual with uncertain time of
death within a deterministic investment environment setup, and Hakansson
(1969, 1971), who studied Yaari’s model in the discrete-time case. Merton
(1969, 1971) studied a closely related problem: a continuous-time optimal
consumption and investment problem without any life insurance compo-
nent, with Richard (1975) combining these earlier approaches to obtain a
continuous-time model for optimal consumption, investment and life insur-
ance purchase.

This class of problems has been the subject of intense research activity
in recent years. For instance, Pliska and Ye (2007) studied a continuous-
time model combining the more realistic features of all of those present in
the contemporary literature. Duarte et al. (2014) extended their approach
by considering a financial market comprised of one risk-free security and
an arbitrary number of risky securities, Guambe and Kufakunesu (2015)
broadened it to the case of financial markets determined by geometric Itô–
Lévy jump processes, while Mousa et al. (2016) added to this problem an
insurance market with a fixed number of life insurance providers. Liang
and Guo (2016) looked at this class of problems with an underlying incom-
plete market, for which the stock price has a mean-reverting drift, while
Pirvu and Zhang (2012) and Shen and Wei (2016) considered a complete
financial market with parameters given by random processes adapted to
the Brownian motion filtration. Huang and Milevsky (2008) and Huang
et al. (2008) analyzed a portfolio choice problem for the case of mortal-
ity contingent claims using general HARA utilities. Kraft and Steffensen
(2008) contributed with extensions through a continuous-time multi-state
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Markovian framework, Bruhn and Steffensen (2011) considered the case of
a two-person household, and Kronborg and Steffensen (2013) studied the
problem faced by a wage earner endowed with deterministic labor income
and the possibility to invest in a Black Scholes market and to buy life in-
surance or annuities. Finally, Kwak et al. (2009) studied this problem for a
family with two adults with uncertain lifetime receiving deterministic labor
income.

The most common optimality criteria are based on functionals of von
Neumann-Morgenstern form. Such choice corresponds to an implicit as-
sumption that a financial market investor has complete knowledge regard-
ing the probability measure describing the dynamics of the financial market
risky assets. However, such information is seldom available and even sophis-
ticated investors have some degree of uncertainty regarding such probability
measure and need to consider several probability measures while planning
their investment strategies. To address problems with model uncertainty
such as these, Gilboa and Schmeidler (1989) proposed the use of robust
utility functionals of the form

X 7→ inf
Q∈Q

EQ[U(X)] ,

where Q is a set of prior probability measures and X is a random variable
on an appropriate probability space. Maccheroni et al. (2006) introduced
robust utility functionals of the form

X 7→ inf
Q∈Q
{EQ[U(X)] + γ[Q]} , (1)

where γ[·] is a penalty function defined on the set Q of prior probability
measures. For robust utility functionals of this type, the most popular choice
for penalty functional has been the Kuhlback-Leibler entropy between two
measures, given by

γ[Q] =
1

β
H[Q|P] (2)

for a certain positive penalization parameter β and reference probability
measure P. See, for instance, Hansen and Sargent (2001) and Bordigoni
et al. (2007) for further details in this topic. See also the results by Bal-
tas and Yannacopoulos (2016) and Baltas et al. (2018) concerning portfolio
optimization under uncertainty. More closely connected with life insurance
purchase, Liang and Young (2020) consider the problem of determining the
optimal robust strategy of an individual seeking to maximize a penalized
probability of reaching a bequest goal under uncertainty regarding the drift
of the risky asset and the individual hazard rate of mortality. Shen and
Su (2019) consider a life-cycle planning problem, sharing some similarities
to ours, for an agent seeking to determine robust strategies regarding con-
sumption, investment and life-insurance purchase. Their model contains
uncertainty regarding the economic conditions, in both the risky asset and
the agent income, as well as the individual hazard rate of mortality. Unlike
ours, their model includes a single life-insurance company. Their objective
functional also differs from ours on the modeling of all three components
(life-time consumption, terminal wealth, and bequest). Moreover, under the
setup under consideration herein, we obtain and study explicit solutions for
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the robust optimal control problem under consideration. Wang et al. (2021)
study optimal decisions on consumption, investment and life-insurance pur-
chase for a household over two consecutive generations, both of which are
supposed to be ambiguity-averse expected utility maximizers.

Before proceeding any further, we mention alternative formulations and
extensions for the problem under consideration herein, broadening its scope
and range of applicability. Such formulations may include alternative forms
of coefficient randomness such as, for instance, Markov-switching state vari-
able dynamics as in Azevedo et al. (2014) and Temoçin and Weber (2014) or
semi-Markov modulated state variable dynamics as in Azevedo et al. (2022),
as well as the presence of terms with delay as considered by Savku (2017),
Savku et al. (2017) and Savku and Weber (2018). Additional extensions
may also concern alternative forms of objective functionals such as in Kara
et al. (2019) or Korn and Müller (2022), as well as potential applications to
pension funds such as in Arık et al. (2023) and Baltas et al. (2022).

In this paper, we consider a robust optimal consumption, investment and
life insurance selection-and-purchase problem subject to an underlying fi-
nancial market whose assets prices evolve according to a linear stochastic
differential equation (SDE). The relevance of our analysis lies on the use of a
more realistic model describing the preferences of a wage-earner interacting
with an insurance market composed of several insurance companies. Specif-
ically, we assume that the wage-earner is a fully rational agent whose ulti-
mate aim is to maximize a robust expected utility describing his preferences
towards consumption, life insurance selection and purchase, and wealth at
retirement time. To address such problem, we employ a stochastic differ-
ential games (SDGs) approach to the maximization of such robust utility
functionals. This leads to a characterization of the value of the game and the
corresponding optimal strategies through a Hamilton-Jacobi-Bellman-Isaacs
(HJBI) type partial differential equation (PDE). One of our key conclusions
is that a typical wage-earner would, at any instant of time, buy life insurance
from the company offering the cheaper premium for the same level of protec-
tion. Additionally, in the case of discounted constant relative risk aversion
utilities, we prove that the optimal consumption rate is an increasing func-
tion of both the wage earner wealth and the present value of his cumulative
future earnings with respect to an appropriately chosen discount rate. Fur-
thermore, we provide a detailed characterization of some qualitative features
of the optimal portfolio. We also characterize the least-favorable martingale
measure Q ∈ Q in the sense of Föllmer and Gundel (2006) as corresponding
to absorbing eventual profits available to the wage earner when investing in
the financial market.

This paper is organized as follows. In Section 2 we formulate the problem
under consideration, describing the underlying financial and life insurance
markets, as well as the problem faced by a wage earner with an uncertain
lifetime when choosing his optimal strategies for consumption, investment,
and life insurance purchase. Then, in Section 3, we rewrite the problem
using the specific language of SDGs. In Section 4 we find the optimal robust
strategies for the class of power utility functions. Finally, in Section 5, we
summarize our conclusions.
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2. Problem Formulation

Let T > 0 be a deterministic finite time horizon and, for every t ∈ [0, T ]
and s ∈ [t, T ], let Ωω

t,s be the set of RM -valued continuous functions on [t, s]
taking the value 0 at t, i.e.

Ωω
t,s =

{
ω ∈ C

(
[t, s];RM

)
: ω(t) = 0

}
.

Let Fωt,u be the σ-algebra generated by paths ω ∈ Ωω
t,s up to some time

u ∈ [t, s] with Fωt,s =
{
Fωt,u : u ∈ [t, s]

}
being the corresponding filtration.

When endowed with the Wiener measure Pωt,s on Fωt,s, Ωω
t,s becomes a clas-

sical Wiener space. Let Bt =
{
Bt(s) : s ∈ [t, T ], Bt(t) = 0

}
be a Brownian

motion on the filtered probability space (Ωω
t,T ,Fωt,T ,Fωt,T ,Pωt,T ).

We also consider an absolutely continuous (with respect to the Lebesgue
measure) random variable τ defined on the probability space (Ωτ ,Fτ ,Pτ )
and taking values on R+ = (0,+∞) representing the wage-earner random
life time.

For each t ∈ [0, T ], the probability measure Pτ of the random variable τ
induces a conditional probability measure on Ωτ

t = (t,∞) determined by

Pτt (τ ∈ A) = Pτ (τ ∈ A|τ > t) , A ∈ Fτt ,

where Fτt = B(Ωτ
t ) denotes the Borel σ-algebra of Ωτ

t . Additionally, for
each t ∈ [0, T ] the random variable τ is assumed to be independent of the
filtration Fωt,T generated by the Brownian motion Bt. Using independence

between the Brownian motion Bt and the random variable τ , we define the
sample space Ωt as the direct product

Ωt = Ωω
t,T × Ωτ

t ,

defining accordingly the probability measure

Pt = Pωt,T ⊗ Pτt
and the σ-algebra Ft on Ωt as the completion of Fωt,T ⊗ Fτt with respect to
Pt.

2.1. Financial market model. We define a continuous-time financial mar-
ket consisting of one risk-free asset and one risky-asset. More precisely, we
assume that the prices of the risk-free asset {S0(s) : s ∈ [t, T ]} and the risky
asset {S1(s) : s ∈ [t, T ]} evolve according to the SDEs

dS0(s) = r(s)S0(s)ds,

dS1(s) = µ(s)S1(s)ds+ σ(s)S1(s)dB
t(s) , s ≥ t

with positive initial conditions S0(t) = s0 and S1(t) = s1.

Assumption 2.1. For each t ∈ [0, T ], the riskless interest rate r(·), the
risky-asset appreciation rate µ(·) and the risky-asset volatility σ(·), are de-
terministic continuous functions on the interval [t, T ]. Additionally, we as-
sume that:

(i) the risk-free interest rate r(·) is positive on the interval [t, T ];
(ii) there exist positive real numbers σ− and σ+ such that σ− < σ(s) <

σ+ for all s ∈ [t, T ];
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(iii) there exists a real valued Fωt,T -progressively measurable process ζ(·) ∈
R such that for all s ∈ [t, T ], it holds that

µ(s)− r(s) = σ(s)ζ(s) a.s.

and the following two conditions hold∫ T

t
ζ2(s) ds <∞ a.s.

EPωt,T

[
exp

(
−
∫ T

t
ζ(s) dBt(s)− 1

2

∫ T

t
ζ2(s) ds

)]
= 1 .

The existence of the market price of risk ζ(·) ensures the absence of arbi-
trage opportunities in the financial market defined above. See the excelent
monograph by Karatzas and Shreve (1998) for further details on market
viability.

2.2. Life insurance market model. We assume that the wage-earner is
alive at time t = 0 and his lifetime is the nonnegative continuous random
variable τ defined earlier.

Assumption 2.2. The random variable τ has distribution function G− :
[0,∞) → [0, 1] with bounded and Lipschitz continuous density g : [0,∞) →
R+ such that

G−(t) = Pτ (τ ≤ t) =

∫ t

0
g(s) ds .

Recall that the survival function of τ , G+ : [0,∞)→ [0, 1], is defined as the
probability that the random variable τ exceeds time t, that is

G+(t) = Pτ (τ > t) = 1−G−(t) .

For all 0 ≤ t ≤ s, denote by G+(s; t) and G−(s; t) the conditional proba-
bilities

G+(s; t) = Pτt (τ > s) = Pτ (τ > s|τ > t)

G−(s; t) = Pτt (τ ≤ s) = Pτ (τ ≤ s|τ > t) . (3)

Moreover, notice that for each fixed t ∈ [0, T ], G−(s; t) is the probability
distribution function of a continuous random variable and let g−(s; t) denote
the conditional density function associated with it, that is

g−(s; t) =
d

ds
G−(s; t) .

Finally, observe that g−(t; t) is precisely the hazard rate function associated
with the random variable τ .

The life insurance market under consideration herein is composed by
K insurance companies, with each insurance company continuously offer-
ing life insurance contracts. The wage-earner buys life insurance from the
insurance company k by paying a premium insurance rate pk(t) for each
k = 1, 2, . . . ,K. The insurance contracts are like term insurance, with an
infinitesimally small term. If the wage-earner dies at time τ ≤ T while buy-
ing insurance at the rate pk(t) from the kth insurance company, then that
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insurance company pays an amount

Zk(τ) =
pk(τ)

ηk(τ)

to his estate, where ηk : [0, T ]→ R+ is the kth insurance company premium-
payout ratio.

Assumption 2.3. For every k ∈ {1, . . . ,K}, the kth insurance company
premium-payout ratio ηk(t) is a continuous and deterministic function. Ad-
ditionally, we will assume that the K insurance companies under consider-
ation here offer pairwise distinct contracts in the sense that ηk1(t) 6= ηk2(t)
for every k1 6= k2 and Lebesgue-almost-every t ∈ [0, T ].

As a consequence of Assumption 2.3, we have that the K ×K symmetric

matrix η (t)T η(t), where η(t) = (η1(t), η2(t), . . . , ηK(t))T ∈ (R+)
K

, is non-
singular for Lebesgue almost-every t ∈ [0, T ].

The life insurance contract ends when the wage-earner dies or achieves
retirement age, whichever happens first. Therefore, the wage-earner’s total
legacy to his estate in the event of a premature death at time τ ≤ T is given
by

Z(τ) = X(τ) +
K∑
k=1

pk(τ)

ηk(τ)
, (4)

where X(t) denotes the wage-earner’s wealth at time t ∈ [0, T ].
We represent the wage-earner life insurance purchase rate as a vector

p(t) = (p1(t), p2(t), . . . , pK(t))T ∈ (R+
0 )K ,

where for each k ∈ {1, 2, . . . ,K}, the quantity pk(t) denotes the life insurance
purchase rate from the kth insurance company at time t ∈ [0,min{τ, T}].
Note that a zero component in p(t) represents the absence of any life insur-
ance contract between the wage-earner and a certain insurance company.

2.3. The wealth process. Let us define the random horizon ξ as

ξ = min{τ, T}
and notice that ξ takes values on the interval [0, T ].

Given an initial time t ∈ [0, T ], the wage-earner receives income i(s) at a
continuous rate during the period [t, ξ], i.e. the income will be terminated
either by his death or his retirement, whichever happens first.

Assumption 2.4. The income function i : [0, T ] → R+
0 is a deterministic

Borel-measurable function satisfying the integrability condition:∫ T

0
i(s) ds <∞ .

Let c(s) denote the consumption rate adopted by the wage-earner at time
s ∈ [t, T ] and let θ(s) denote the fraction of the wage-earner’s wealth al-
located to the risky asset S1 at time s ∈ [t, T ]. Clearly, the wage-earner
invests 1− θ(s) of her wealth on the risk-free asset S0.

Assumption 2.5. For every t ∈ [0, T ], the control variables satisfy the
following:
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(i) the consumption process {c(s) : s ∈ [t, T ]} is a Fωt,T -progressively
measurable nonnegative process satisfying:∫ T

t
c(s) ds <∞ a.s..

(ii) the portfolio process {θ(s) : s ∈ [t, T ]} is Fωt,T -progressively measur-
able and such that∫ T

t
θ2(s) ds <∞ a.s..

(iii) for all k = 1, 2, . . . ,K, the kth company premium insurance rate
{pk(s) : s ∈ [t, T ]} is nonnegative a Fωt,T -predictable process, i.e.

pk(t) is measurable with respect to the smallest σ-algebra on R+
0 ×Ω

such that all left-continuous and adapted processes are measurable.

The wealth process X(s), for s ∈ [t, T ], is defined through the SDE

dX(s) =

(
i(s)− c(s)−

K∑
k=1

pk(s) +

(
(1− θ(s))r(s) + θ(s)µ(s)

)
X(s)

)
ds

+θ(s)X(s)σ(s)dBt(s) , (5)

with initial condition X(t) = x.

2.4. The robust consumption, investment and life insurance pur-
chase problem. Define Yt as the set of R-valued Fωt,T -progressively mea-

surable stochastic processes {y(s) : s ∈ [t, T ]} satisfying

Pωt,T
[∫ T

t
y2(s) ds <∞

]
= 1

and the Novikov condition

EPωt,T

[
exp

(
1

2

∫ T

t
y2(s) ds

)]
<∞ . (6)

Note that the Novikov condition (6) ensures that the stochastic process

M(s) = exp

{∫ s

t
y(u) dBt(u)− 1

2

∫ s

t
y2(u) du

}
, s ∈ [t, T ] (7)

is a (Fωt,T ,Pωt,T ) martingale. Additionally, each element y(·) ∈ Yt uniquely

determines a probability measure Qt(y) on Fωt,T with the property that

dQt(y) = M(T ) dPωt,T , (8)

where M(·) is as given in (7). In what follows, we denote by Q the set of all
probability measures Qt(y) on Fωt,T for which property (8) holds. Finally,

we denote by Q̃ the set of probability measures

Q̃ = {Qt(y)⊗ Pτt : Qt(y) ∈ Q} .
Let U(t, c, x) be the wage-earner’s utility derived from a consumption

level c ∈ [0,+∞) at time t while holding wealth x, let L(t, z) be the utility
function for the size of the wage-earners’s legacy z, as given in (4), in case
death occurs at time t ∈ [0, T ], and let Ψ(x) be the utility obtained from
holding wealth x at retirement time T .
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Assumption 2.6. The following conditions hold for the utility functions U ,
L and Ψ:

a) U : D(U) ⊆ [0, T ] × R+
0 × R → R is such that for every (t, x) ∈

[0, T ] × R the function U(t, ·, x) is twice differentiable, strictly in-
creasing, strictly concave, and its first derivative maps R+ onto R+.
Additionally, both U and the partial derivative of U with respect to
its second variable are continuous functions of (t, x).

b) L : D(L) ⊆ [0, T ] × R → R is such that for every t ∈ [0, T ] there
exists an interval I(t) of the form (a(t),+∞) on which L(t, ·) is
twice differentiable, strictly increasing, strictly concave, and its first
derivative maps I(t) onto R+. Additionally, both L and the partial
derivative of L with respect to its second variable are continuous
functions of t.

c) Ψ : R → R is a twice differentiable, strictly increasing and strictly
concave function.

We now define the set of admissible controls. The formulation used here
is standard in optimal control (see, e.g. Øksendal and Sulem (2005) or Yong
and Zhou (1999)).

Definition Denote by A(t, x) the set of admissible control processes on
[t, T ], i.e. triples (c, θ, p) satisfying Assumption 2.6 for which:

i) the SDE (5) subject to the boundary condition X(t) = x has a

unique solutionXc,θ,p
t,x (·) under the choice of control (c, θ, p) ∈ A(t, x);

ii) the following integrability conditions hold:

EPωt,T

[∫ T

t

∣∣∣U(s, c(s), Xc,θ,p
t,x (s))

∣∣∣ ds

]
<∞

EPωt,T

[∫ T

t

∣∣∣L(s, Zc,θ,pt,x (s)
)∣∣∣ ds

]
<∞

EPωt,T

[∣∣∣Ψ(Xc,θ,p
t,x (T ))

∣∣∣] <∞ ,

where Zc,θ,pt,x (·) is as given in (4) under the choice of control (c, θ, p) ∈
A(t, x).

Let us define an entropy functional of Kuhlback-Leibler type consistent
with the random horizon ξ as

Hξ[Qt(y)|Pωt,T ] = EQt(y)⊗Pτt

[
logM(ξ)

]
, (9)

where M(·) is as given in (7). Given (c, θ, p) ∈ A(t, x), we consider a payoff
functional of the same form as the robust utility functional (1)-(2), namely

J(t, x; c(·), θ(·), p(·)) = inf
Q̃t(y)∈Q̃

{
EQ̃t(y)

[∫ ξ

t
U
(
s, c(s), X

c,θ,p,Qt(y)
t,x (s))

)
ds

+Ψ(X
c,θ,p,Qt(y)
t,x (T ))I(T,+∞)(τ) + L(τ, Z(τ))I[0,T ](τ)

]

+
1

β
Hξ[Qt(y)|Pωt,T ]

}
, (10)
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where X
c,θ,p,Qt(y)
t,x (s) is now the solution of equation (5) associated with the

admissible strategies (c, θ, p) ∈ A(t, x), the initial condition x when s = t,

and the least favorable probability measure Q̃t(y) = Qt(y)⊗ Pτt ∈ Q̃.
The wage-earner’s goal is to solve the robust consumption, investment

and life insurance purchase problem

sup
(c,θ,p)∈A(t,x)

J(t, x; c(·), θ(·), p(·)) . (11)

In the next section we will rephrase the robust optimization problem above
from the point of view of SDGs.

3. An equivalent stochastic differential game

In this section we formulate the robust consumption, investment and life
insurance purchase problem (11) in the language of SDGs. We start by
obtaining a convenient alternative representation for the payoff function
defined in (10) before proceeding to formulate the robust utility problem
under consideration as a SDG.

3.1. An equivalent representation for the payoff functional. Recall
the definition of the set Yt given in Section 2.4. Girsanov Theorem yields

that the stochastic process B̃t = {B̃t(s) : s ∈ [t, T ]} with decomposition
given by

B̃t(s) = Bt(s)−
∫ s

t
y(u) du , t ≤ s < T (12)

is a one-dimensional (Fωt,T ,Qt(y)) Brownian motion, where Qt(y) is the ele-

ment of Q determined by the process y(·) ∈ Yt.
The change of measure from Pωt,T to Qt(y) will produce a change in the

drift part of the SDE (5) as detailed in the following proposition.

Lemma 3.1. Let Qt(y) denote the probability measure on Q associated with
the stochastic process y(·) ∈ Yt. The wealth process X(·) under the equivalent
probability measure Qt(y) ∈ Q is determined by

dX(s) =

(
i(s)− c(s)−

K∑
k=1

pk(s)

+

(
(1− θ(s))r(s) + θ(s) (µ(s) + σ(s)y(s))

)
X(s)

)
ds

+θ(s)X(s)σ(s)dB̃t(s)

X(t) = x . (13)
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Proof. Substituting equation (12) into (5), yields

dX(s) =

(
i(s)− c(s)−

K∑
k=1

pk(s) +

(
(1− θ(s))r(s) + θ(s)µ(s)

)
X(s)

)
ds

+θ(s)X(s)σ(s)dB̃t(s) + θ(s)X(s)σ(s)y(s)ds

=

(
i(s)− c(s)−

K∑
k=1

pk(s)

+

(
(1− θ(s))r(s) + θ(s) (µ(s) + σ(s)y(s))

)
X(s)

)
ds

+θ(s)X(s)σ(s)dB̃t(s) ,

as required. �

The result below provides a characterization of the entropy functional (9)
in terms of the stochastic processes y(·) ∈ Yt.

Lemma 3.2. Let Qt(y) denote the probability measure on Q associated with
the stochastic process y(·) ∈ Yt. The entropy functional Hξ[Qt(y)|Pωt,T ] is
given by

Hξ[Qt(y)|Pωt,T ] = EQt(y)⊗Pτt

[1

2

∫ ξ

t
y2(s) ds

]
, (14)

where y(·) is the element of Yt associated with Qt(y) ∈ Q.

Proof. By definition, we have that

Hξ[Qt(y)|Pωt,T ] = EQt(y)⊗Pτt

[
logM(ξ)

]
.

Given the representation (7) for M(·), we obtain

Hξ[Qt(y)|Pωt,T ] = EQt(y)⊗Pτt

[ ∫ ξ

t
y(s) dBt(s)− 1

2

∫ ξ

t
y2(s) ds

]
.

Combining the equality above with the decomposition (12), we obtain

Hξ[Qt(y)|Pωt,T ] = EQt(y)⊗Pτt

[ ∫ ξ

t
y(s) dB̃t(s) +

1

2

∫ ξ

t
y2(s) ds

]
.

Noticing that B̃t is an (Fωt,T ,Qt(y)) one-dimensional Brownian motion, the

expected value of the Itô integral is zero and we arrive at (14). �

Proposition 3.3. Let Qt(y) denote the probability measure on Q associated
with the stochastic process y(·) ∈ Yt. The payoff functional J defined in (10)
admits the representation

J(t, x; c(·), θ(·), p(·)) =

inf
y(·)∈Yt

EQt(y)⊗Pτt

[ ∫ ξ

t
U
(
t, c(s), X

c,θ,p,Qt(y)
t,x (s)

)
+

1

2β
y2(s) ds (15)

+Ψ(X
c,θ,p,Qt(y)
t,x (T ))I(T,+∞)(τ) + L(τ, Z(τ))I[0,T ](τ)

]
.
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Proof. Given the robust utility functional (10), the characterization of the

set Q in terms of Yt and that of Q̃ in terms of Q, we obtain that J is given
by

J(t, x; c(·), θ(·), p(·)) = inf
Q̃t(y)∈Q̃

EQ̃t

[∫ ξ

t
U
(
t, c(s), X

c,θ,p,Qt(y)
t,x (s)

)
ds

+Ψ(X
c,θ,p,Qt(y)
t,x (T ))I(T,+∞)(τ) + L(τ, Z(τ))I[0,T ](τ)

+
1

β
Hξ[Qt(y)|Pωt,T ]

]

= inf
Qt(y)∈Q

EQt(y)⊗Pτt

[∫ ξ

t
U
(
t, c(s), X

c,θ,p,Qt(y)
t,x (s)

)
ds

+Ψ(X
c,θ,p,Qt(y)
t,x (T ))I(T,+∞)(τ) + L(τ, Z(τ))I[0,T ](τ)

+
1

β
Hξ[Qt(y)|Pωt,T ]

]

= inf
y(·)∈Yt

EQt(y)⊗Pτt

[∫ ξ

t
U
(
t, c(s), X

c,θ,p,Qt(y)
t,x (s)

)
ds

+Ψ(X
c,θ,p,Qt(y)
t,x (T ))I(T,+∞)(τ) + L(τ, Z(τ))I[0,T ](τ)

+
1

β
Hξ[Qt(y)|Pωt,T ]

]
.

Combining the identity above with Lemma 3.2 and rearranging terms, we
arrive at (15). �

The following Lemma enables the transformation of the optimal control
problem described above to an equivalent one with a fixed planning horizon.
The statement presented below extends the analogous result by Ye (2006)
to the case of robust expected utilities.

Lemma 3.4. Suppose that Assumptions 2.1–2.6 hold and let (c, θ, p) ∈
A(t, x). If the random variable τ is independent of the filtration Fωt,T , then

J(t, x; c(·), θ(·), p(·))

= inf
y(·)∈Yt

EQt(y)

[ ∫ T

t

{
G+(s; t)

(
U
(
t, c(s), X

c,θ,p,Qt(y)
t,x (s)

)
+

1

2β
y2(s)

)
+ g−(s; t)L (s, Z(s))

}
ds+G+(T ; t) Ψ(X

c,θ,p,Qt(y)
t,x (T ))

]
,

where the conditional probabilities G+(s; t) and g−(s; t) are as given (3).

3.2. SDG Formulation. In what follows we characterize the optimal con-
sumption, investment and life insurance purchase strategies under a robust
expected utility in terms of the equilibria of an appropriate two-player zero-
sum SDG.
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Relying on Proposition 3.3 and Lemma 3.4, we define a payoff functional,
which we will denote as J, as follows

J(t, x; c(·), θ(·), p(·), y(·))

= EQt(y)

[ ∫ T

t

{
G+(s; t)

(
U
(
t, c(s), X

c,θ,p,Qt(y)
t,x (s)

)
+

1

2β
y2(s)

)
(16)

+ g−(s; t)L (s, Z(s))

}
ds+G+(T ; t) Ψ(X

c,θ,p,Qt(y)
t,x (T ))

]
,

where Qt(y) denotes the probability measure on Q associated with the sto-
chastic process y(·) ∈ Yt.

The lower value function of the SDG with state variable dynamics given
by (13) and payoff functional (16), is defined as

V −(t, x) = inf
y∈Yt

sup
(c,θ,p)∈A(t,x)

J(t, x; c(·), θ(·), p(·), y(·)) . (17)

The corresponding upper value function is defined as

V +(t, x) = sup
(c,θ,p)∈A(t,x)

inf
y∈Yt

J(t, x; c(·), θ(·), p(·), y(·)) . (18)

The next result provides the HJBI equations for the value functions (17)
and (18). We skip its proof and refer the interested reader to Ferreira et al.
(2019).

Theorem 3.5 (HJBI equation). Suppose that Assumptions 2.1–2.6 hold and
that the value functions V − and V + are C1,2 ([0, T ]× R;R). Then, V − and
V + are the solution to the HJBI equations{

Wt(t, x)− g−(t; t)W (t, x) + H−(t, x,Wx,Wxx) = 0

W (T, x) = Ψ(x)
(19)

and {
Wt(t, x)− g−(t; t)W (t, x) + H+(t, x,Wx,Wxx) = 0

W (T, x) = Ψ(x) ,
(20)

where, for A, q ∈ R, x ∈ R and t ∈ [0, T ], we have

H−(t, x, q, A) = max
c≥0,θ∈R,p∈(R+

0 )K
min
y∈R

H(t, x, c, θ, p, y, q, A)

H+(t, x, q, A) = min
y∈R

max
c≥0,θ∈R,p∈(R+

0 )K
H(t, x, c, θ, p, y, q, A) ,

and

H(t, x, c, θ, p, y, q, A)

=

(
i(t)− c−

K∑
k=1

pk +

(
r(t) + θ (µ(t)− r(t) + σ(t)y)

)
x

)
q (21)

+
1

2
(θxσ(t))2A+

1

2β
y2 + U(t, c, x) + g−(t; t)L

(
t, x+

K∑
k=1

pk
ηk(t)

)
.

For each (t, x) ∈ [0, T ]×R, let Uc(t, ·, x) and Lz(t, ·) denote, respectively,
the derivatives of the utility functions U(t, ·, x) and L(t, ·) with respect to
their second argument. Since, by Assumption 2.6, U(t, ·, x) and L(t, ·) are
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twice differentiable and strictly concave with respect to its second argument,
the corresponding derivatives are invertible. Hence, we define I1 : [0, T ] ×
R+ × R→ R+ and I2 : [0, T ]× R+ → R+ to be the (unique) functions such
that

I1(t, Uc(t, y, x), x) = y and Uc(t, I1(t, y, x), x) = y

I2(t, Lz(t, y)) = y and Lz(t, I2(t, y)) = y

for every (t, x) ∈ [0, T ]× R and y ∈ R.

Proposition 3.6. Suppose that each of the HJBI equations (19) and (20)
admits a unique smooth solution. For the SDG with state variable dynamics
given by (13) and payoff functional (16), it holds that

V −(t, x) = V +(t, x)

for every (t, x) ∈ [0, T ] × R. Moreover, the optimal strategies in feedback
form are given by

ŷ(t, x) =
µ(t)− r(t)

σ(t)

βV 2
x

Vxx − βV 2
x

ĉ(t, x) = I1(t, Vx, x)

θ̂(t, x) = −µ(t)− r(t)
xσ2(t)

Vx
Vxx − βV 2

x

and, for each k ∈ {1, 2, . . . ,K}, we have that

p̂k(t, x) =

{
max

{
0,
[
I2

(
t, ηk(t) (g−(t; t))

−1
Vx

)
− x
]
ηk(t)

}
, if k = k∗(t)

0 , otherwise
,

where
k∗(t) = arg min

k∈{1,2,...,K}
{ηk(t)} , (22)

and Vx ≡ Vx(t, x) and Vxx ≡ Vxx(t, x) denote, respectively, the first and
second derivatives of V with respect to x.

Proof. It is enough to check that the Isaacs condition holds, i.e.

H−(t, x, q, A) = H+(t, x, q, A) ,

for every t ∈ [0, T ], x ∈ R and q, A ∈ R.
We evalute the function H+ first. Differentiating the Hamiltonian function

H given in (21) with respect to c, θ and p we get

Hc(t, x, c, θ, p, y, q, A) = −q + Uc(t, c, x)

Hθ(t, x, c, θ, p, y, q, A) = (µ(t)− r(t) + σ(t)y)xq + θx2σ2(t)A

Hpk(t, x, c, θ, p, y, q, A) = −q +
g−(t; t)

ηk(t)
Lz

(
t, x+

K∑
k=1

pk
ηk(t)

)
.

Setting the first two derivatives equal to zero, yields

c(t, x, y, q, A) = I1(t, q, x)

θ(t, x, y, q, A) = −(µ(t)− r(t) + σ(t)y) q

xσ2(t)A
. (23)

To solve the constrained optimization problem associated with the variable
p ∈ (R+

0 )K , we resort to the Kuhn-Tucker conditions. Namely, we look
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for a solution (p1, . . . , pK , µ1, . . . , µK) to the following set of equalities and
inequalities with all the previous functions being functions of (t, x, y, q, A):

g−(t; t)

ηk(t)
Lz

(
t, x+

K∑
k=1

pk
ηk(t)

)
− q = −µk ,

pk ≥ 0 , (24)

µk ≥ 0 , k = 1, 2, . . . ,K

pkµk = 0 .

We note that for k1 6= k2, if we have µk1(t, x, y, q, A) = µk2(t, x, y, q, A)
for some (t, x, y, q, A) ∈ [0, T ] × R4, one must have that ηk1(t) = ηk2(t).
Thus, relying on the assumption that all insurance companies offer pairwise
distinct contracts, we obtain that for every k1, k2 ∈ {1, 2, . . . ,K} such that
k1 6= k2 and every x ∈ R, µk1(t, x, y, q, A) 6= µk2(t, x, y, q, A) for Lebesgue
a.e. t ∈ [0, T ]. In particular, we obtain that for every (x, y, q, A) ∈ R4 and
Lebesgue a.e. t ∈ [0, T ], there is at most one k ∈ {1, 2, . . . ,K} such that
µk(t, x, y, q, A) = 0. Therefore, for Lebesgue a.e. t ∈ [0, T ], there is at most
one k ∈ {1, 2, . . . ,K} such that pk(t, x, y, q, A) 6= 0.

Using once again the first identity in (24), we get that

ηk1(t) (q − µk1) = ηk2(t) (q − µk2) ,

where the dependence of µk1 and µk2 on (t, x, y, q, A) has been dropped
to simplify the notation. As a consequence of the identity above, we con-
clude that if µk1(t, x, y, q, A) > µk2(t, x, y, q, A) for (t, x, y, q, A) ∈ [0, T ] ×
R4, then ηk1(t) > ηk2(t). Furthermore, if for some t ∈ [0, T ] we have
µk1(t, x, y, q, A) = 0, then ηk1(t) < ηk2(t) for every k2 ∈ {1, 2, . . . ,K} such
that k1 6= k2.

From this point onward, let k∗(t) be as given in (22). Then, either we have
pk(t, x, y, q, A) = 0 for every k ∈ {1, 2, . . . ,K} or else pk∗(t)(t, x, y, q, A) > 0
is a solution to

g−(t; t)

ηk∗(t)(t)
Lz

(
t, x+

pk∗(t)

ηk∗(t)(t)

)
= q ,

yielding

pk(t, x, q, A) =

{
max

{
0,
[
I2

(
t, ηk(t) q
g−(t;t)

)
− x
]
ηk(t)

}
, if k = k∗ (t)

0 , otherwise
.

(25)
Substituting the expressions of c, θ and pk given in (23) and (25) back into
the Hamiltonian function H, we get

H̃(t, x, y, q, A) = i(t)− I1(t, q, x)q − pk∗(t)(t, x, q, A)q + r(t)xq

−1

2

(µ(t)− r(t) + σ(t)y)2

σ2(t)

q2

A
+

1

2β
y2 + U(t, I1(t, q, x), x)

+g−(t; t)L

(
t, x+

pk∗(t)(t, x, q, A)

ηk∗(t)(t)

)
.
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Differentiating the function H̃ given above with respect to y, we obtain

H̃y(t, x, y, q, A) =

(
1

β
− q2

A

)
y − (µ(t)− r(t))

σ(t)

q2

A
.

Setting the derivative above equal to zero, we get

ŷ(t, x, q, A) =
µ(t)− r(t)

σ(t)

βq2

A− βq2
. (26)

Finally, substituting the expression in (26) into (23), we get the saddle point
control functions

ĉ(t, x, q, A) = I1(t, q, x)

θ̂(t, x, q, A) = −µ(t)− r(t)
xσ2(t)

q

A− βq2
(27)

p̂k(t, x, q, A) =

{
max

{
0,
[
I2

(
t, ηk(t) q
g−(t;t)

)
− x
]
ηk(t)

}
, if k = k∗ (t)

0 , otherwise
.

Substituting c, θ, p, y by ĉ, θ̂, p̂, ŷ given in (26) and (27) in H, yields

H+(t, x, q, A) = i(t) +
(
r(t)x− I1(t, q, x)− p̂k∗(t)(t, x, q, A)

)
q

+
(µ(t)− r(t))2

2σ2(t)

βq4 − q2A
(A− βq2)2

+ U(t, I1(t, q, x), x)

+g−(t; t)L

(
t, x+

p̂k∗(t)(t, x, q, A)

ηk∗(t)(t)

)
.

We now evaluate the function H−. Differentiating the Hamiltonian func-
tion H given in (21) with respect to y, we get

Hy(t, x, c, θ, y, q, A) = θσ(t)xq +
1

β
y ,

and setting the derivative equal to zero, yields

y(t, x, c, θ, q, A) = −βσ(t)xqθ . (28)

Substituting the expression in (28) back into the Hamiltonian function H,
gives

Ĥ(t, x, c, θ, q, A)

=

(
i(t)− c−

K∑
k=1

pk +

(
r(t) + θ

(
µ(t)− r(t)− σ2(t)βxqθ

))
x

)
q

+
1

2
(θxσ(t))2A+

1

2β
(βσ(t)xqθ)2 + U(t, c, x)

+g−(t; t)L

(
t, x+

K∑
k=1

pk
ηk(t)

)
.
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Again, differentiating the function above with respect to c, θ and p, we get

Ĥc(t, x, c, θ, q, A) = −q + Uc(t, c, x)

Ĥθ(t, x, c, θ, q, A) = (µ(t)− r(t))xq +
(
x2σ2(t)A− βσ2(t)x2q2

)
θ + θx2σ2(t)A

Ĥpk(t, x, c, θ, q, A) = −q +
g−(t; t)

ηk(t)
Lz

(
t, x+

K∑
k=1

pk
ηk(t)

)
.

Setting the three derivatives above equal to zero, yields

ĉ(t, x, q, A) = I1(t, q, x)

θ̂(t, x, q, A) = −µ(t)− r(t)
xσ2(t)

q

A− βq2
. (29)

Using a similar argument as before, resorting to the Kuhn-Tucker conditions,
we get

p̂k(t, x, q, A) =

{
max

{
0,
[
I2

(
t, ηk(t) q
g−(t;t)

)
− x
]
ηk(t)

}
, if k = k∗ (t)

0 , otherwise
.

(30)
As before, substituting the second expression in (29) into (28), we obtain

ŷ(t, x, q, A) =
µ(t)− r(t)

σ(t)

βq2

A− βq2
. (31)

Substituting c, θ, p, y by ĉ, θ̂, p̂k, ŷ given in (29) and (31) in H, yields

H−(t, x, q, A) = i(t) +
(
r(t)x− I1(t, q, x)− p̂k∗(t)(t, x, q, A)

)
q

+
(µ(t)− r(t))2

2σ2(t)

βq4 − q2A
(A− βq2)2

+ U(t, I1(t, q, x), x)

+g−(t; t)L

(
t, x+

p̂k∗(t)(t, x, q, A)

ηk∗(t)(t)

)
.

ensuring that H+(t, x, q, A) = H−(t, x, q, A) for every t ∈ [0, T ], x ∈ R and
q, A ∈ R. �

Under the assumption that each of the HJBI equations (19) and (20)
admits a unique smooth solution, Proposition 3.6 guarantees that the SDG
lower and upper value functions given in (17) and (18) are identical and
satisfy the PDE

Wt − g−(t; t)W +
(
i(t) + r(t)x− I1(t,Wx, x)− p̂k∗(t)(t, x,Wx,Wxx)

)
Wx

+
(µ(t)− r(t))2

2σ2(t)

βW 4
x −W 2

xWxx

(Wxx − βW 2
x )2

+ U(t, I1(t,Wx, x), x) (32)

+g−(t; t)L

(
t, x+

p̂k∗(t)(t, x,Wx,Wxx)

ηk∗(t)(t)

)
= 0

with boundary condition

W (T, x) = Ψ(x) . (33)

It should be stressed that the optimal life insurance selection and purchase
strategy given in Theorem 3.6 directs the wage-earner to focus all of his
purchases on the life insurance company offering the highest premium for
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the same price, i.e. the insurance company with the lowest premium payout
ratio ηk∗(t)(t). Typically, investments on financial markets are of a diversified
nature. This unusual behavior arises under the assumptions used herein
where the life insurance contracts carry no default risk.

4. A special case with Closed Form Solutions

In this section, we will find closed form representations for both the solu-
tion of a boundary value problem of the type (32)-(33) and the corresponding
optimal robust strategies. For that purpose, we will restrict our attention
to the case where:

i) the life insurance market has one representative company, trad-
ing life-insurance contracts with (continuous) premium payout ratio
η(t) = ηk∗(t)(t), where k∗(t) is as given in (22). Moreover, the life
insurance purchase rate is allowed to be any real value.

ii) the wage preferences are described by the constant relative risk aver-
sion utility functions

U(t, c, x) = e−ρt
cγ

γ
, L(t, z) = e−ρt

zγ

γ
, and Ψ(x) = e−ρT

xγ

γ

with the parameter γ 6= 0 is such that 1 − γ > 0 and the discount
rate ρ is positive.

iii) the penalization parameter β of (2) is a function of both t and x,
namely

β(t, x) =
β0

γW (t, x)
,

where β0 is a positive constant.

Remark 4.1. A few comments are now in order regarding the assumptions
listed immediately above:

• In what concerns item i), we recall that Proposition 3.6 implies that
the wage-earner will buy life insurance only from the company with
the lowest premium payout ratio, thus calling for a better under-
standing of the representative life insurance company market case
described above. We drop the nonnegativity constraint to pursue a
more complete understanding of the rational wage-earner preferences
towards life insurance purchase simplify the analysis that follows.
• As for item iii), we observe that such model for the preference for ro-

bustness was initially proposed by Maenhout (2004) and later adopted
by many other authors (e.g., Anderson et al. (2009), Branger et al.
(2013), Flor and Larsen (2014) and Liu (2010), among others).
Maenhout (2004) proposed replacing the constant preference for ro-
bustness parameter, by a nonconstant, state dependent β(t, x) > 0.
The overall intuition is that larger values of β(t, x) correspond to
less faith in the model.

Before proceeding to the statement of our next result, we introduce addi-
tional notation. Let ξ(t) denote the market price of risk or Sharpe ratio, i.e.
the average return per unit of volatility σ(t), of the financial market under
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consideration:

ξ(t) =
µ(t)− r(t)

σ(t)
.

Proposition 4.2. Suppose that Assumptions 2.1-2.5 hold. Then, under
the setup described in itens i), ii) and iii) above, the HJBI boundary value
problem (32)-(33) has a solution of the form

W (t, x) =
a(t)

γ
(x+ b(t))γ ,

where

a(t) = e−ρt
(

e−
∫ T
t P2(s) ds +

∫ T

t
e−

∫ s
t P2(u) du P1(s)ds

)1−γ

P1(t) = 1 + η(t)
− γ

1−γ
(
g−(t; t)

) 1
1−γ (34)

P2(t) =
1

1− γ

(
ρ+ g−(t; t)− γ

(
η(t) + r(t) +

ξ2(t)

2(β0 + 1− γ)

))
b(t) =

∫ T

t
i(s)e−

∫ s
t r(v)+η(v)dvds .

Moreover, the corresponding optimal strategies are given by

ĉ(t, x) =
(
eρta(t)

)− 1
1−γ (x+ b(t))

θ̂(t, x) =
(x+ b(t))

xσ(t)(β0 + 1− γ)
ξ(t)

ŷ(t, x) = − β0
β0 + 1− γ

ξ(t)

p̂(t, x) =

[(
eρta(t)η(t)

g−(t; t)

)− 1
1−γ

(x+ b(t))− x

]
η(t)

Proof. If a solution to (32)-(33) is to exist, then using the proof of Proposi-
tion 3.6, we obtain that:

ĉ(t, x) = I1(t,Wx, x)

θ̂(t, x) = −µ(t)− r(t)
xσ2(t)

Wx

Wxx − βW 2
x

ŷ(t, x) =
µ(t)− r(t)

σ(t)

βW 2
x

Wxx − βW 2
x

p̂(t, x) =

[
I2

(
t,
η(t) Wx

g−(t; t)

)
− x
]
η(t) .

Substituting in (32)-(33) an ansatz of the form

W (t, x) =
a(t)

γ
(x+ b(t))γ ,
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we get

1

γ

da

dt
(t) +

a(t)

x+ b(t)

db

dt
(t)− g−(t; t)

γ
a(t)

+
1− γ
γ

(
1 + (η(t))

− γ
1−γ
(
g−(t; t)

) 1
1−γ
)

e
− ρt

1−γ a(t)
− γ

1−γ

+
i(t) + (η(t) + r(t))x

x+ b(t)
a(t) +

(µ(t)− r(t))2

2σ2(t) (β0 + 1− γ)
= 0 .

We observe that this problem decouples into two independent boundary
value problems for a(t) and b(t) which are given, respectively, by

1

γ

da

dt
(t) +

(
η(t) + r(t)− g−(t; t)

γ
+

(µ(t)− r(t))2

2σ2(t) (β0 + 1− γ)

)
a(t)

+
1− γ
γ

(
1 + (η(t))

− γ
1−γ
(
g−(t; t)

) 1
1−γ
)

e
− ρt

1−γ a(t)
− γ

1−γ = 0 (35)

a(T ) = e−ρt ,

and

db

dt
(t)− (η(t) + r(t)) b(t) + i(t) = 0

b(T ) = 0 . (36)

To find a solution to the boundary value problem (35), we write a(t) in the
form

a(t) = e−ρtA(t)1−γ ,

obtaining a new boundary value problem for A(t), that is given by

dA(t)

dt
− P2(t)A(t) + P1(t) = 0

A(T ) = 1 , (37)

where P1(t) and P2(t) are as in (34). The solution to (37) is given by

A(t) = e−
∫ T
t P2(s) ds +

∫ T

t
e−

∫ s
t P2(u) du P1(s)ds ,

and the solution to (35) is as in (34). Finally, the solution to (36) is as in
(34), completing the proof. �

The next result provides a qualitative characterization for the optimal
purchase strategy, p̂(t, x). Before proceeding to its statement, we introduce
some notation: Let D(t) be the quantity given by

D(t) =

(
eρta(t)η(t)

g−(t; t)

)− 1
1−γ

. (38)

Corollary 4.3. The optimal insurance purchase strategy p̂(t, x) has the fol-
lowing properties:

a) it is an increasing function of the wealth x if D(t) ≥ 1 for all t ∈
[0, T ], and a decreasing function of the wealth x if D(t) ≤ 1 for all
t ∈ [0, T ];

b) it is an increasing function of the wage earner’s human capital b(t);
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c) it is negative for suitable pairs of wealth x and time t;
d) with all other parameters constant, including t and x, the optimal

life insurance purchase rate p̂(t, x) is an increasing function of the
discount rate ρ.

Proof. Using (38) and Proposition 4.2, we write the optimal insurance pur-
chase strategy p̂(t, x) as

p̂(t, x) = η(t) ((D(t)− 1)x+D(t)b(t)) .

Items a) and b) follow immediately from the representation above. For
the proof of item c), note that p̂(t, x) is negative for all (t, x) ∈ [0, T ]× R+

such that

x >
D(t)

1−D(t)
b(t)

=

(
eρta(t)η(t)

)− 1
1−γ

(g−(t; t))
− 1

1−γ − (eρta(t)η(t))
− 1

1−γ
b(t) > 0 ,

and positive otherwise. To prove d), note that P1(t) is independent of the
discount factor ρ. Moreover, P2(t) is a decreasing function of ρ. As a
consequence, eρta(t) is decreasing with ρ. This leads to the conclusion that
p̂(t, x) is increasing with ρ. �

We will now discuss the qualitative properties of the optimal portfolio
process, θ̂(t, x).

Corollary 4.4. The optimal portfolio process θ̂(t, x) is such that:

a) θ̂(t, x) has the same sign as ξ(t);

b) θ̂(t, x) is a decreasing function of the total wealth x if ξ(t) > 0 and
an increasing function of x if ξ(t) < 0 for all t ∈ [0, T ];

c) θ̂(t, x) is an increasing function of the wage earner’s human capital
b(t) if ξ(t) > 0 for all t ∈ [0, T ] and a decreasing function of b(t) if
ξ(t) < 0 for all t ∈ [0, T ].

Furthermore, the following equalities hold

lim
x→0+

θ̂(t, x) = +∞,

lim
x→∞

θ̂(t, x) =
ξ(t)

σ(t) (β0 + 1− γ)
,

lim
t→T

θ̂(t, x) =
ξ(T )

σ(T ) (β0 + 1− γ)
.

Proof. Using the expression of θ̂(t, x) in Proposition 4.2 and the positivity
of b(t), items a), b) and c) follow immediately. The limiting behaviors
presented on the second part of the corollary also follow from the form of
θ̂(t, x) in Proposition 4.2. �

Finally, we list the properties for the optimal consumption rate, ĉ(t, x).
The proof follows directly from the closed-form expression given in Propo-
sition 4.2.
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Corollary 4.5. The optimal consumption rate ĉ(t, x) is an increasing func-
tion of both the wealth x and the human capital b(t).

Finally, we observe that the stochastic process ŷ(t, x) determining the
least favorable martingale measure is proportional to the market price of risk
ξ(t). Intuitively, such choice may be regarded as an absorption of eventual
profits available to the wage earner when investing in the financial market
by the choice of such least favorable probability model.

5. Conclusions

We have studied the problem faced by a wage earner whose preferences rel-
ative to consumption, investment and life insurance purchase are described
by a robust expected utility. We interpreted such problem in terms of a two-
player zero-sum stochastic differential game and derived the wage earner
optimal strategies for a general class of utility functions, studying the case
of discounted constant relative risk aversion utility functions with more de-
tail. Future extensions may include more general asset dynamics, alternative
forms of objective functions, as well as applications to pension planning.

Acknowledgments

The authors would like to thank the managing editor and an anonymous
referee for their careful reading and comments leading to improvements in
this paper. M. Ferreira research was funded by Fundação para a Ciência e
a Tecnologia in the form of a postdoctoral scholarship with reference SFRH
/ BPD / 109311 / 2015. D. Pinheiro research was supported by the PSC-
CUNY research awards TRADA-47-142, TRADA-48-75 and TRADA-49-68,
jointly funded by the Professional Staff Congress and the City University
of New York. S. Pinheiro research was supported by the PSC-CUNY re-
search awards TRADA-50-222 and TRADA-52-280, jointly funded by the
Professional Staff Congress and the City University of New York.

References

Anderson, E., E. Ghysels, and J. Juergens (2009). Dynamic programming for
a Markov-switching jump-diffusion. Journal of Financial Economics 94,
233–263.
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