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Abstract. We propose a refinement process of dynamic equilibria based
on small random perturbations (SRP) of the backward perfect foresight
(bpf) equilibrium map in a class of one-step forward looking dynamic
models. An equilibrium is selected if its stationary measure is the limit
of the stationary measures associated with the processes generated by
the SRP of the bpf maps, as the perturbation size approaches zero. We
show that, for full measure sets of parameter values of a large class of
one-parameter families of unimodal bpf maps, only determinate cycles
or the chaotic sunspot equilibrium defined by Araujo and Maldonado
(2000) are selected. Two examples are provided illustrating such refine-
ment process.
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1. Introduction

The Rational Expectations Hypothesis requires not only individuals max-
imizers of their objective functions, but also the consistency between the
perceived randomness of future variables and their actual distribution. A
stronger concept is that of perfect foresight equilibrium, proposing that
agents are able to have a perfect prevision of the exact value of the future
state variable.

Even with the strong version of the Rational Expectations Hypothesis it
is possible to find diversity of equilibria (more often in overlapping genera-
tions models than in infinitely lived consumers models, as shown by Kehoe
and Levine (1985)). Some important equilibria are steady states, cycles and
chaotic paths (Benhabib and Nishimura (1985); Brock and Hommes (1997,
1998); de Vilder (1996); Grandmont (1985); Hommes et al. (2005); Hommes
(2018)). From them, it is possible to construct stochastic equilibria based on
extrinsics, the so called “sunspot equilibria”. The following works showed
how sunspot equilibria arise from specific stationary equilibria in dynamic
frameworks: from indeterminate stationary states, Peck (1988) and Chi-
appori et al. (1992); from regular cycles, Azariadis and Guesnerie (1986);
from multiple steady states, Chatterjee et al. (1993); in models with mem-
ory, Woodford (1986); and from chaotic dynamics, Araujo and Maldonado
(2000). If a multiplicity of equilibria is present in the model, the question
of which should be selected as a robust equilibrium arises.

In this paper we provide a selection criterion for dynamic equilibria of a
certain class of one-step forward looking economic models. Such selection
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criterion or refinement of dynamic equilibria is based on small random per-
turbations of the backward perfect foresight (bpf) map representing small
stochastic errors on the response of the perfect prevision of the future state
variable value. The stochastic processes generated in such way are station-
ary and, for a typical family of unimodal bpf maps, distinct outcomes may
occur, depending on the parameter values of the model. If the unperturbed
bpf dynamics exhibits a determinate (locally unique) cycle, the stationary
measure associated with the small random perturbation is close to an atomic
measure with support on that attracting cycle. In this case we will say that
the refinement process selects that determinate cycle. More interestingly,
if the bpf map exhibits ergodic chaos, namely, if it has an ergodic and ab-
solutely continuous (with respect to Lebesgue) invariant measure, which
is called Bowen-Ruelle-Sinai (B-R-S) invariant measure of the map , then
the stationary measure associated with the small random perturbation is
close to that measure. Such stationary measure is that corresponding to
the global chaotic sunspot equilibrium presented in Araujo and Maldonado
(2000). In this case, the refinement process selects that chaotic sunspot
equilibrium. Neither indeterminate cycles (including indeterminate steady
states) nor other kinds of sunspot equilibria other than the global chaotic
sunspot equilibrium are selected under the refinement criterion proposed
herein.

The term sunspot was coined by Cass and Shell (1983) defining it in the
context of general equilibrium models, to study the influence of the agents
expectations on market outcomes. More recently, Lucas and Stokey (2011)
have argued that sunspots and contagion effects are sources of liquidity
crises. They brought the argument of Cass and Shell (1983) on expec-
tation coordination to explain bank runs and, consequently, the financial
crises of 2008. Applications of the concept of sunspot equilibrium include
the modelling of such bank-runs (Peck and Shell (2003)), restrictions on
market participation (Balasko et al. (1995)), lotteries (Prescott and Shell
(2002); Prescott and Townsend (1984)) and behavioral economics (Fehr et al.
(2019)).

With respect to equilibria selection, in the literature we find other cri-
teria, mostly applied to linear or monotonic dynamic models of rational
expectations. Blanchard (1979) proposed requirements of consistency with
economic behavior and stationarity as a way of selecting among a multiplic-
ity of equilibria. The local stability criterion of Blanchard and Kahn (1980)
and Benhabib and Farmer (1999) is well-known – it proposes that the chosen
equilibrium must be stable under small perturbations of the initial condi-
tion. Another criterion is the minimal state variable criterion (McCallum
(1983); Wallace (1978)) which states that the equilibrium selection must
be done using forecasting functions with a minimal set of state variables
and with parameters that are continuous functions around key values of the
structural parameters. To this selection criterion belongs the least squares
learning mechanism proposed by Marcet and Sargent (1989). Also, Sargent
and Wallace (1985) and Woodford (1990) provided models with a continuum
of sunspot equilibria, where any of them can be econometrically estimated.
Finally, Driskill (2006) provided a new selection criterion of equilibria, the
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“finite-horizon” or “backward-induction” criterion, consisting in taking the
finite horizon model associated to the original one and finding the limit of
the finite-horizon equilibria as time goes to infinity. Our work contributes
to the criteria already proposed in the literature, by focusing in the case of
truly non-linear dynamics governing the state variable evolution.

The dynamics of unimodal maps plays a central role in our analysis (see
e.g. de Melo and van Strien (1993) for an overview). Among these maps,
the ones with the simplest dynamical behavior are called hyperbolic: those
unimodal maps with a hyperbolic attractor, which is a cycle such that the
modulus of the derivative of the map evaluated on it, is lower than one. A
recent result of Kozlovski (2000, 2003) ensures that the set of hyperbolic
unimodal maps is open and dense in the space of Cr unimodal maps for any
r ≥ 2. On the opposite side of the spectrum of dynamical complexity are
those unimodal maps having an absolutely continuous invariant probabil-
ity measure. In Blokh and Lyubich (1990); Keller (1990); Nowicki and van
Strien (1991) the reader can find for more results regarding the existence of
an absolutely continuous invariant measure for a unimodal map. A notion
that will be used for the results herein is the stability of dynamical systems
under independent and identically distributed random perturbations, known
as stochastic stability, initially introduced by Kolmogoroff (1937) and Sinai
(1972). For one-dimensional maps, Katok and Kifer (1986) proved stochastic
stability for the quadratic family in the Misiurewicz case, i.e. for quadratic
maps with no periodic attractors and such that the forward orbit of the
critical point does not accumulate on the critical point itself. This result
was later extended for sets of values of the parameter with positive Lebesgue
measure by Benedicks and Young (1992), with respect to the convergence
induced by the weak-topology, and by Baladi and Viana (1996), with re-
spect to the norm topology and for a wider class of unimodal maps. More
recently, Avila and Moreira (2003, 2005) proved that quadratic maps are
stochastically stable for Lebesgue almost every parameter value, their re-
sults holding also for topologically generic parametric families of unimodal
maps of the interval.

This paper is organized as follows. In Section 2, we specify the class of
economic dynamic models under consideration herein, define the concept of
refinement by small random perturbations of a perfect foresight equilibrium,
and state our main results. In Section 3 we illustrate our findings through
two examples. The first such example is the classical overlapping generations
model with fiat money, while the second one is the Shapley-Shubik market
game model. For a full measure set of values of the risk aversion parameter
(for the first model) and of the market thickness parameter (for the second
model), we find that the stationary measure associated with the small ran-
dom perturbation of the backward perfect foresight map is close to: i) the
stationary measure of the global chaotic sunspot equilibrium, whenever the
bpf map is chaotic on a finite union of intervals, or ii) an atomic measure
with support on a determinate cycle, whenever the bpf map possesses an
attracting cycle.



4 A. ARAUJO ET AL.

2. Framework and main results

In this section we set the framework we will consider and define the re-
finement process of equilibria present in it. The definitions and concepts
included in here are general and must be read as “provided that the func-
tions and expressions are well-defined”. In Subsection 2.1 we will be more
specific regarding the class of functions we are going to deal with and the
corresponding domains of each definition.

Let us consider one-period forward looking models of the form

F (xt) = Et[G(x̃t+1)] , (1)

where F and G are differentiable functions defined on non-trivial intervals
of R, xt is the value of the state variable of the model in period t, and
x̃t+1 is the random variable representing the possible values of the state
variable of the model in period t + 1. Denote by Et[·] the mathematical
expectation operator conditioned on the information available up to time
t. The interpretation of the model (1) is the following: if the probability
distribution of the state variable in period t + 1 is given by that of the
random variable x̃t+1, then the current state variable value that equilibrates
the individual decisions and the markets is xt.

If F is an invertible function and the range of G is contained in the domain
of F−1, it is possible to define the backward perfect foresight map, as follows.

Definition The backward perfect foresight map (bpf map) associated with
model (1) is the real valued map φ defined by φ(x) = F−1(G(x)) for all x
in the domain of G such that G(x) is in the domain of F−1.

The map φ(x) represents the current value of the state variable that
equilibrates the economy when the individuals’ expectation regarding the
future value of the state variable is the Dirac measure δx.

The bpf map allows us to define backward perfect foresight paths for the
model.

Definition A backward perfect foresight equilibrium path (bpf equilibrium
path) through x0 ∈ R is a sequence of real numbers {xt}t≥0 such that xt =
φ(xt+1) for all t ≥ 0.

Thus, a bpf equilibrium path is a feasible sequence {xt}t≥0 of state vari-
able values such that, individuals having perfect foresight of the state vari-
able equal to xt+1 for the period t+ 1, equilibrate their decisions in period
t with the state variable value xt = φ(xt+1).

When the bpf map is a unimodal function defined on an interval of R,
it results that for each current state value we will have two future states
values that rationalizes that current state (i.e. there exist two temporary
equilibria), therefore in general infinitely many forward perfect foresight
paths can be obtained from a given initial state. If in addition, that bpf
map exhibits chaotic behavior, Gardini et al. (2009) proved that the set
of forward paths that are intertemporal equilibria has a fractal attractor.
Characterizations and properties of those intertemporal perfect foresight
equilibria were studied using the inverse limit approach by Medio and Raines
(2007) and Mihailescu (2012).
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The map φ brings into consideration a diversity of equilibria. A fixed point
of φ, i.e. a value x̄ in the domain of φ such that x̄ = φ(x̄), is a steady state of
the economy. Analogously, a k−cycle of φ, meaning a sequence x1, x2, . . . , xk
of points in the domain of φ such that x1 = φ(x2), x2 = φ(x3), . . . , xk−1 =
φ(xk), xk = φ(x1), is a k−cycle of the economy. If some of these equilibria
are indeterminate, i.e. if there exists a continuum of bpf paths arbitrarily
close to it, then stationary sunspots equilibria exist in neighborhoods of
such equilibria (Azariadis and Guesnerie (1986), Chiappori and Guesnerie
(1991)). Moreover, whenever the map φ exhibits ergodic chaos, Araujo and
Maldonado (2000) proved that there exist a chaotic sunspot equilibrium, i.e.
a sunspot equilibrium whose stationary measure is given by the absolutely
continuous invariant measure of φ.

The central question to our analysis is the following: if agents have perfect
foresight regarding the future state of the economy, but there is a random
perturbation (trembling selection) of the current state that equilibrates the
economy, which of the existing equilibria, if any, proves to be robust when the
random perturbations are small enough? This motivates the next definition.

Definition Let {ε̃t}t≥0 be a sequence of independent and identically dis-
tributed random variables with density θε and support [−ε, ε]. A small
random perturbation (SRP) of the bpf map is a sequence {x̃t}t≥0 such that
for all t ≥ 0:

x̃t = φ(x̃t+1) + ε̃t . (2)

Equation (2) must be read as follows: if the state variable in period
t + 1 assumes the value x̃t+1 = z, there is perfect foresight and in spite of
this, there is a perturbation ε̃t = ε in the equilibrating state in t, then the
observed state value in t is φ(z) + ε. Thus, a SRP of the bpf map provides
a picture of what can happen if firstly, there is perfect foresight in the
economy and nevertheless, second, the current state suffers a small random
perturbation. It is worth noting that it is not a random perturbation of a
perfect foresight path, rather it is the realization of two random processes
({ε̃t}t≥0 and {x̃t}t≥0) that satisfy (2). The small errors introduced in each
step can be interpreted as representing a round-off of the perfect foresight
response φ(xt+1) or even recurrent approximations due to imprecision or
uncertainty regarding some parameter value defining φ. Notice that unlike
the definition 2, we do not fix the initial state value x0, since it will depend
on the values of x̃1 and ε̃0, and as we will see later, it will be irrelevant for
the refinement process.

The refinement process we will introduce here is based on the asymptotic
statistical behavior of the perturbed dynamics realized by the path {x̃t}t≥0

as the maximum size ε of the stochastic errors goes to zero. An analogous
process was initially introduced by Kolmogoroff (1937) and Sinai (1972)
for the treatment of problems of statistical physics. It is not surprising
that, whenever φ has an attracting cycle (or steady state), the stochastically
perturbed dynamics visit only a neighborhood of such cycle; however, this
is no longer the case if the cycles are sources. From the next subsection
onward we will restrict ourselves to a family of unimodal bpf maps and we
will analyze their asymptotic behavior under SRP.
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The process (2) defines a backward Markovian stochastic process, namely,
a process where the current state is a random variable, given the value of
the next period state. To that Markovian process there is an associated
transition function

Pε(x,A) ≡ Pr(x̃t ∈ A|x̃t+1 = x) =

∫
A
θε (y − φ(x)) dy , (3)

where A ⊂ R is a Borel set and x is an element in the domain of φ. Equation
(3) gives the probability that the current value of the state variable belongs
to a set A given the perfect foresight that the next time period state vari-
able value is x. The transition function (3) has a stationary (or invariant)
measure νε if it satisfies:

νε(A) =

∫
Pε(x,A) dνε(x) . (4)

We will regard the limit of νε as ε approaches 0 as an indication of which
equilibrium of (1) will ultimately be selected by the SRP refinement process,
namely, the only equilibrium of (1) consistent with such limiting stationary
measures.

Remark 2.1. In the sequel, we are particularly interested in stationary
measures associated with:

i) a k-cycle {x1, x2, . . . , xk}: these are given by a convex linear combi-

nation of Dirac distributions µ = 1
k

∑k
i=1 δxi supported on the cycle;

ii) a stationary sunspot equilibrium (X0, Q): these are given by the sta-
tionary measure of the transition function Q, i.e. the probability
measure µ satisfying µ(A) =

∫
Q(x,A) dµ(x).

In item ii) of the remark above, we resort to the definition of sunspot
equilibrium provided by Chiappori and Guesnerie (1991): A sunspot equi-
librium for the model (1) is a subset X0 ⊂ R with at least two elements and
a transition function Q : X0 × B(X0)→ [0, 1] such that:

i) F (x) = EQ(x,·)[G(x̃)] for all x ∈ X0; and
ii) there exists x0 ∈ X0 such that Q(x0, ·) is truly stochastic.

We are now ready to introduce the central notion of this paper – an
equilibrium selection criterion (or refinement of equilibria) based on small
random perturbations.

Definition An equilibrium of the one-period forward looking model (1) is
selected by the criterion of the small random perturbations of the bpf map if
its associated stationary measure µ is the limit of the stationary measures
νε associated with the small random perturbation of bpf map given in (4),
as the maximum size of the random perturbation tends to zero. Namely, if

νε → µ

as ε→ 0 in the weak topology1.

1Let X be a metric space with Borel σ-algebra Σ. A sequence of probability measures
(µn)∞n=1 on the measurable space (X,Σ) is said to converge in the weak topology to the

probability measure µ, denoted here as µn → µ, if

∫
X

f dµn →
∫
X

f dµ for all bounded,

continuous functions f : X → R.
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Definition 2 corresponds to that of stochastic stability originally intro-
duced by Kolmogoroff (1937), and later extended by Sinai (1972) and ap-
plied to unimodal maps by Katok and Kifer (1986), Benedicks and Young
(1992) and Baladi and Viana (1996). The intuition of that concept is that
it seeks to relate the behavior of the dynamics of a function with that em-
pirically observed, when the dynamics is stochastically perturbed in each
iteration of the map. The novelty here is that we are using the same idea
for the bpf map with the interpretation provided above and with its meaning
being the refinement process of dynamic equilibria in models of the type (1).

2.1. SRP Refinement for generic families of unimodal maps. In this
subsection and the following we will be more specific regarding the class of
functions and stochastic processes under consideration, as well as the domain
containing the sequences generated by such processes.

Let us denote by F the class of C3 unimodal maps φ : X → X (the bpf
map) defined on an interval of the form X = [0, α], with 0 < α ≤ +∞, and
for which the following conditions hold:2

1. φ has a non-degenerate critical3 point x∗ with φ2(x∗) > 0;
2. φ has a repelling fixed point at zero, i.e. φ(0) = 0 and φ′(0) > 1;
3. φ has negative Schwarzian derivative4.

Regarding the the random perturbations, we will assume the following.

Hypothesis 1. The density θε : R→ R+
0 satisfies the conditions:

(i) supp(θε) ⊂ Ωε = [−ε, ε],
(ii) M = supε>0(ε sup |θε|) <∞,
(iii) Jε := {t| θε(t) > 0} is an interval containing 0 and ηε := log(θε|Jε)

is a concave function.

The truncated normal distribution and the uniform distribution on an in-
terval provide examples of probability distributions whose densities satisfy
Hypothesis 1.

Unimodal maps φ ∈ F fit into three alternative topological types (see
de Melo and van Strien (1993)):

i) The map φ has a periodic attractor C ⊂ X whose basin of attrac-
tion5 is big both from a topological point of view (open and dense
set) and in a measure-theoretical sense (full measure). Both the
periodic attractor and its basin are stable under deterministic C1

perturbations of φ. Unimodal maps such as these are usually called
hyperbolic or regular.

2From now on we will use the following notation: φ0(x) = x; φn+1(x) = φ(φn(x)), for
all n ≥ 0.

3The critical point x∗ is such that φ′′(x∗) 6= 0.

4The Schwarzian derivative of φ is defined as Sφ = φ′′′(x)
φ′(x) −

3
2

(
φ′′(x)
φ′(x)

)2
. See the

textbook by de Melo and van Strien (1993) for a detailed treatment of one-dimensional
dynamics.

5The basin of attraction of C ⊂ X is the set of all points x ∈ X for which the ω-limit
set of x, ω(x) = {y ∈ X : there exists a subsequence ni →∞ with φni(x)→ y}, is such
that ω(x) = C.
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ii) The map φ is transitive on some finite union of intervals, i.e. there
exist orbits which are dense in these intervals, has a B-R-S measure
which is absolutely continuous with respect to Lebesgue with sup-
port on that finite union of intervals, and has a positive Lyapunov
exponent6. Even if φ may be unstable under deterministic pertur-
bations (nearby maps may have a periodic attractor), the stochastic
description given by the B-R-S measure is robust under stochastic
perturbations in the sense that the perturbed system has a station-
ary measure whose density is close to B-R-S measure density with
respect to the L1 distance. This is the case into which the bpf maps
of subsection 2.2 fall.

6If φ ∈ F then there exists λφ ∈ R such that for almost every x ∈ X we have that

λφ = lim sup
1

n
log |Dφn(x)|. Such number λφ is called the Lyapunov exponent of the map

φ and characterizes the rate of separation of infinitesimally close trajectories.
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iii) The map φ is infinitely renormalizable7 and has a unique invariant
probability measure µ, which is a B-R-S measure supported in the
closure of the forward orbit of the critical point of φ. This set is an
attracting Cantor set C and if x is in the basin of C then

lim
n→+∞

1

n

n−1∑
i=0

f(φi(x)) =

∫
f(x) dµ

for every continuous function f .

In what concerns the “relative sizes” of the three alternative topological
types to which φ ∈ F may belong to, it should be remarked that the first
two alternatives are observable for open sets of families of unimodal maps,
with the first alternative also known to be dense within the class of unimodal
maps under consideration here. However, that first alternative may not have
full Lebesgue measure in the parameter space where the family is defined,
as we will see in the examples of Section 3. Regarding the third alternative,
this occurs only for a subset of Lebesgue measure zero of the parameter
space.

The next theorem relies heavily on the result given in Avila and Moreira
(2003) to provide a description of the eventual outcomes produced by ran-
dom perturbation selection criterion of Definition 2. The proof is provided
in the Appendix.

Theorem 2.2. For topologically generic k-parameter families of bpf maps
in the class F , the random perturbation selection criterion of Definition
2 satisfying Hypothesis 1 will select a determinate cycle for an open and
dense subset of the parameter space and, for Lebesgue almost every other
parameter, it will select the chaotic sunspot equilibrium given in Araujo and
Maldonado (2000).

Thus, by Theorem 2.2, the random perturbation selection criterion of Def-
inition 2 always picks a single equilibria for a large class of unimodal maps –
the hyperbolic ones. For such maps, the selected equilibria is always a deter-
minate cycle, since the attractor cycle for φ is a local source for its inverse,
so it is locally unique. For almost every other value of the parameter (within
generic parametric families), the chaotic sunspot equilibrium is selected. It
is worth noting that, even though the latter is in the complement of an open
and dense set, it may occur with positive Lebesgue measure, two contrast-
ing ideas of size in mathematics and now in economics. In Subsection 2.2
we provide sufficient conditions for the occurrence of the latter alternative
and in Section 3 we will illustrate in two economically relevant examples the
non-triviality of the set of parameters values where it happens.

7A closed proper subinterval J of X is called restrictive with period n ≥ 1 for φ if
a) the interiors of J, . . . , φn−1(J) are disjoint;
b) φn(J) ⊂ J , φn(∂J) ⊂ ∂J ;
c) at least one of the intervals J, . . . , φn−1(J) contains the critical point;
d) J is maximal with respect to these properties.

The map φn : J → J is called the renormalization of φ to J . A map is infinitely renor-
malizable if it has restrictive intervals of arbitrary high period.
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We observe that whenever the bpf map φ exhibits chaotic behavior, it has
infinitely many (repelling) cycles, which are indeterminate cycles indeed.
Therefore, in this case, model (1) exhibits the following distinct equilibria:

i) infinitely many indeterminate cycles;
ii) infinitely many local sunspot equilibria in the neighborhood of the

indeterminate cycles;
iii) infinitely many chaotic bpf equilibrium paths (realized by the bpf

map φ);
iv) exactly one chaotic sunspot equilibrium (with stationary measure

µ);

As noted earlier, out of all of the (infinitely many) equilibria listed above,
only the last one emerges as a possible outcome of the refinement criterion of
SRP whenever the original unperturbed bpf map exhibits chaotic dynamics.

2.2. SRP refinement selects chaotic sunspot equilibria. Our main
result – Theorem 2.2 – establishes the possibility of selection of the chaotic
sunspot equilibrium in the complement of an open and dense subset of the
parameter space for topologically generic parametric families of bpf maps.
Even though such set might be regarded as being small in a topological
sense, it is important to stress that it may be significant from a metric point
of view, i.e. it may occur as a positive Lebesgue measure subset of parameter
space. In this part of the work we will provide conditions guaranteeing the
convergence of the measure νε to an absolutely continuous B-R-S measure
µ.

Hypothesis 2. The bpf map φ ∈ F satisfies the following conditions:

(1) Subexponential recurrence: |φk(x∗)− x∗| ≥ e−αk for all k ≥ H0,
(2) Collet–Eckmann condition: |Dφk(φ(x∗))| ≥ eγk for all k ≥ H0,
(3) Visiting property: φ is topologically mixing in the dynamical interval

X = [φ2(x∗), φ(x∗)], that is, given open sets A,B ⊂ X, there exists
an integer N , such that, for all n > N , it holds that φn(A)∩B 6= ∅,

where H0 ≥ 1, γ > 0 and 0 < α < γ/4 are fixed constants.

Under Hypothesis 2, the bpf map φ : X → X has a Bowen-Ruelle-Sinai
(B-R-S) invariant probability measure, namely, there exists an absolutely
continuous measure µ with support in X such that µ(φ−1(A)) = µ(A) for
any Borel set A ⊂ X (see Baladi and Viana (1996)). Those B-R-S measures
are important because they allow a statistical description of the orbits of the
map, namely, for any continuous function f ∈ C(X), the average value of the

function on the orbit generated by φ (namely, n−1
∑n−1

j=0 f(φj(x))) converges

to
∫
X f(z)µ(dz) when n goes to infinity, for Lebesgue almost all x ∈ X.

The unimodal shape of φ and the existence of an invariant and absolutely
continuous measure associated to it are conditions for the existence of a
chaotic sunspot equilibrium, as shown by Araujo and Maldonado (2000).

It is important to specify the domain of φ allowing for well-defined pro-
cesses originated from performing a small random perturbations of a bpf
map. When a stochastic perturbation is introduced, the orbits of such sto-
chastic dynamical system may leave the dynamical interval X associated
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with the bpf map φ with positive probability when the random perturba-
tion size is large enough. However, since φ2(x∗) > 0, it is not difficult to
prove that there exists ε0 > 0 such that for every probability density function
θε satisfying Hypothesis 1, where ε < ε0, there exists a compact interval

Xε = [φ(φ(x∗) + ε)− ε, φ(x∗) + ε] ⊂ R+

such that Xε is invariant under both the deterministic and stochastic dy-
namics associated to φ. Since we will study the limit where the maximum
size of the random perturbation ε → 0, we can take the size of the random
perturbation to be strictly smaller than ε0 > 0, thus yielding well defined
random dynamics in the compact interval Xε.

The next proposition provides conditions under which the chaotic SSE
introduced by Araujo and Maldonado (2000) is the outcome of the SRP
refinement process introduced here. Its proof uses some of the main results
of Baladi and Viana (1996).

Proposition 2.3. Suppose that:

i) model (1) has a bpf map φ ∈ F satisfying Hypothesis 2; and
ii) the random perturbations {ε̃j}j≥0 associated with the SRP of Def-

inition 2 are sampled from a probability distribution with density
satisfying Hypothesis 1.

Then, the refinement process of Definition 2 will select the chaotic SSE of
Araujo and Maldonado (2000). Namely, we have that νε → µ as ε → 0,
where νε is the stationary measure (4) and µ is the absolutely continuous
B-R-S invariant probability measure of φ.

Despite the seemingly strong conditions – Hypothesis 2 – imposed on φ to
guarantee the selection of the chaotic SSE, we will provide in the following
section two economically relevant models exhibiting such behavior for a set
of parameter values with positive Lebesgue measure.

3. Two examples

In this section we provide two examples to illustrate the refinement pro-
cess given by the small random perturbation of the bpf map. Depending
on the parameter values of these models, the refinement process will select
either the chaotic sunspot equilibrium, provided the bpf map is chaotic on
a finite union of intervals, or the determinate cycle, provided the bpf map
has an attracting cycle. Neither indeterminate equilibria nor other types of
classical local sunspot equilibria are selected by the SRP criterion proposed
herein.

We will first introduce the theoretical model underlying each example,
before summarizing the results of the numerical experiment performed to il-
lustrate the abundance of parameter values leading to the selection of either
a determinate cycle or the chaotic SSE, by means of the refinement process
proposed herein. The first such example is the classical overlapping genera-
tion model with fiat money, while the second is the market game model of
Shapley and Shubik.
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3.1. An OLG model with fiat money. We will consider a two-period
overlapping generations (OLG) model like the one introduced in Grand-
mont (1986). An analogous model was analyzed by Azariadis and Guesnerie
(1986) to prove the existence of cycles and sunspots with finite support.

The economy is populated by a large number of young and old agents.
The population sizes are the same and remain constant over time. We
assume that there exists a representative agent with preferences given by a
separable utility function

U(ct, ct+1) =
c1−α1
t

1− α1
+

c1−α2
t+1

1− α2
,

where αi > 0 and αi 6= 1, i = 1, 2, are the coefficients of relative risk
aversion of the agent, and (ct, ct+1) denotes the corresponding consumption
plan. We suppose also that one unit of the good is produced with one unit
of the unique productive factor (labor) and let l∗1 and l∗2 denote the agents
labor endowments in the first and second periods of their lives, respectively.
Finally, we assume that there is a risk-free asset (fiat money) that can be
purchased by the agents providing a gross return zt = 1, and the money
supply is constant, i.e. Mt = M0 for all t ≥ 0.

The consumption-saving problem of the representative agent is as follows.
Let pt and pt+1 denote the prices of the unique good in the economy during
the first and second periods of the individual’s life. While pt is known
by the individual during her first stage life, she only knows a probability
distribution µt+1 of particular values of pt+1. The agent must choose a
consumption plan (ct, ct+1) and the first period saving mt as the solution of
the following optimization problem

max
{ct,ct+1,mt}

c1−α1
t

1− α1
+ Et

[
c1−α2
t+1

1− α2

]
(5)

subject to the budget constraints

ptct +mt = ptl
∗
1 and pt+1ct+1 = pt+1l

∗
2 +mt ,

where Et[·] denotes the mathematical expectation with respect to the prob-
ability measure µt+1. The first order condition for an interior solution of (5)
leads to

− 1

pt

(
l∗1 −

mt

pt

)−α1

+ Et

[
1

pt+1

(
l∗2 +

mt

pt+1

)−α2
]

= 0 . (6)

The monetary equilibrium condition is Mt = m = 1. Defining the new
variable xt = 1/pt, the first order condition (6) may be rewritten as

F (xt) = Et [G(xt+1)] , (7)

where F and G are given by

F (x) = x(l∗1 − x)−α1 and G(x) = x(l∗2 + x)−α2 , (8)

thus yielding an identity of form (1), defining the equilibrium dynamics for
the state variable xt = 1/pt.
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The map F : [0, l∗1) → R+ defined in (8) is strictly increasing, and thus
invertible. In addition, for α2 > 1 the function G is unimodal. Hence, we
obtain that the corresponding bpf map

φ(x) = F−1 (G(x)) (9)

is also unimodal.

3.2. The Shapley-Shubik market game model. We will now consider
the one commodity overlapping generations version of the Shapley-Shubik
market game (Shapley and Shubik (1977)), presented by Goenka et al.
(1998).

This is a model of a pure exchange economy with overlapping generations
of agents and a single good being traded. Time is discrete and labeled as
t = 1, 2, . . . . In each time period t > 0, a fixed number n of agents are
born and live for two periods. Thus, young and old individuals coexist in
each period t, with n elder individuals alive at time t = 1. Individuals
are assumed to have identical utilities for consumption and identical initial
endowments in each period of life. Denoting by (ctt, c

t+1
t ) the consumption

plan of an individual born in period t, her utility is given by

U(ctt, c
t+1
t ) = u1(ctt) + u2(ct+1

t ) . (10)

Thus, in the presence of uncertainty, an expected value operator Et[·] is
present in the second term of (10). The initial endowments in each period
of life are denoted as ω1 and ω2.

The trade mechanism is as follows. There exists a fixed amount m̄ of
fiat money in the economy. Each individual i born at time t provides a
(monetary) bid bit = (btit, b

t+1
it ) to get monetary resources to buy goods,

decides her savings mt, and provides an offer of goods qit = (qtit, q
t+1
it ). Bids

and offers operations are performed in trading posts and, in the presence
of uncertainty, the negotiations are conditioned to each state of the nature.
The aggregate bids and offers of individuals born at time s = t, t + 1 are
defined by

Bs
t =

n∑
i=1

bsit and Qst =
n∑
i=1

qsit , s = t, t+ 1 (11)

and the bids and offers in the market are

Bt = Bt
t−1 +Bt

t and Qt = Qtt−1 +Qtt . (12)

The terms of trade, that will be used as a “price” of the commodities
in terms of fiat money, is defined by Bt/Qt. Then, the lifetime budget
constraints of each individual are given by

btt +mt =
Bt
Qt
qtt and bt+1

t = mt +
Bt+1

Qt+1
qt+1
t . (13)

If (13) is satisfied, then the lifetime consumption of each individual is

ctt = ω1 − qtt +
Qt
Bt
btt and ct+1

t = ω2 − qt+1
t +

Qt+1

Bt+1
bt+1
t . (14)

To solve the individual problem in terms of the demand of money, we have
to express the terms in (14) as functions of mt. To do this, let us express
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the aggregate bids (offers) at time t and t+ 1 in terms of the individual bid

(offer) and the other agents aggregate bids (B̂t, B̃t+1) (offers (Q̂t, Q̃t+1)) at
time t and t+ 1, respectively:

Bt = btt + B̂t

(
Qt = qtt + Q̂t

)
, (15)

and

Bt+1 = bt+1
t + B̃t+1

(
Qt+1 = qt+1

t + Q̃t+1

)
. (16)

Substituting (15) into the first constraint in (13) and rearranging terms
yields

btt +mt =

[
B̂t −mt

Q̂t

]
qtt . (17)

Similarly, substituting (16) into the second constraint in (13) results in

bt+1
t = mt +

[
B̃t+1 +mt

Q̃t+1

]
qt+1
t . (18)

Substituting (13) into (17) and (18), we obtain the terms of trade in each
period, given by

Bt
Qt

=
B̂t −mt

Q̂t
and

Bt+1

Qt+1
=
B̃t+1 +mt

Q̃t+1

. (19)

Finally, putting together (13), (14), (17) and (19) (as well as (13), (14),
(18) and (19)), we obtain the individual’s lifetime consumptions in terms of
the money demand and the strategies of all other individuals:

ctt(mt) = ω1−
Q̂t

B̂t −mt

mt and ct+1
t (mt) = ω2+

Q̃t+1

B̃t+1 +mt

mt . (20)

In period t the agents use beliefs µt+1 regarding the aggregate bid value
B̃t+1 and the aggregate offer value Q̃t+1 for the next period. Thus, a math-
ematical expectation operator with respect to the probability measure µt+1

is included in the utility of the second life period. Therefore, the individual
problem is to find the demand of money mt solving the following:

max
mt

u1(ctt(mt)) + Et
[
u2(ct+1

t (mt))
]
. (21)

The first order condition for interior solutions of the optimization problem
above is(

Q̂t

B̂t −mt

+
Q̂tmt

(B̂t −mt)2

)
u′1

(
ω1 −

Q̂tmt

B̂t −mt

)
=

Et

[(
Q̃t+1

B̃t+1 +mt

− Q̃t+1mt

(B̃t+1 +mt)2

)
u′2

(
ω2 +

Q̃t+1mt

B̃t+1 +mt

)]
. (22)

Peck et al. (1992) noticed that in this kind of models there is indetermi-
nacy in either the offers or the bids. Therefore, we will suppose that the
sequence of offers (qtt, q

t+1
t ) is given and the amount of fiat money m̄ is fixed.

In this context we give the following definition of equilibrium.
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Definition Given the exogenous offers (qtt, q
t+1
t ) and the amount of fiat

money m̄, a monetary Nash equilibrium is a sequence of bids (btt, b
t+1
t ) that

makes mt = m̄ the solution of (22).

To obtain the dynamics of the bids, notice that from (19) one can get

Q̃t

B̃t +mt−1

=
Q̂t

B̂t −mt

,

which, rearranging terms, yields

B̃t =
Q̃t

Q̂t
(B̂t −mt)−mt−1 .

Substituting the two identities above into the right-hand side of (22), results
in(

Q̂t

B̂t −mt

+
Q̂tmt

(B̂t −mt)2

)
u′1

(
ω1 −

Q̂tmt

B̂t −mt

)
= (23)

Et

[
Q̂t+1

(B̂t+1 −mt+1)2

(
B̂t+1 −mt+1 −

Q̂t+1

Q̃t+1

mt

)
u′2

(
ω2 +

Q̂t+1mt

B̂t+1 −mt+1

)]
.

Suppose now that qtt = q1 and qt+1
t = q2 for all t ≥ 1, and m̄ = m. Then,

for all t ≥ 1, one must have that

Q̂t = Q̂ = (n− 1)q1 + nq2 and Q̃t = Q̃ = nq1 + (n− 1)q2 .

Substituting the two identities above into (23) yields the dynamics in the
aggregate bids:(

Q̂

B̂t −m
+

Q̂m

(B̂t −m)2

)
u′1

(
ω1 −

Q̂m

B̂t −m

)
=

Et

[
Q̂

(B̂t+1 −m)2

(
B̂t+1 −

m(Q̂+ Q̃)

Q̃

)
u′2

(
ω2 +

Q̂m

B̂t+1 −m

)]
, (24)

where the operator Et[·] is now used to denote the expectation taken with
respect to the probability distribution of the next period aggregate bids
B̂t+1. Finally, set

xt =
Q̂m

B̂t −m
and rewrite the equilibrium dynamics condition in (24) as

(x2
t + Q̂xt)

Q̂
u′1(ω1 − xt) = Et

[
(Q̃xt+1 − x2

t+1)

Q̃
u′2(ω2 + xt+1)

]
,

where, by abuse of notation, the expectation with respect to the induced
probability distribution on xt+1 is also denoted by Et[·].

As in the example of Subsection 3.1, we will also use constant relative
risk aversion utility functions

ui(c) =

{
c1−αi
1−αi if αi > 0 and αi 6= 1

ln(c) if αi = 1
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Under these functional specifications, we are able to define

F (x) =
(x2 + Q̂x)

Q̂
(ω1 − x)−α1

and

G(x) =
(Q̃x− x2)

Q̃
(ω2 + x)−α2 ,

yielding, in the general stochastic case, the dynamical system

F (xt) = Et [G(xt+1)] , (25)

which is again of the form (1). Since the function F is strictly increasing in

[0, ω1] and the function G is a unimodal on the interval [0, Q̃], the bpf map

φ(x) = F−1(G(x))

is also unimodal on [0, Q̃].
Due to the striking similarities between the bpf maps (and corresponding

dynamical systems) of the two models described in this section, we move on
to perform a combined analysis for these two cases.

3.3. Numerical simulations. This is the main subsection of this part.
We summarize the outcomes of some numerical experiments in order to
illustrate the selection criterion given by the small random perturbations.
Specifically, each bpf map of the models above will be parametrized using
one of the parameters of the model. Then, we will track the values of that
parameter for which the refinement process will select either a determinate
cycle or a chaotic sunspot equilibrium according to Theorem 2.2.

Let φλ(x) denote the bpf in any of the models described in the previous
subsections, where λ is one of the parameters defining the function, taking
values in a given set Λ, as we describe below:

a) For the OLG model of Subsection 3.1, we fix all the parameter values
except for λ = α2, which is allowed to vary in the set

Λ = {λ ∈ [2,+∞) : (l∗1)α1 > (l∗2)λ} .
Then, for every λ ∈ Λ, we can verify that φλ is a C3 unimodal map
with φ(0) = 0, φ′(0) > 1, a (positive) non-degenerate critical point
x̄(λ) and negative Schwarzian derivative.

b) For the market game model of Subsection 3.2, we fix the relative
risk aversion coefficients and initial endowments values in such a
way that ωα1

1 > ωα2
2 . The parameter λ = Q̃ is allowed to vary in the

set
Λ = (0,+∞) .

Under these conditions, for every λ ∈ Λ, we can also verify that
φλ is a C3 unimodal map with φ(0) = 0, φ′(0) > 1, a (positive)
non-degenerate critical point x̄(λ) and Sφ(x) < 0.

To check the validity of Hypothesis 2, let us introduce some additional
concepts. Let Λ be an interval in R and denote by FΛ a one-parameter
family of bpf maps φλ ∈ F , depending on a real parameter λ ∈ Λ, and for
which the map (x, λ) 7→ (φλ(x), Dxφλ(x), D2

xφλ(x)) is C1. Denote by x̄(λ∗)
the critical point of the unimodal map φλ.
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Definition We say that the one-parameter family φλ, λ ∈ Λ, has a Misi-
urewicz parameter λ∗ ∈ Λ with generic unfolding if the following conditions
hold

a) λ∗ ∈ Λ is such that φλ∗ is a Misiurewicz map, i.e. φλ∗ has no periodic
attractors and the forward critical orbit does not accumulate on its
critical point;

b) the following transversality condition holds:

lim
n→+∞

Dλφ
n
λ∗

(x̄(λ∗))

Dxφ
n−1
λ∗

(φλ∗(x̄(λ∗)))
6= 0 .

Concerning the definition above, we remark that if φλ∗ is a post-critically
finite Misiurewicz map, i.e. φλ∗ has no periodic attractors and some iterate
N of the critical point x̄(λ∗) reaches a repelling periodic point P (λ∗), then
condition b) is equivalent to the transversality of the curves λ 7→ φNλ (x̄(λ))
and λ 7→ P (λ). We will use this equivalent geometrical condition in our
numerical illustrations below.

The next result provides a set of sufficient conditions under which there
exists a large set of bpf maps for which the strong stochastic stability of
Proposition 2.3 holds; this avoids the verification of the conditions given in
Hypothesis 2. The proof is in the Appendix.

Theorem 3.1. Let φλ, λ ∈ Λ ⊂ R, be a one-parameter family of bpf maps
defined for one of the models above (the OLG model with fiat money of
Section 3.1 or the market game model of Section 3.2).

(i) If φλ has a Misiurewicz parameter λ∗ ∈ Λ with generic unfolding,
then there exists a positive measure set A ⊂ Λ having λ∗ as a density
point such that for every λ ∈ A there exists an invariant measure µλ
which is an absolutely continuous B-R-S measure.

(ii) Moreover, if the dynamical system determined by φλ is perturbed by
a random process {ε̃t}t≥0 satisfying the hypothesis 1, then the results
of Proposition 2.3 are also valid.

We will now illustrate the large abundance of strong stochastic stable bpf
maps for the OLG model of Subsection 3.1. We numerically determine values
of parameters (α1, α2, l

∗
1, l
∗
2) under which the map φλ is a post-critically finite

Misiurewicz map, i.e. φλ has no periodic attractors and the critical orbit
is pre-periodic to a repelling periodic orbit. To proceed with our numerical
experiments, we fix the parameters l∗1 = 3.51 and l∗2 = 0.55 and work on the
two parameter space of relative risk aversion coefficients (α1, α2) ∈ (0, 1)×
(2,+∞). The results described below are robust with respect to changes
in the values of l∗1 and l∗2. We then numerically compute any intersections
between the first N iterates of the critical point and the periodic points up
to some finite period M , excluding all the non-transverse intersections since
these do not satisfy item b) of Definition 3.3, as well as all the intersections
with attracting periodic points. Checking the stability of the periodic points
is relevant because in the case where the critical point is pre-periodic to a
repelling periodic point there can be no stable or neutral cycles, since for
unimodal maps with negative Schwarzian derivative, these would attract the
critical orbit. In Figure 1 it is possible to observe the different dynamical
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limit behaviors of the bpf map as the risk aversion parameter α2 increases
from 2 to 7.5.

For small values of α2, there exists a unique attracting fixed point of φ.
Such attracting fixed point corresponds to a determinate steady state. As
α2 increases above 4.1 approximately, attracting periodic points of higher
periods are generated by period-doubling bifurcations. Each attracting pe-
riodic point corresponds to a determinate cycle of the model. All those
φλ lead to invariant measures supported on convex linear combination of
Dirac measures supported on the determinate cycle, therefore, the refine-
ment process will select the corresponding cycle. For large enough values of
α2 (greater than 6.4 approximately), Misiurewicz maps can be found. See
Figure 2 shows the abundance of Misiurewicz maps within the parameter
space (α2, α1) ∈ (2, 7.5) × (0.01, 0.29). Such parameters correspond to bpf
maps possessing an absolutely continuous invariant B-R-S measure. There-
fore, the refinement process proposed here will select the chaotic sunspot
equilibrium for such parameter values. Thus, we can conclude that the
stability of the determinate cycle as selected equilibrium disappears as the
relative risk aversion of the individual in her second period of life increases.

To stress the distinction between the behaviors associated with the two
possibilities of convergence discussed above, for the parameter values used
above and fixing additionally α1 = 0.41 and α2 ∈ {5.0; 6.5}, we plot in
Figures 3 and 4 histograms associated with 106 iterations of paths generated
by the bpf map φ for two different set of parameters values and varying sizes
of the random perturbation.

Those are the densities of the stationary measure of the small random per-
turbations, which are close to the B-R-S measure µ, which is the stationary
measure of the chaotic sunspot equilibrium.

The simulations discussed above can be criticized by the use of an ex-
cessively high relative risk aversion parameter. However, for the market
game model of Section 3.2 with agents having constant relative risk aversion
utility functions, we present the analogous analysis using more conservative
values for that parameter. Specifically, fixing the parameter values α1 = 0.5,
α2 = 2, ω1 = 2, ω2 = 0.39, Q̂ = 0.1 and varying Q̃ ∈ (0.0, 0.135) we can ob-
serve in Figure 5 the existence of parameters values determining bpf maps
with B-R-S measures for values of Q̃ below 0.098, namely, when there is
scarcity of goods. For those parameter values we obtain the convergence
of the stationary measures of small random perturbation to the absolutely
continuous B-R-S measure of the bpf map, which is the stationary measure
of the chaotic sunspot equilibrium. For Q̃ greater than 0.098, attracting
cycles of the bpf map arise and therefore we obtain the convergence of the
stationary measures of small random perturbations to convex linear com-
binations of Dirac measures supported on the corresponding deterministic
cycle.

Figures 6 and 7 contain histograms associated with varying maximal sizes
for the random perturbations for the parameter values listed above and,
respectively, Q̃ = 0.09 and Q̃ = 0.12, enabling us to compare once again the
chaotic dynamics case against the regular dynamics case associated with an
attracting cycle.
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We also run the same numerical analysis for the case of agents with log-
arithmic utilities and parameter values ω1 = 5.4, ω2 = 0.5, Q̂ = 0.2 and
varying Q̃ ∈ (0.0, 0.034). The results are quite similar to the previous anal-
ysis and Figure 8 shows that the refinement process will select the chaotic
sunspot equilibrium for a wide range of values of Q̃ below 0.255. Due to the
great similarity we do not report the histograms of this case. Therefore, we
can conclude that the stability of the determinate cycle as selected equilib-
rium disappears as the total expected supply of goods for the second period
of life becomes scarce.

4. Conclusions

In this paper we proposed a new selection criterion of dynamic equilibria
in non-linear one-period forward looking economic models. The criterion is
based on the limit behavior of the stationary measures of stochastic pro-
cesses generated by a small random perturbation of the backward perfect
foresight map of the model. This stability concept was originally introduced
by Kolmogoroff (1937) and afterwards extended by Sinai (1972) to treat
problems in statistical physics. Recently, its usage was broadly applied to
the analysis of the unimodal maps dynamics by Katok and Kifer (1986),
Baladi and Viana (1996) and Avila and Moreira (2003) and we use some of
their findings to obtain our results.

It is important to highlight that the stochastic perturbations are not
random deviations from a given perfect foresight path; rather, they can be
interpreted as the rounding-off, in each date, of the equilibrating response to
the perfect foresight, or even some approximations when there is uncertainty
regarding some parameter defining the backward perfect foresight map. This
“invisible trembling-hand” refinement adjusts the current value of the state
variable that equilibrates the perfect foresight of the agents.

We apply that selection criterion to models exhibiting unimodal backward
perfect foresight maps. For a large class of such models, we obtain that
there exists a set of parameter values with full Lebesgue measure where the
only equilibria that are selected under this refinement criterion are either
determinate cycles (including deterministic steady states) or the Bowen-
Ruelle-Sinai invariant measure of the backward perfect foresight map, which
is the stationary measure of the chaotic sunspot equilibrium presented in
Araujo and Maldonado (2000). Neither indeterminate cycles nor other types
of sunspot equilibria are selected by the proposed criterion.

To illustrate the large set of parameter values where those results are
valid, we performed numerical simulations of two economic dynamics mod-
els: the OLG model with fiat money and the Shapley-Shubick market game
model. For both models we derived the equations defining the intertemporal
equilibrium dynamics and studied the set of parameter values for which the
stochastic processes under consideration possess an empirical measure con-
verging to a Bowen-Ruelle-Sinai measure, as well as parameter values with
the corresponding measure converging to an atomic measure with support
on an attracting cycle. For the OLG model, the excess of risk aversion in the
second period of life produces instability of the determinate cycle, trigger-
ing the arising of sunspots equilibria with absolutely continuous invariant
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measure supported in the whole relevant interval of the bpf map. In the
Shapley-Shubick market game model, the scarcity of goods in the second
period of individuals planning has the same destabilizing effect on the de-
terminate cycles. Thus, the proposed analysis can be used as an indicator
of stabilization policies by assessing the parameter values that allows for the
robustness of those equilibria; namely the sunspot equilibrium of Araujo and
Maldonado (2000) or the determinate cycles, with respect to the criterion
of small random perturbation of perfect foresight equilibrium.
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Appendix

Proof of Theorem 2.2. The result relies heavily on the topological character-
ization of unimodal maps proposed in Avila-Moreira dichotomy for smooth
unimodal maps (Avila and Moreira (2003)). Namely, for a topologically
generic k-parameter family of bpf maps in F , an open and dense set of pa-
rameters corresponds to hyperbolic maps. These are stochastically stable
and, moreover, the stationary measure associated with a random perturba-
tion of the corresponding bpf map will converge to an atomic measure with
support on the (unique) attracting cycle of such hyperbolic map, which cor-
responds to a determinate cycle. Resorting to Avila-Moreira dichotomy, for
almost every other parameter the bpf map satisfies the subexponential re-
currence condition and the Collet-Eckmann condition (conditions 1 and 2
of hypothesis 2). These ensure the existence of an absolutely continuous
stationary measure and strong stochastic stability. �

Proof of Proposition 2.3. Let ε > 0 be small enough so that νε is the unique
invariant and ergodic probability measure associated with Pε(·, ·) (namely,
satisfying (4)). Furthermore, such measure is absolutely continuous with
respect to the Lebesgue measure. All those claims are proved in Benedicks
and Young (1992), Part II.

Since the bpf map φ ∈ F satisfies Hypothesis 2 and the probability density
of the random perturbations satisfies Hypothesis 1, the main theorem in
Baladi and Viana (1996) ensures that νε → µ in the weak-topology as ε →
0. �

Proof of Theorem 3.1. For the families of utility functions with constant rel-
ative risk aversion introduced in Subsections 3.1 and 3.2 and the choice of
parameters discussed in items a) and b) in the second paragraph of Subsec-
tion 3.3, we have that for every λ ∈ Λ the following holds:

i) φλ is a C3 unimodal map;
ii) φλ has a (strictly positive) non-degenerate critical point x̄(λ);
iii) φλ has a repelling fixed point at zero.

For one-parameter families of maps satisfying the conditions i), ii) and iii)
above and having a Misiurewicz parameter λ∗ ∈ Λ with generic unfolding,
there exists a positive Lebesgue measure set A in the space of parameters
with λ∗ as a density point and such that the subexponential recurrence and
the Collet-Eckmann conditions of Hypothesis 2 hold for every λ ∈ A (see
Sections III.6, V.3 and V.6 of the textbook by de Melo and van Strien (1993)
for further details). As a consequence, for every λ ∈ A, we have that

1) φλ admits an absolutely continuous invariant measure µλ, with a Lp

density for any p < 2;
2) µλ is a B-R-S measure;
3) φλ has positive Lyapunov exponent almost everywhere.
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Hence, the strong stochastic stability of φλ follows from Baladi and Viana
(1996) by observing that condition (3) of Hypothesis 2 holds for unimodal
maps with negative Schwarzian derivative and an absolutely continuous in-
variant measure. �
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Figure 1. Plot in the (α2, x) plane of the first 100 iterates
of the critical point (in blue) and periodic points (of period
1, 2, 4 and 8) of the bpf map φ of Subsection 3.1. The stable
periodic points are in green and the unstable ones in red.
The other parameter values are l∗1 = 3.51, l∗2 = 0.55 and
α1 = 0.41.

Figure 2. The distribution of Misiurewicz parameters for
the family of bpf maps with (α2, α1) ∈ (2, 7.5)× (0.01, 0.99)
for fixed l∗1 = 3.51 and l∗2 = 0.55. These are obtained by
considering intersections of the first 100 iterates of the critical
point with unstable periodic points of periods 1, 2, 4 and 8.
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Figure 3. The bpf φ and the approximate densities associ-
ated with its stationary measure for the OLG model of Sec-
tion 3.1 and parameter values l∗1 = 3.51, l∗2 = 0.55, α1 = 0.41
and α2 = 6.5 corresponding to deterministic bpf dynamics
that are chaotic on a finite union of intervals. Fig. (b)
does not contain any randomness, while the maximum size
of the random perturbation is ε = 0.001 in Fig. (c) and
ε = 0.00804199 in Fig. (d).
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Figure 4. The bpf φ and the approximate densities associ-
ated with its stationary measure for the OLG model of Sec-
tion 3.1 and parameter values l∗1 = 3.51, l∗2 = 0.55, α1 = 0.41
and α2 = 5.0 corresponding to deterministic bpf dynamics
exhibiting an attracting cycle. Fig. (b) does not contain any
randomness, while the maximum size of the random pertur-
bation is ε = 0.05 in Fig. (c) and ε = 0.09160628 in Fig.
(d).
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Figure 5. Plot in the (Q̃, x) plane of the first 100 iterates of
the critical point (in blue) and periodic points (of period 1, 2,
4 and 8) of the bpf map φ of Subsection 3.2 when agents have
constant relative risk aversion utility functions. The stable
periodic points are in green and the unstable ones in red.
The other parameter values are α1 = 0.5, α2 = 2, ω1 = 2,
ω2 = 0.39 and Q̂ = 0.1.



REFINEMENT OF DYNAMIC EQUILIBRIUM 29

Figure 6. The bpf φ and the approximate densities associ-
ated with its stationary measure for the market game model
of Subsection 3.2 when agents have constant relative risk
aversion utility functions. The parameter values α1 = 0.5,
α2 = 2, ω1 = 2, ω2 = 0.39, Q̂ = 0.1 and Q̃ = 0.09 cor-
responds to deterministic bpf dynamics that are chaotic on
a finite union of intervals. Fig. (b) does not contain any
randomness, while the maximum size of the random pertur-
bation is ε = 0.0005 in Fig. (c) and ε = 0.00148461345 in
Fig. (d).
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Figure 7. The bpf φ and the approximate densities associ-
ated with its stationary measure for the market game model
of Subsection 3.2 when agents have constant relative risk
aversion utility functions. The parameter values α1 = 0.5,
α2 = 2, ω1 = 2, ω2 = 0.39, Q̂ = 0.1 and Q̃ = 0.12 corre-
sponds to deterministic bpf dynamics exhibiting an attract-
ing cycle. Fig. (b) does not contain any randomness, while
the maximum size of the random perturbation is ε = 0.005
in Fig. (c) and ε = 0.014360401 in Fig. (d).
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Figure 8. Plot in the (Q̃, x) plane of the first 100 iterates of
the critical point (in blue) and periodic points (of period 1, 2,
4 and 8) of the bpf map φ of Subsection 3.2 when agents have
logarithmic utility functions. The stable periodic points are
in green and the unstable ones in red. The other parameter
values are ω1 = 5.4, ω2 = 0.5 and Q̂ = 0.2.


