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Abstract. We consider a stochastic optimal control problem with state
variable dynamics described by a stochastic differential equation of diffu-
sive type modulated by a semi-Markov process with a finite state space.
The time horizon is both deterministic and finite. Within such setup,
we provide a detailed proof of the dynamic programming principle and
use it to characterize the value function as a viscosity solution of the
corresponding Hamilton-Jacobi-Bellman equation. We illustrate our re-
sults with an application to Mathematical Finance: the generalization of
Merton’s optimal consumption-investment problem to financial markets
with semi-Markov switching.
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1. Introduction

The research effort leading to the development of optimal control theory is
partially due to the study of differential games from the 1940s onwards by a
group based in the United States including, among others, Bellman, LaSalle,
Blackwell, Isaacs, Fleming, and Berkovitz. Another group, organized around
Pontryagin and based in the former Soviet Union, independently developed
an alternative approach to solve optimal control problems. From the work of
these groups, resulted the two central techniques in the analysis of optimal
control problems: the dynamic programming principle [4, 5, 6, 7] and the
Pontryagin maximum principle [8, 9].

The development of dynamic programming was initiated in the 1950s with
the pioneering work of Bellman, followed by Florentin [16, 17] and Kushner
[26], among many others. Indeed, given its mathematical relevance and im-
portant real-life applications, optimal control and the dynamic programming
technique have been the focus of much attention from the scientific commu-
nity. The excellent monographs by Fleming and Soner [15], Yong and Zhou
[36] and Oksendal and Sulem [27] provide a rather detailed account of the
current knowledge concerning optimal control problems, including the dy-
namic programming principle.

After the initial development of the theory with a strong focus on state
variable dynamics described by either ordinary differential equations or Itô
diffusions, more recent research has tended to focus on systems with more
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general state variable dynamics. A necessary maximum principle for jump-
diffusions was first obtained by Tang and Li [32], with a sufficient maximum
principle for jump-diffusions being due to Framstad et al. [18]. A dynamic
programming principle for jump-diffusions with Markov-switching was ob-
tained by Azevedo et al. [3], with related computational methods due to
Temoçin and Weber [33]. A sufficient maximum principle for jump-diffusions
with a semi-Markovian switching was derived by Deshpande [11]. This paper
contributes to the current literature by extending the dynamic program-
ming principle to include stochastic optimal control problems with state
variable dynamics determined by a diffusive stochastic differential equation
(SDE) whose coefficients depend on a semi-Markov process with a finite
state space. Unlike continuous-time Markov processes, which have expo-
nentially distributed sojourn times, the distributions of the sojourn times
for semi-Markov processes are given by general distributions (see e.g. [35]
and references therein for further details on semi-Markov processes). This
creates a technical obstruction to the extension of the dynamic programming
principle proposed herein. Indeed, the argument leading to the proof of the
dynamical programming principle relies heavily on the Markov property –
and it is known that semi-Markov processes only satisfy such property at
jump times. Nevertheless, resorting to some results in the theory of semi-
Markov and renewal processes [21], we are able to overcome such difficulties
by pairing the semi-Markov process with certain suitable processes. We then
use the dynamic programming principle to obtain an appropriate general-
ization to the classical Hamilton-Jacobi-Bellman equation (HJB equation)
and characterize the value function of the stochastic optimal control prob-
lem under consideration as a viscosity solution of such equation (see [10]
and references therein for further details on the theory of viscosity solutions
of Hamilton-Jacobi equations). Alternative forms of switching have been
explored in [1, 19], while systems with delay were considered by Savku and
coauthors [29, 30, 31]. Future developments in the area may be related with
extending the later to encompass also semi-Markovian switching.

We also need to stress the broad applicability of optimal control the-
ory for stochastic systems with switching to a diverse number of fields
of knowledge. These include, for instance, Economics [23, 22], Finance
[37, 39, 38, 12, 20, 13], and Neuroscience [14, 25, 34]. To illustrate our
results herein, we will also discuss an optimal consumption-investment prob-
lem within the setup of a diffusive financial market model whose coefficients
are driven by a semi-Markov process. It is our belief that semi-Markov
processes are rather well-suited to capture some of the complexities arising
from financial markets data. First of all, these processes allow the dynamics
to switch between different states of the market – think of “bull”, “bear”
and “sideways” market modes – allowing the modeler plenty of freedom to
carefully calibrate the transition probabilities between these states. Perhaps
as importantly, the transition probabilities are not necessarily exponential,
providing even greater flexibility. On top of that, one can use the semi-
Markov process time component, i.e. the time elapsed since the last state
switch, to model interesting phenomena such as a “bull” market gaining
strength at its beginning or loosing it when it becomes nearly exhausted.
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In a similar fashion, such process – the time component – can be used to
model the evolution of the market agents’ preferences during the period of
time spent in each state of the market, a feature with impact on the utility
functions describing the agents’ preferences.

This paper is organized as follows. In Section 2 we provide background
material and formulate the problem under consideration. Section 3 is de-
voted to the proof of the dynamic programming principle for stochastic
optimal control problems with semi-Markov modulated diffusive state vari-
able dynamics. We deal with the characterization of the value function as
a viscosity solution of the HJB equation in Section 4. We illustrate our
results in Section 5 by looking at Merton’s optimal consumption-investment
problem for a financial market with semi-Markov modulated coefficients.

2. Setup and problem formulation

Let T > 0 be a deterministic finite horizon and let (Ω,F ,F,P) be a com-
plete filtered probability space with filtration F = (Ft : t ∈ [0, T ]) satisfying
the usual conditions, i.e. F is an increasing, right-continuous filtration and
F0 contains all P-null sets.

We will consider the following stochastic processes throughout this paper:

(i) a standardM -dimensional Brownian motionW (t) = (W (t) : t ∈ [0, T ])
defined on the probability space (Ω,F ,F,P).

(ii) a continuous time semi-Markov process (α(t) : t ∈ [0, T ]) with a finite
state space S = {a1, . . . , an}, transition probabilities pij from state
ai ∈ S to state aj ∈ S and conditional holding time distributions
G(·|i) (for each ai ∈ S, G(·|i) is a distribution function), i.e. if
0 < t0 < t1 < t2 < . . . are jump times, then

P (α(tn+1) = j, tn+1 − tn ≤ t|α(tn) = i) = pijG(t|i) .

Additionally, we will assume that the transition matrix [pij ]{ai,aj∈S}
is irreducible, i.e. every state of α is accessible from every other
state, and that for each ai ∈ S, G(·|i) is continuously differentiable
with a positive, bounded and Lipschitz continuous density function
g(·|i).

We will now describe a representation for the semi-Markov process α(t)
as a stochastic integral with respect to a certain Poisson random measure.
Embed S into Rn by identifying the element ai ∈ S with the ith element
ei ∈ Rn of the standard basis of Rn. For τ ∈ R+ and ai, aj ∈ S, set

λij(τ) = pij
g(τ |i)

1−G(τ |i)
≥ 0 , for i 6= j ,

λii(τ) = −
∑

j∈S, j 6=i
λij(τ) , for i ∈ S ,

and, for i 6= j, denote by Λij(t) the consecutive (with respect to the lex-
icographical order on S × S), left-closed, right-open intervals of the real
line, each with length λij(t). Define functions Γ1 : S × R+ × R → Rn and
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Γ2 : S × R+ × R→ R+ as

Γ1(i, t, z) =

{
ej − ei if z ∈ Λij(t)

0 otherwise

Γ2(i, t, z) =

{
t if z ∈ Λij(t), i 6= j

0 otherwise

and note that Γ1 determines the jump from the state ai to state aj on
S and Γ2 determines the time elapsed since the last state change of α(·).
Denote by M(R+ × R) the set of all nonnegative integer valued σ-finite
measures on the Borel σ-field of R+×R and let N(dt,dz) be aM(R+×R)-
valued Poisson random measure with intensity dtdz, independent of α(0),
and (T (t) : t ∈ [0, T ]) be the process representing the time elapsed since the
semi-Markov process α(·) last state switch. According to [20, Thm 2.1], the
process (α(t), T (t)) is determined by the SDEs:

α(t) = α(0) +

∫ t

0

∫
R

Γ1(α(s−), T (s−), z) N(ds, dz)

T (t) = T (0) + t−
∫ t

0

∫
R

Γ2(α(s−), T (s−), z) N(ds, dz) , (1)

where the integrations are over the interval (0, t]. Finally, we remark that
the process determined by the pair (α(t), T (t))t≥0 is Markov [21, Ch. III,

Sec. 3].
Throughout this paper, by abuse of notation, we will denote by | · | the

norm in the Euclidean space Rd, regardless of the specific dimension d, which
will be apparent from the context. We introduce the following technical
assumptions:

(A1) (U, dU ) is a Polish metric space.
(A2) The state space S = {a1, . . . , a2} is endowed with the discrete topol-

ogy and the corresponding discrete metric dS(·, ·).
(A3) The maps f : [0, T ]×RN×S×R+

0 ×U → RN , σ : [0, T ]×RN×S×R+
0 ×

U → RN×M , Ψ : RN×S×R+
0 → R and L : [0, T ]×RN×S×R+

0 ×U →
R, are such that:
(i) for each fixed a ∈ S, f(·, ·, a, ·, ·), σ(·, ·, a, ·, ·), Ψ(·, a, ·), L(·, ·, a, ·, ·)
are uniformly continuous with respect to all its variables;
(ii) for each fixed a ∈ S there exists C > 0 such that for ϕ(t, x, τ, u) =
f(t, x, a, τ, u), g(t, x, a, τ, u),Ψ(x, a, τ), L(t, x, a, τ, u), we have

|ϕ(t, x, τ, u)− ϕ(t, y, τ, u)|2 < C|x− y|2

|ϕ(t, 0, τ, u)|2 < C

for every (t, τ) ∈ [0, T ]× R+
0 uniformly in u.

(A4) The Brownian motion W (·) and the semi-Markov process α(·) are
independent and adapted to the filtration F.

The state space under consideration herein is the product space

N = RN × S × R+
0 ,
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which we endow with the metric

dN (x̄1, x̄2) = max{|x1 − x2|, dS(a1, a2), |τ1 − τ2|}

for x̄1 = (x1, a1, τ1) ∈ N and x̄2 = (x2, a2, τ2) ∈ N . We define on N a
stochastic controlled system with state variable dynamics given by

X(t) = x0 +

∫ t

0
f (r,X(r), α(r−), T (r−), u(r−)) dr

+

∫ t

0
σ (r,X(r), α(r−), T (r−), u(r−)) dW (r) (2)

α(t) = a0 +

∫ t

0

∫
R

Γ1(α(r−), T (r−), z) N(dr, dz)

T (t) = τ0 + t−
∫ t

0

∫
R

Γ2(α(r−), T (r−), z) N(dr, dz) ,

together with an objective functional of the form

J(x̄0;u(·)) = E

[∫ T

0
L
(
t,X u(·)

0,x̄0
(t), u(t)

)
dt+ Ψ

(
X u(·)

0,x̄0
(T )
)]

, (3)

where x̄0 = (x0, a0, τ0) ∈ N and the ordered triple

X u(·)
0,x̄0

(t) = (X0,x̄0(t;u(·)), α0,x̄0(t), T0,x̄0(t)) ∈ N

denotes the state trajectory determined by the SDE (2) associated with the

control u(·) and initial condition X u(·)
0,x̄0

(0) = x̄0 ∈ N . Before proceeding, we

remark that the triple X u(·)
0,x̄0

(t) is a jointly Markov process on (Ω,F ,F,P)

[21, Ch. III, Sec. 3].
We say that u : [0, T ] × Ω → U is a strong admissible control if u(·) is

measurable, F-adapted, and the system of SDEs (2) has a unique strong

solution X u(·)
0,x̄0

(t) satisfying the integrability conditions

E

[∫ T

0

∣∣∣L(t,X u(·)
0,x̄0

(t), u(t)
)∣∣∣ dt

]
<∞ ,

E

[ ∣∣∣Ψ(X u(·)
0,x̄0

(T )
)∣∣∣ ] <∞ .

We denote by Us[0, T ] the set of all strong admissible controls .
Our main aim is to find a control u(·) ∈ Us[0, T ] which maximizes the

objective functional J(x̄0;u(·)) given in (3) subject to the state variable dy-
namics (2) over the set of admissible controls Us[0, T ]. Assumptions (A1)
and (A3) above generalize the standard set of assumptions from the Sto-
chastic Differential Equations and Optimal Control Theory literature to the
setup under consideration here (see [2, 27, 28]) and guarantee existence and
uniqueness of strong solutions of (2) via an interlacing argument with a
finite number of diffusive SDEs.

We will now introduce the weak formulation of the stochastic control
problem under consideration. For any s ∈ [0, T ) and x̄ = (x, a, τ) ∈ N ,
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consider the state equations:

X(t) = x+

∫ t

s
f (r,X(r), α(r−), T (r−), u(r−)) dr

+

∫ t

s
σ (r,X(r), α(r−), T (r−), u(r−)) dW (r)

α(t) = a+

∫ t

s

∫
R

Γ1(α(r−), T (r−), z) N(dr, dz) (4)

T (t) = τ + t− s−
∫ t

s

∫
R

Γ2(α(r−), T (r−), z) N(dr, dz)

along with the objective functional

J(s, x̄;u(·)) = E

[∫ T

s
L
(
t,X u(·)

s,x̄ (t), u(t)
)

dt+ Ψ
(
X u(·)
s,x̄ (T )

)]
, (5)

where

X u(·)
s,x̄ (t) = (Xs,x̄(t;u(·)), αs,x̄(t), Ts,x̄(t))

is the solution of (4) associated with the control u(·) and the initial condition

X u(·)
s,x̄ (s) = x̄.
For each s ∈ [0, T ) we denote by Uw[s, T ] the set of weak admissible

controls, composed of 7-tuples

(Ω,F ,F,P,W (·), α(·), u(·))

for which the following conditions hold:

(i) (Ω,F ,P) is a complete probability space;
(ii) F = (Fst : t ∈ [s, T ]) is a right-continuous filtration;

(iii) (W (t) : t ∈ [s, T ]) is a M -dimensional standard Brownian motion de-
fined on (Ω,F ,P) over [s, T ] and adapted to the filtration F;

(iv) (α(t) : t ∈ [s, T ]) is a continuous-time semi-Markov process on (Ω,F ,P)
with finite state space S and adapted to the filtration F;

(vi) u : [s, T ]× Ω→ U is an F-adapted process on (Ω,F ,P);
(vii) under u(·), for any x̄ = (x, a, τ) ∈ N , the SDE (4) admits a unique

solution X u(·)
s,x̄ (t) on (Ω,F ,F,P).

For simplicity of exposition, and as long as no confusion arises, we will
use only u(·) ∈ Uw[s, T ] to denote the 7-tuple (Ω,F ,F,P,W (·), α(·), u(·)) ∈
Uw[s, T ].

We write the optimal control problem under consideration in dynamic
programming form as follows. For any (s, x̄) ∈ [0, T ) × N , find ū(·) ∈
Uw[s, T ] such that

J(s, x̄; ū(·)) = sup
u(·)∈Uw[s,T ]

J(s, x̄;u(·)) . (6)

For any (s, x̄) ∈ [0, T ) × N and u(·) ∈ Uw[s, T ], assumptions (A1) and

(A3) guarantee that the SDE (4) admits a unique solution X u(·)
s,x̄ (·) and the

objective functional in (5) is well-defined. Therefore, the optimal control
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problem value function is also well-defined byV (s, x̄) = sup
u(·)∈Uw[s,T ]

J (s, x̄;u(·)) ,

V (T, x̄) = Ψ(x̄) , ((s, x̄) ∈ [0, T )×N ) .
(7)

In Section 3 we prove a dynamic programming principle for the value
function V . Section 4 is devoted to the corresponding Hamilton-Jacobi-
Bellman equation and the characterization of the value function in terms of
its viscosity solutions.

3. Dynamic programming principle and HJB equation

The main goal of this section is to characterize the value function (7) by
means of a dynamic programming principle. Before moving on, we state a
property of the value function which will turn out to be helpful in the proof of
the dynamic programming principle. Well-known results from SDEs theory
(see, e.g. [2, 28]) ensure that for any s1, s2 ∈ [0, T ] such that s1 ≤ s2, any
x̄1 = (x1, a1, τ1) ∈ N and x̄2 = (x2, a2, τ2) ∈ N , and any weak admissible
control u(·) ∈ Uw[s1, T ], there exists C1 > 0 such that

E

[
sup

t∈[s2,T ]
dN

(
X u(·)
s1,x̄1

(t),X u(·)
s2,x̄2

(t)
)]

≤ C1

{
dN (x̄1, x̄2) + (1 + max{|(x1, τ1)|, |(x2, τ2)|})|s1 − s2|1/2

}
. (8)

Combining assumptions (A2)–(A3) and property (8), we get that for any
s1, s2 ∈ [0, T ] such that s1 ≤ s2, any x̄1 = (x1, a1, τ1) ∈ N and x̄2 =
(x2, a2, τ2) ∈ N , and any weak admissible control u(·) ∈ Uw[s1, T ], there is
a positive constant C2 such that

|J(s1, x̄1;u(·))− J(s2, x̄2;u(·))|

≤ C2

{
dN (x̄1, x̄2) + (1 + max{|(x1, τ1)|, |(x2, τ2)|})|s1 − s2|1/2

}
.

Finally, taking the supremum over u(·) ∈ Uw[s1, T ], we get the following
property for the value function V defined in (7).

Lemma 3.1. Let assumptions (A1)–(A4) hold. Then there exists a positive
constant C such that

|V (s1, x̄1)−V (s2, x̄2)| ≤ C
{
dN (x̄1, x̄2) + (1 + max{|(x1, τ1)|, |(x2, τ2)|})|s1 − s2|1/2

}
for every s1, s2 ∈ [0, T ] and x̄1, x̄2 ∈ N .

Let Fs = (Fst : t ∈ [s, T ]), where Fst = σ (W (r), α(r) : s ≤ r ≤ t). Since

for every ŝ ∈ [s, T ) the triple X u(·)
s,x̄ (ŝ) is Fsŝ -measurable, the solutions X u(·)

s,x̄ (t)

and X u(·)
ŝ,Xu(·)

s,x̄ (ŝ)
(t) agree a.s. for every t ∈ [ŝ, T ].

Lemma 3.2. Let (s, x̄) ∈ [0, T )×N and u(·) ∈ Uw[s, T ]. For any ŝ ∈ [s, T ),
the following equality holds P-a.s. ω ∈ Ω:

J(ŝ,X u(·)
s,x̄ (ŝ);u(·))

= E

[∫ T

ŝ
L

(
t,X u(·)

ŝ,Xu(·)
s,x̄ (ŝ)

(t), u(t)

)
dt+ Ψ

(
X u(·)
ŝ,Xu(·)

s,x̄ (ŝ)
(T )

) ∣∣∣ Fsŝ
]

(ω) .
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Using the two previous lemmas we prove the following dynamic program-
ming principle for the value function (7).

Theorem 3.3 (Dynamic programming principle). Assume that conditions
(A1)–(A4) hold and let s, ŝ ∈ [0, T ] be such that s < ŝ. Then, for every
x̄ ∈ N we have that

V (s, x̄) = sup
u(·)∈Uw[s,T ]

E

[∫ ŝ

s
L
(
t,X u(·)

s,x̄ (t), u(t)
)

dt+ V
(
ŝ,X u(·)

s,x̄ (ŝ)
)]

(9)

for all ŝ ∈ [s, T ].

Proof. Start by denoting the right-hand side of (9) by V (s, x̄). Note that
for any ε > 0 there exists u(·) ∈ Uw[s, T ] such that

V (s, x̄)− ε < J(s, x̄;u(·)) .
Letting ŝ ∈ [s, T ) and taking into account the definition of the objective
functional given in (5), we get

V (s, x̄)− ε < E

[∫ ŝ

s
L
(
t,X u(·)

s,x̄ (t), u(t)
)

dt+

E
[∫ T

ŝ
L
(
t,X u(·)

s,x̄ (t), u(t)
)

dt+ Ψ
(
X u(·)
s,x̄ (T )

) ∣∣∣ Fsŝ]
]
.

Recalling that the triple X u(·)
s,x̄ (·) determined by (4) is a Markov process, we

obtain

V (s, x̄)− ε < E

[∫ ŝ

s
L
(
t,X u(·)

s,x̄ (t), u(t)
)

dt

+E
[ ∫ T

ŝ
L

(
t,X u(·)

ŝ,Xu(·)
s,x̄ (ŝ)

(t), u(t)

)
dt+ Ψ

(
X u(·)
ŝ,Xu(·)

s,x̄ (ŝ)
(T )

) ∣∣∣ Fsŝ]
]
.

Resorting to the representation provided by Lemma 3.2, we get from the
inequality above that

V (s, x̄)− ε < E

[∫ ŝ

s
L
(
t,X u(·)

s,x̄ (t), u(t)
)

dt+ J
(
ŝ,X u(·)

s,x̄ (ŝ)
)]

.

Therefore, from the definition of the value function (7) and the inequality
above, we obtain

V (s, x̄)− ε < E

[∫ ŝ

s
L
(
t,X u(·)

s,x̄ (t), u(t)
)

dt+ V
(
ŝ,X u(·)

s,x̄ (ŝ)
)]

≤ V (s, x̄) .

We now prove the converse statement. Let (s, x̄) ∈ [0, T )×N and fix an
arbitrary control u(·) ∈ Uw[s, T ]. From Lemma 3.1 it follows that for any
ŝ ∈ [s, T ] and any ε > 0 there is δ = δ(ε) such that for every ȳ ∈ N within
distance δ of x̄ ∈ N we have∣∣∣J(ŝ,X u(·)

s,x̄ (ŝ);u(·))− J(ŝ,X u(·)
s,ȳ (ŝ);u(·))

∣∣∣ + (10)∣∣∣V (ŝ,X u(·)
s,x̄ (ŝ))− V (ŝ,X u(·)

s,ȳ (ŝ))
∣∣∣ ≤ ε



DYNAMIC PROGRAMMING FOR SEMI-MARKOV MODULATED SDES 9

for every u(·) ∈ Uw[ŝ, T ]. Let {Dj}j∈N be a Borel partition for N with

diameter diam(Dj) < δ and take x̄j = (xj , aj , τj) ∈ Dj . For each j ∈ N
there is (Ωj ,Fj ,Fj ,Pj ,Wj(·), αj(·), uj(·)) ∈ Uw[ŝ, T ] such that

V (ŝ, x̄j)− ε ≤ J (ŝ, x̄j ;uj(·)) . (11)

Hence for any x̄ ∈ Dj , using inequalities (10) and (11), we obtain

J(ŝ, x̄;uj(·)) ≥ J (ŝ, x̄j ;uj(·))− ε ≥ V (ŝ, x̄j)− 2ε ≥ V (ŝ, x̄)− 3ε . (12)

By the definition of weak admissible control (Ωj ,Fj ,Fj ,Pj ,Wj(·), αj(·), uj(·)),
there exists a progressively measurable process vj : [0, T ] × Ωj → U such
that

uj(t, ω) = vj(t,Wj (· ∧ t, ω) , αj (· ∧ t, ω)) Pj − a.s. ω ∈ Ωj

for every t ∈ [ŝ, T ]. For any control u(·) ∈ Uw[s, T ], let X (·) := X u(·)
s,x̄ (·)

denote the corresponding state trajectory. Consider the process

ũ(t, ω) =

{
u (t, ω) if t ∈ [s, ŝ)

vj(t,W (· ∧ t, ω)−W (ŝ, ω), α (· ∧ t, ω)) if t ∈ [ŝ, T ] and X (t, ω) ∈ Dj

and observe that ũ(·) ∈ Uw[s, T ]. Then, we have that the inequality

V (s, x̄) ≥ J(s, x̄; ũ(·)) = E

[∫ ŝ

s
L
(
t,X u(·)

s,x̄ (t), u(t)
)

dt

+ E
[∫ T

ŝ
L

(
t,X u(·)

ŝ,Xu(·)
s,x̄ (ŝ)

(t), u(t)

)
dt+ Ψ

(
X u(·)
ŝ,Xu(·)

s,x̄ (ŝ)
(T )

) ∣∣∣ Fsŝ]
]

holds. Using Lemma 3.2 and inequality (12), we obtain

V (s, x̄) ≥ E
[∫ ŝ

s
L
(
t,X u(·)

s,x̄ (t), u(t)
)

dt+ J(ŝ,X u(·)
s,x̄ (ŝ);uε(·))

]
.

As a consequence, inequality (11) implies that

V (s, x̄) ≥ E
[∫ ŝ

s
L
(
t,X u(·)

s,x̄ (t), u(t)
)

dt+ V (ŝ,X u(·)
s,x̄ (ŝ))− 3ε

]
.

We conclude the proof by taking the supremum over all u(·) ∈ Uw[s, T ]. �

For the statement of the next result, we will denote by ū(·) the optimal
control for problem (4)-(5) and by X̄ (·) = (X̄(·), ᾱ(·), τ̄(·)) the corresponding
state variable optimal path. Its proof may be adapted from arguments that
are now standard in the literature [36, 3].

Proposition 3.4. Assume that conditions (A1)–(A4) hold. If the pair(
X̄ (·), ū(·)

)
is optimal for (6), then

V (t, X̄ (t)) = E

[∫ T

t
L
(
r, X̄ (r), ū(r)

)
dr + Ψ

(
X̄ (T )

) ∣∣∣ Fst
]

P− a.s.

for every t ∈ [s, T ].
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4. The value function as a viscosity solution of the HJB
equation

We will now use the dynamic programming principle to derive its cor-
responding HJB equation and to characterize the value function (7) of the
stochastic optimal control under consideration as a viscosity solution of such
equation.

Let I ⊆ R be an interval with interior int(I) and denote by C1,2,1
(
I × RN × R+

0 ;R
)

the set of all continuous functions F : I × RN × R+
0 → R such that Ft, Fx,

Fτ and Fxx are all continuous functions of (t, x, τ) ∈ int(I)×RN ×R+. Ad-
ditionally, let Symn×n(R) denote the set of symmetric N ×N real matrices,
tr(A) the trace of A ∈ Symn×n(R), and 〈·, ·〉 the standard inner product on

RN .

Proposition 4.1 (Hamilton-Jacobi-Bellman equation). Suppose that condi-
tions (A1)–(A4) hold and that the value function V is such that V (·, ·, a, ·) ∈
C1,2,1

(
[0, T ]× RN × R+

0 ;R
)

for every state a ∈ S. Then, the value function
satisfies Vt + sup

u∈U
H(t, x, a, τ, u, V, Vx, Vxx, Vτ ) = 0,

V (T, x, a, τ) = Ψ(x, a, τ) ,
(13)

where for (t, x, a, τ, p, A, q) ∈ [0, T ]×RN × S ×R+
0 ×RN × Symn×n(R)×R

and any real valued function ω on [0, T ]×RN × S ×R+
0 such that ω(·, ·, a, ·)

is smooth for every a ∈ S, we have

H(t, x, a, τ, ω, p,A, q) = H1(t, x, a, τ, u, p, A, q) +H2(t, x, a, τ)[ω] ,

with

H1(t, x, a, τ, u, p, A, q) = L(t, x, a, τ, u) + q + 〈p, f(t, x, a, τ, u)〉

+
1

2
tr
(
σT (t, x, a, τ, u)Aσ(t, x, a, τ, u)

)
,

and

H2(t, x, a, τ)[ω] =
∑

j∈S:j 6=a
λαj(τ) (ω(t, x, j, 0)− ω(t, x, a, τ)) .

Proof. Let x̄ = (x, a, τ) ∈ N , u ∈ U , and X (·) be the state trajectory
determined by (4) with initial condition (s, x̄) ∈ [0, T )×N and the constant
control path u(·) ≡ u ∈ Uw[s, T ]. Letting ŝ ∈ [s, T ] and using Itô’s formula
for semi-Markov modulated diffusive processes (see Lemma A.1 in Appendix
A), we get

V (ŝ,X (ŝ))− V (s, x̄) =

∫ ŝ

s
a (t,X (t), u(t)) dt+M(ŝ) , (14)
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where the integrand function is given by

a(t, x, a, τ, u) = Vt(t, x, a, τ) + Vτ (t, x, a, τ)

+ 〈Vx(t, x, a, τ), f(t, x, a, τ, u)〉 (15)

+
1

2
tr
(
σT (t, x, a, τ, u)Vxx(t, x, a, τ)σ(t, x, a, τ, u)

)
+

∑
j∈S:j 6=a

λaj(τ) (V (t, x, j, 0)− V (t, x, a, τ))

and M(·) is the martingale

M(r) =

∫ r

s
b(t,X (t), u(t)) dW (t) +

∫ r

s

∫
R
c (t,X (t), z) Ñ(dt,dz) ,

with

b(t, x, a, τ, u) = (Vx(t, x, a, τ))Tσ(t, x, a, τ, u)

c(t, x, a, τ, z) = V (t, x, a+ Γ1(a, τ, z), τ − Γ2(a, τ, z))− V (t, x, a, τ)

and

Ñ(dt,dz) = N(dt,dz)− dtdz

the compensated Poisson random measure associated with the semi-Markov
process α(·).

Taking the expected value in both sides of (14) and dividing by ŝ− s, we
get

E [V (ŝ,X (ŝ))− V (s, x̄)]

ŝ− s
=

1

ŝ− s
E
[ ∫ ŝ

s
a(t,X (t), u(t)) dt

]
. (16)

Resorting to the Dynamic Programming Principle given in Theorem 3.3, we
also obtain that

−E [V (ŝ,X (ŝ))− V (s, x̄)]

ŝ− s
≥ 1

ŝ− s
E

[∫ ŝ

s
L (t,X (t), u(t)) dt

]
.

From the previous inequality and identity (16), we get

1

ŝ− s
E

[∫ ŝ

s
L (t,X (t), u(t)) + a(t,X (t), u(t)) dt

]
≤ 0 .

Letting ŝ approach s from above, we obtain that

Vt +H (s, x, a, τ, u, V, Vx, Vxx, Vτ ) ≤ 0

for every u ∈ U , where the dependence of the derivatives of V on their argu-
ments was dropped for notational convenience. Thus, taking the supremum
over u ∈ U , we conclude that

Vt + sup
u∈U
H (s, x, a, τ, u, V, Vx, Vxx, Vτ ) ≤ 0 . (17)

Conversely, for any ε > 0 and any ŝ ∈ (s, T ] with ŝ − s small enough,
there exists ũ(·) := uε,ŝ(·) ∈ Uw[s, T ] such that

V (s, x̄)− ε(ŝ− s) ≤ E
[ ∫ ŝ

s
L (t,X (t), ũ(t)) dt+ V (ŝ,X (ŝ))

]
.
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From the inequality above, after rearranging terms, we obtain

ε ≥ −E [V (ŝ,X (ŝ))− V (s, x̄)]

ŝ− s
− 1

ŝ− s
E
[ ∫ ŝ

s
L (t,X (t), ũ(t)) dt

]
.

Combining identity (16) with the previous inequality we get that

ε ≥ − 1

ŝ− s
E
[ ∫ ŝ

s
a(t,X (t), ũ(t)) dt+

∫ ŝ

s
L (t,X (t), ũ(t)) dt

]
.

Therefore, we obtain

ε ≥ − 1

ŝ− s
E

[∫ ŝ

s
Vt (t,X (t)) + H̃ (t,X (t), ũ(t)) dt

]
,

where H̃ (t,X (t), ũ(t)) is shorthand notation for

H
(
t,X (t), ũ(t), V (t,X (t)), Vx(t,X (t)), Vxx(t,X (t)), Vτ (t,X (t))

)
.

Resorting to the uniform continuity of assumption (A3), we get

−ε ≤ Vt + sup
u∈U
H (s, x, a, τ, u, V, Vx, Vxx, Vτ ) , (18)

where the dependence of the derivatives of V on their arguments was again
dropped for notational convenience.

The result follows from combining (17) with (18). �

Let x̄ = (x, a, τ) ∈ N and let us use the notation H̃(s, x̄, u) to represent
the function

H̃(s, x̄, u) = H(s, x̄, u, V (s, x̄), Vx(s, x̄), Vxx(s, x̄), Vτ (s, x̄)) .

The following verification theorem holds.

Proposition 4.2 (Verification Theorem). Assume that conditions (A1)–
(A4) hold and that V (·, ·, a, ·) ∈ C1,2,1([0, T ]× RN × R+

0 ;R) for each a ∈ S.
If V (s, x̄) satisfies (13), then the inequality

V (s, x̄) ≥ J(s, x̄;u(·))
holds for every u(·) ∈ Uw[s, T ] and (s, x̄) ∈ [0, T ) × N . Furthermore, an
admissible pair (X̄ (·), ū(·)) is optimal for (6) if and only if the equality

Vt(t, X̄ (t)) + H̃(t, X̄ (t), ū(t)) = 0

holds for a.e. t ∈ [s, T ] and P− a.s..

Proof. Using Itô’s formula for semi-Markov modulated diffusive processes
as given in Lemma A.1, for any control u(·) ∈ Uw[s, T ] and corresponding
state trajectory X (·), we get

V (s, x̄) = E
[
Ψ(X (T ))−

∫ T

s
a(t,X (t), u(t)) dt

]
,

where a(t, x, a, τ, u) is as given in (15). Using (5) and the definition of the
Hamiltonian function in the statement of Proposition 4.1, the last equality
may be written as

V (s, x̄) = J(s, x̄;u(·))− E
[ ∫ T

s
Vt(t,X (t)) + H̃(t,X (t), u(t)) dt

]
. (19)
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Using the HJB equation (13), we conclude that

V (s, x̄) ≥ J(s, x̄;u(·)) ,
completing the proof of the first part of the theorem.

To prove the second part of the theorem, let (X̄ (·), ū(·)) be an optimal
pair for (6). Applying equality (19) to (X̄ (·), ū(·)), we get

V (s, x̄) ≥ J(s, x̄; ū(·))− E
[ ∫ T

s
Vt(t, X̄ (t)) + H̃(t, X̄ (t), ū(t)) dt

]
.

The desired result follows immediately from the fact that

Vt(t, X̄ (t)) + H̃(t, X̄ (t), ū(t)) ≤ 0 ,

a consequence of equation (13). �

Finally, we will show that the value function (7) is a viscosity solutions
of the HJB equation (13). Before proceeding, let us recall the definition of
viscosity solution used herein. A continuous function v : [0, T ] × N → R
is called a viscosity subsolution of (13) (resp. supersolution) if for every
x̄ = (x, a, τ) ∈ N we have that

v(T, x̄) ≤ Ψ(x̄) (resp. v(T, x̄) ≥ Ψ(x̄)) ,

and, additionally,

ϕt(t0, x̄0) + sup
u∈U
H(t0, x̄0, u, ϕ(t0, x̄0), ϕx(t0, x̄0), ϕxx(t0, x̄0), ϕτ (t0, x̄0)) ≥ 0

(resp.ϕt(t0, x̄0) + sup
u∈U
H(t0, x̄0, u, ϕ(t0, x̄0), ϕx(t0, x̄0), ϕxx(t0, x̄0), ϕτ (t0, x̄0)) ≤ 0)

for every continuous function ϕ : [0, T ] × N → R such that ϕ(·, ·, a, ·) ∈
C1,2,1([0, T ] × RN × R+

0 ;R) for every a ∈ S and any local maximum (resp.
minimum) (t0, x̄0) of v − ϕ. If v is simultaneously a viscosity subsolution
and viscosity supersolution of (13), then it is called a viscosity solution of
(13).

Theorem 4.3. Assume that conditions (A1)–(A4) hold. Then the value
function V is a viscosity solution of (13).

Proof. Let ϕ : [0, T ]×N → R be a continuous function such that ϕ(·, ·, a, ·) ∈
C1,2,1([0, T ]×RN ×R+

0 ;R) for every a ∈ S. Start by supposing that V − ϕ
attains a local minimum at (s, ȳ) ∈ [0, T ) × N , fix u ∈ U , and denote by
X (·) the state trajectory with initial condition ȳ ∈ N at time s under the
control u(t) ≡ u. Using the Dynamic programming principle Theorem 3.3
we obtain that, for ŝ > s with ŝ− s > 0 small enough, it holds that

0 ≥ E [V (s, ȳ)− ϕ(s, ȳ)− V (ŝ,X (ŝ)) + ϕ(ŝ,X (ŝ))]

ŝ− s

≥ 1

ŝ− s
E
[∫ ŝ

s
L(t,X (t), u) dt− ϕ(s, ȳ) + ϕ(ŝ,X (ŝ))

]
.

Applying Itô’s formula for semi-Markov modulated diffusive processes (Lemma
A.1) to the process ϕ(t,X (t)) and combining the outcome with the inequal-
ity above, yields

ϕt(s, ȳ) +H (s, ȳ, u, ϕ(s, ȳ), ϕx(s, ȳ), ϕxx(s, ȳ), ϕτ (s, ȳ)) ≤ 0
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for all u ∈ U . Hence, we conclude that

ϕt(s, ȳ) + sup
u∈U
H (s, ȳ, u, ϕ(s, ȳ), ϕx(s, ȳ), ϕxx(s, ȳ), ϕτ (s, ȳ)) ≤ 0 . (20)

On the other hand, if V −ϕ attains a local maximum at (s, ȳ) ∈ [0, T )×N
then, for any ε > 0 and ŝ > s with ŝ − s > 0 small enough, there exists
uε,ŝ(·) ∈ Uω[s, T ] such that

0 ≤ E [V (s, ȳ)− ϕ(s, ȳ)− V (ŝ,X (ŝ)) + ϕ(ŝ,X (ŝ))]

≤ ε(ŝ− s) + E
[∫ ŝ

s
L(t,X (t), uε,ŝ(t)) dt+ ϕ(ŝ,X (ŝ))− ϕ(s, ȳ)

]
,

where X (·) now denotes the state trajectory with initial condition ȳ ∈ N
at time s under the control uε,ŝ(·). Dividing the inequality above by ŝ − s
and applying Itô’s formula for semi-Markov modulated diffusive processes
(Lemma A.1) to the process ϕ(t,X (t)), we get

−ε ≤ 1

ŝ− s
E
[ ∫ ŝ

s

{
ϕt(t,X (t))

+ H (t,X (t), uε,ŝ(t), ϕ(t,X (t)), ϕx(t,X (t)), ϕxx(t,X (t)), ϕτ (t,X (t)))
}

dt
]

≤ 1

ŝ− s
E
[ ∫ ŝ

s

{
ϕt(t,X (t))

+ sup
u∈U
H (t,X (t), u, ϕ(t,X (t)), ϕx(t,X (t)), ϕxx(t,X (t)), ϕτ (t,X (t)))

}
dt
]
.

Hence, we obtain that

ϕt(s, ȳ) + sup
u∈U
H (s, ȳ, u, ϕ(s, ȳ), ϕx(s, ȳ), ϕxx(s, ȳ), ϕτ (s, ȳ)) ≥ 0 . (21)

The result follows from combining (20) and (21). �

5. Application to consumption-investment problems

In what follows, we rely on the setup introduced in Section 2 with the ad-
ditional simplifying assumption that the Brownian motion (W (t) : t ∈ [0, T ])
is one-dimensional, and consider a continuous-time financial market consist-
ing of one risk-free asset and one risky-asset. More precisely, we assume
that the prices of the risk-free asset (S0(t) : t ∈ [0, T ]) and the risky asset
(S1(t) : t ∈ [0, T ]) evolve according to the semi-Markov modulated SDEs

dS0(t) = r(t, α(t−), T (t−))S0(t)dt,

dS1(t) = µ(t, α(t−), T (t−))S1(t)dt+ σ(t, α(t−), T (t−))S1(t)dW (t)

with positive initial conditions S0(0) = s0 and S1(0) = s1. Note that the fi-
nancial market coefficients are joint functions of time, the current state of the
semi-Markov process α(t) and the corresponding time component T (t) rep-
resenting the time elapsed since the last switch of α(·) (as observed at time
t). More precisely, we assume that the risk-free interest rate r(t, a, τ), the
risky-asset appreciation rate µ(t, a, τ) and the risky-asset volatility σ(t, a, τ),
are all deterministic continuous functions of (t, τ) ∈ [0, T ] × R+

0 for every
fixed a ∈ S. Additionally, we assume that the risk-free interest rate r(t, a, τ)
is positive for every (t, a, τ) ∈ [0, T ]× S × R+

0 .
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We now introduce the control variables. The consumption process (c(t) : t ∈ [0, T ])
is a F-progressively measurable nonnegative process satisfying the following
integrability condition for the investment horizon T > 0:∫ T

0
c(t) dt <∞ a.s. .

Let θ(t) denote the fraction of the agent’s wealth allocated to the risky asset
S1 at time t ∈ [0, T ]. We assume that (θ(t) : t ∈ [0, T ]) is F-progressively
measurable and that, for the fixed maximum investment horizon T > 0, we
have that ∫ T

0
|θ(t)|2 dt <∞ a.s. .

Clearly, the agent invests 1− θ(t) of her wealth on the risk-free asset S0.
The wealth process X(t), t ∈ [0, T ], is defined by coupling (1) with the

SDE

dX(t) = X(0) +
[

(−c(t) + r(t, α(t−), T (t−))X(t)) dt

+ θ(t) (µ(t, α(t−), T (t−))− r(t, α(t−), T (t−)))X(t)
]
dt (22)

+ θ(t)σ(t, α(t−), T (t−))X(t)dW (t)

and imposing initial conditions X(0) = x, α(0) = a and T (0) = τ repre-
senting, respectively, the initial wealth, the initial state of the semi-Markov
process α(·), as well as the corresponding time component T (·) measur-
ing the time elapsed since the last switch of α(·). Within the setup under
consideration in this problem, the state space is now

N = R× S × R+
0 .

Let x̄ = (x, a, τ) ∈ N . The consumption-investment problem is to find
admissible consumption and investment strategies (c, θ) ∈ Us[0, T ] which
maximize the expected utility

J(x̄; c(·), θ(·)) = E
[∫ T

0
U(t, c(t),X c,θ0,x̄(t)) dt+ Ψ(X c,θ0,x̄(T ))

]
, (23)

where

X c,θ0,x̄(t) = (X0,x̄(t; c(·), θ(·)), α0,x̄(t), T0,x̄(t)) ∈ N
denotes the solution of the system obtained by coupling (22) with the semi-
Markov process dynamics (1), starting from x̄ = (x, a, τ) ∈ N at time
t = 0 under the strategies (c(·), θ(·)) ∈ Us[0, T ]. In the definition of the
expected utility (23), U(t, c, x̄) is the utility derived from a consumption
rate c ∈ [0,∞) at time t while holding wealth x when the state of the semi-
Markov process is a and its last switch occurred at time t − τ . Similarly,
Ψ(x̄) is the utility obtained from holding wealth x at time T when the state
of the semi-Markov process is a and its last switch occurred at time T − τ .

Proceeding as described in Section 2, we rewrite the expected utility in
dynamic programming form

J(s, x̄; c(·), θ(·)) = E
[∫ T

s
U(t, c(t),X c,θs,x̄(t)) dt+ Ψ(X c,θs,x̄(T ))

]
, (24)
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where

X c,θs,x̄(t) = (Xs,x̄(t; c(·), θ(·)), αs,x̄(t), Ts,x̄(t)) ∈ N

denotes the solution of the system obtained by coupling (22) with the semi-
Markov process dynamics (1), starting from x̄ = (x, a, τ) ∈ N at time t = s
under the weak admissible controls (c(·), θ(·)) ∈ Uw[s, T ]. We will employ
dynamic programming techniques to obtain a rather complete description
for the behavior of the maximum expected utility, or value function, given
by V (t, x̄) = sup

(c,θ)∈Uw[s,T ]
J(t, x̄; c(·), θ(·)) , (t, x̄) ∈ [0, T )×N

V (T, x̄) = Ψ(x̄)
.

In the next subsections we will illustrate the theoretical results obtained in
the previous sections to study the optimal strategies for the expected utility
given in (24) for the economically relevant cases of utility functions with
constant coefficient of relative risk aversion - power type and logarithmic
utility functions.

5.1. The case of power utility functions. In this subsection we assume
that the utility functions are of the form

U(t, c, a, τ) = e−ρtua(τ)
cγ

γ
and Ψ(x, a, τ) = e−ρtva(τ)

xγ

γ
, (25)

where γ ∈ (0, 1) is the investor risk aversion coefficient, ρ > 0 is the discount
rate, and the factors ua(τ) and va(τ) are assumed to be strictly positive
functions modeling the influence of the semi-Markov process state a and time
component τ on the investor preferences induced by the utility functions U
and Ψ.

In the next theorem, we compute the optimal strategies for the class of
discounted utility functions (25). Before providing the precise statement,
let us introduce the function F : [0, 1]× [0, T ]× S × R+

0 → R given by

F (θ; t, a, τ) = γ

[
r(t, a, τ) + θ

(
µ(t, a, τ)− r(t, a, τ)

)
− 1

2
(1− γ)θ2σ2(t, a, τ)

]
(26)

and note that

∂F

∂θ
(θ; t, a, τ) = γ

[
µ(t, a, τ)− r(t, a, τ)− (1− γ)θσ2(t, a, τ)

]
.

Theorem 5.1. The maximum expected utility associated with (24) and the
discounted utility functions (25) is given by

V (t, x, a, τ) = ξa(t, τ)
xγ

γ
, (27)

the corresponding optimal strategies are of the form

c∗(t, x, a, τ) = x

(
eρtξa(t, τ)

ua(τ)

)−1/(1−γ)
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and

θ∗(t, a, τ) =


1, if µ(t, a, τ) > r(t, a, τ) and F ′(1; t, a, τ) ≥ 0

θ̂(t, a, τ), if µ(t, a, τ) > r(t, a, τ) and F ′(1; t, a, τ) < 0

0, if µ(t, a, τ) ≤ r(t, a, τ)

,

where θ̂(t, a, τ) is given by

θ̂(t, a, τ) =
µ(t, a, τ)− r(t, a, τ)

(1− γ)σ2(t, a, τ)

and ξa(t, τ), a ∈ S, are the solutions of the following coupled first order
boundary value problem

∂ξa
∂t

(t, τ) +
∂ξa
∂τ

(t, τ) + (1− γ)e−ρt/(1−γ)ξa(t, τ)−γ/(1−γ)

+F (θ∗(t, a); t, a, τ)ξa(t, τ) +
∑

j∈S:j 6=a
λaj(τ)(ξj(t, τ)− ξa(t, τ)) = 0

ξa(T, τ) = e−ρT va(τ) .

Proof. Assume for the time being that the conditions of Proposition 4.1
hold. The Hamiltonian function H associated with the expected utility (24)
and the discounted utility functions (25) is given by

H(t, x, a, τ, c, θ, V, Vx, Vxx, Vτ ) =

e−ρtua(τ)
cγ

γ
+

(
− c+

(
r(t, a, τ) + θ

(
µ(t, a, τ)− r(t, a, τ)

))
x

)
Vx(t, x, a, τ)

+
x2

2

(
θσ(t, a, τ)

)2
Vxx(t, x, a, τ) +

∑
j∈S:j 6=a

λaj(τ)(V (t, x, j, 0)− V (t, x, a, τ))

+Vτ (t, x, a, τ)

and the corresponding Hamilton-Jacobi-Bellman equation is

Vt + sup
(c,θ)∈[0,∞)×[0,1]

H(t, x, a, τ, c, θ, V, Vx, Vxx, Vτ ) = 0 .

Considering an ansatz of the form (27) and substituting in the HJB equation
above, we get(

∂ξa
∂t

(t, τ) +
∂ξa
∂τ

(t, τ)

)
xγ

γ
+ sup

(c,θ)∈[0,∞)×[0,1]

{
e−ρtua(τ)

cγ

γ

+

(
− c+

(
r(t, a, τ) + θ(µ(t, a, τ)− r(t, a, τ))

)
x

)
ξa(t, τ)xγ−1

+
θ2

2
σ2(t, a, τ)(γ − 1)ξa(t, τ)xγ

}
(28)

+
xγ

γ

∑
j∈S:j 6=a

λaj(τ)
(
ξj(t, 0)− ξa(t, τ)

)
= 0 .

Note that the optimization problem (28) breaks down into two independent
optimization problems and its solution can be obtained in a sequential way.
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We start by optimizing (28) with respect to c, before proceeding to optimize
with respect to the variable θ.

Since γ ∈ (0, 1), the quantity to be maximized in (28) is strictly con-
cave with respect to the control variable c. Indeed, the first order condi-
tion associated with the optimization problem above provides a maximizer
c∗(t, x, a, τ), which is given by

c∗(t, x, a, τ) = x

(
eρtξa(t, τ)

ua(τ)

)−1/(1−γ)

.

Replacing c by c∗(t, x, a, τ) in (28) and factoring out the term xγ/γ, we
obtain that

∂ξa
∂t

(t, τ) +
∂ξa
∂τ

(t, τ) +
∑

j∈S:j 6=a
λaj(τ)

(
ξj(t, 0)− ξa(t, τ)

)
(29)

+ sup
θ∈[0,1]

{
(1− γ)e−ρt/(1−γ)

(
ua(τ)

(ξa(t, τ))γ

)1/(1−γ)

+ F (θ; t, a, τ)ξa(t, τ)

}
= 0 ,

where F (θ; t, a, τ) is as given in (26). Note that the first order condition
with respect to θ is just F ′(θ; t, a, τ) = 0 and that since 0 < γ < 1, the
second derivative of F (θ; t, a, τ) with respect to θ, given by

F ′′(θ; t, a, τ) = −γ(1− γ)σ2(t, a, τ) ,

is negative for every θ ∈ [0, 1]. Taking into account the constraint θ ∈ [0, 1]
and the concavity of F (θ; t, a, τ) with respect to θ, we conclude that the
maximization problem in (29) has a unique solution θ∗(t, a, τ). Moreover,
from the definition of the function F (θ; t, a, τ), it is possible to check that

i) if µ(t, a, τ)− r(t, a, τ) > 0 and F (1; t, a, τ) < 0, then

θ∗(t, a, τ) =
µ(t, a, τ)− r(t, a, τ)

(1− γ)σ2(t, a, τ)
;

ii) if µ(t, a, τ)− r(t, a, τ) > 0 and F (1; t, a, τ) ≥ 0, then θ∗(t, a, τ) = 1;
iii) if µ(t, a, τ)− r(t, a, τ) ≤ 0, then θ∗(t, a, τ) = 0;

�

We remark that the optimal portfolio, determined by θ∗, depends on
time t ∈ [0, T ], on the state of the semi-Markov process a ∈ S, and on the
corresponding time component, measuring the time elapsed since the last
switch of α(·). However, θ∗ does not depend on the wealth x, yielding a
mutual fund theorem. In what concerns the optimal consumption c∗, it is
clear that it is increasing with wealth and that, for choices of coefficients
compatible with standard financial market behaviour, c∗ is increasing with
time t.

5.2. The case of logarithmic utility functions. Consider now utility
functions of the form

U(t, c, a, τ) = e−ρtua(τ) ln c and Ψ(x, a, τ) = e−ρtva(τ) lnx , (30)

where ρ > 0 is the discount rate and the functions ua(τ) and va(τ) are as
described in section 5.1.
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The next theorem provides the optimal strategies for the class of dis-
counted logarithmic utility functions of the form (30). Before providing the
precise statement, let us introduce the function F : [0, 1]×[0, T ]×S×R+

0 → R
given by

F (θ; t, a, τ) = r(t, a, τ) + θ
(
µ(t, a, τ)− r(t, a, τ)

)
− 1

2
θ2σ2(t, a, τ) (31)

and note that

F ′(θ; t, a, τ) = µ(t, a, τ)− r(t, a, τ)− θσ2(t, a, τ) ,

where the derivative is taken with respect to θ.

Theorem 5.2. The maximum expected utility associated with (24) and the
discounted logarithmic utility functions (30) is defined by

V (t, x, a, τ) = ξa(t, τ) lnx+ ζa(t, τ) ,

the corresponding optimal strategies are of the form

c∗(t, x, a, τ) = e−ρt
ua(τ)

ξ(t, τ)
x

and

θ∗(t, a, τ) =


1 if µ(t, a, τ) > r(t, a, τ) and F ′(1; t, a, τ) ≥ 0

θ̂(t, a, τ) if µ(t, a, τ) > r(t, a, τ) and F ′(1; t, a, τ) < 0

0 if µ(t, a, τ) ≤ r(t, a, τ)

,

where θ̂(t, a, τ) is given by

θ̂(t, a, τ) =
µ(t, a, τ)− r(t, a, τ)

σ2(t, a, τ)

and ξa(t, τ) and ζa(t, τ), a ∈ S, are the solutions of the following system of
coupled first order boundary value problems

∂ξa
∂t

(t, τ) +
∂ξa
∂τ

(t, τ) + e−ρtua(τ) +
∑

j∈S:j 6=a
λaj(τ)(ξj(t, 0)− ξa(t, τ)) = 0

∂ζa
∂t

(t, τ) +
∂ζa
∂τ

(t, τ)− e−ρtua(τ)

(
ρt+ ln

ξa(t, τ)

ua(τ)
+ 1

)
+F (θ∗(t, a, τ); t, a, τ)ξa(t, τ) +

∑
j∈S:j 6=a

λaj(τ)(ζj(t, 0)− ζa(t, τ)) = 0

ξa(T, τ) = e−ρT va(τ) , ζa(T, τ) = 0 .

Proof. Assume that the conditions of Proposition 4.1 hold. The Hamiltonian
function H associated with the expected utility (24) and the discounted
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logarithmic utility functions (30) is defined by

H(t, x, a, τ, c, θ, V, Vx, Vxx, Vτ ) =

e−ρtua(τ) ln c+

(
− c+

(
r(t, a, τ) + θ

(
µ(t, a, τ)− r(t, a, τ)

))
x

)
Vx(t, x, a, τ)

+
x2

2

(
θσ(t, a, τ)

)2
Vxx(t, x, a, τ) +

∑
j∈S:j 6=a

λaj(τ)(V (t, x, j, 0)− V (t, x, a, τ))

+Vτ (t, x, a, τ)

and the HJB equation is then

Vt + sup
(c,θ)∈[0,∞)×[0,1]

H(t, x, a, τ, c, θ, V, Vx, Vxx, Vτ ) = 0 .

Considering an ansatz of the form

V (t, x, a, τ) = ξa(t, τ) lnx+ ζa(t, τ)

and substituting in the HJB equation above, we get(
∂ξa
∂t

(t, τ) +
∂ξa
∂τ

(t, τ)

)
lnx+

∂ζa
∂t

(t, τ) +
∂ζa
∂τ

(t, τ)

+ sup
(c,θ)∈[0,∞)×[0,1]

{
e−ρtua(τ) ln c− c

x
ξa(t, τ) + F (θ; t, a, τ)ξa(t, τ)

}
+ lnx

∑
j∈S:j 6=a

λaj(τ)
(
ξj(t, 0)− ξa(t, τ)

)
(32)

+
∑

j∈S:j 6=a
λaj(τ)

(
ζj(t, 0)− ζa(t, τ)

)
= 0 ,

where F (θ; t, a) is as given in (31).
We start by optimizing with respect to c, before proceeding to optimize

with respect to the variable θ. The first-order condition associated with the
optimization problem above provides a maximizer c∗(t, x, a, τ), given by

c∗(t, x, a, τ) =
e−ρtua(τ)

ξa(t, τ)
x .

Replacing c by c∗(t, x, a, τ) in (32), we obtain that(
∂ξa
∂t

(t, τ) +
∂ξa
∂τ

(t, τ)

)
lnx+

∂ζa
∂t

(t, τ) +
∂ζa
∂τ

(t, τ)

+e−ρtua(τ) (−ρt+ lnua(τ) + lnx− ln ξa(t, τ)− 1)

+ sup
θ∈[0,1]

{
F (θ; t, a, τ)ξa(t, τ)

}
(33)

+ lnx
∑

j∈S:j 6=a
λaj(τ)

(
ξj(t, 0)− ξa(t, τ)

)
+

∑
j∈S:j 6=a

λaj(τ)
(
ζj(t, 0)− ζa(t, τ)

)
= 0 .



DYNAMIC PROGRAMMING FOR SEMI-MARKOV MODULATED SDES 21

As long as ξa(t, τ) is nonzero, the first-order condition for θ is F ′(θ; t, a, τ) =
0, yielding the critical point

θ̂(t, a, τ) =
µ(t, a, τ)− r(t, a, τ)

σ2(t, a, τ)
.

Moreover, the second derivative of F (θ; t, a, τ) with respect to θ is strictly
negative for every θ ∈ [0, 1]. Taking into account the constraint θ ∈ [0, 1] and
the concavity of F (θ; t, a, τ), we conclude that the maximization problem in
(33) has a unique solution θ∗(t, a, τ). Moreover, from the definition of the
function F (θ; t, a, τ), it is possible to check that

i) if µ(t, a, τ) − r(t, a, τ) > 0 and F (1; t, a, τ) < 0, then there ex-

ists θ̂(t, a, τ) ∈ (0, 1) such that F ′(θ̂(t, a, τ); t, a, τ) = 0 and, con-

sequently, θ∗(t, a, τ) = θ̂(t, a, τ);
ii) if µ(t, a, τ)− r(t, a, τ) > 0 and F (1; t, a, τ) ≥ 0, then θ∗(t, a, τ) = 1;
iii) if µ(t, a, τ)− r(t, a, τ) ≤ 0, then θ∗(t, a, τ) = 0.

The proof is completed by grouping terms in (33) to arrive at the sytem
of partial differential equations describing ξa(t, τ) and ζa(t, τ), a ∈ S. �

6. Conclusion

We employ dynamic programming techniques to characterize the solution
of a stochastic optimal control problem with state variable dynamics deter-
mined by a diffusive SDE with semi-Markov modulated coefficients. After
generalizing the classical Bellman’s optimality principle to such framework,
we derive the corresponding Hamilton-Jacobi-Bellman equation and show
that the optimal control problem value function is a viscosity solution of
such equation. We apply our results to an illustrative example: the famous
Merton’s consumption-investment problem for a financial market with assets
whose prices evolve according to a semi-Markov modulated SDE.

We note that the class of stochastic optimal control problems studied here
appears naturally in a number of real-life problems, all of which share the
feature that both the state variable dynamics and the objective functional
depend on a set of known “unknowns” occurring at random instants of time,
encapsulated here by the components of the semi-Markov process. Potential
examples of application include, for instance:

• the problem faced by an economic policy decision-maker such as, e.g.
a central banker, in what concerns macroeconomic choices for an
economy whose future growth depends on the outcomes of random
future exogenous events, which may also influence the preference
structures under which decisions are made;
• the problem faced by a manager of some manufacturing facility when

deciding about the changes to the size of the facility work force, raw
materials stocking and the level of production, given that the overall
state of the economy may change at some random instants of time
and that such changes may influence the prices at which the raw
materials are available, as well as the price and demand for the
manufacturing facility final product.
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In what concerns future research, we plan to generalize our results to
include larger families of state variable dynamics such as, for instance, semi-
Markov modulated jump-diffusions. We will also consider extensions of
Merton’s optimal consumption-investment problem, as well as of optimal
life-insurance purchase problems, to include financial market models driven
by such classes of stochastic processes.
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Appendix A. Itô’s Formula for a semi-Markov modulated
diffusive SDE

In this section we state Itô’s formula for a semi-Markov modulated dif-
fusive SDE. The result follows from Itô’s formula for semi-martingales. See
[24, 28] for further details.

Lemma A.1 (Itô’s rule for a semi-Markov modulated diffusion process).
Let α(·) be the semi-Markov process determined by (1) and τ(t) the corre-
sponding time component. Suppose that X(t) is given by the SDE

dX(t) = f (t,X(t), α(t−), T (t−)) dt

+σ (t,X(t), α(t−), T (t−)) dW (t) (34)

Let V (t, x, a, τ) be such that V (·, ·, a, ·) ∈ C1,2,1([0, T ] × RN × R+
0 ;R) for

every a ∈ S. Then, we have that

V (t,X(t), α(t), T (t))− V (0, X(0), α(0), T (0)) =∫ t

0
a (s,X(s), α(s−), T (s−)) ds+M(t)

where

a(t, x, a, τ) = Vt(t, x, a, τ) + Vτ (t, x, a, τ)

+ 〈Vx(t, x, a, τ), f(t, x, a, τ)〉

+
1

2
tr
(
σT (t, x, a, τ)Vxx(t, x, a, τ)σ(t, x, a, τ)

)
+

∑
j∈S:j 6=a

λaj(τ) (V (t, x, j, 0)− V (t, x, a, τ))
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and

M(t) =

∫ t

0
b(s,X(s), α(s−), T (s−)) dW (s)

+

∫ t

0

∫
R
c (s,X(s), α(s−), T (s−), z) dJ̃(ds, dz)

b(t, x, a, τ) = (Vx(t, x, a, τ))Tσ(t, x, a, τ)

c(t, x, a, τ, z) = V (t, x, a+ Γ1(a, τ, z), τ − Γ2(a, τ, z))− V (t, x, a, τ)
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