
TWO-PLAYER ZERO-SUM STOCHASTIC DIFFERENTIAL

GAME WITH A RANDOM HORIZON

M. FERREIRA, D. PINHEIRO, AND S. PINHEIRO

Abstract. WWe consider a two-player zero-sum stochastic differential
game with a random planning horizon and diffusive state variable dy-
namics. The random planning horizon is a function of a non-negative
continuous random variable which is assumed to be independent of the
Brownian motion driving the state variable dynamics. We study this
game using a combination of dynamic programming and viscosity solu-
tion techniques. Under some mild assumptions, we prove that the value
of the game exists and is the unique viscosity solution of a certain nonlin-
ear partial differential equation of Hamilton-Jacobi-Bellman-Isaacs type.
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1. Introduction

The central object of study of differential game theory are games taking
place over a whole interval of time and, thus, with decisions continuously be-
ing made – a class of problems first addressed by Isaacs [21] and later studied
in greater detail by Berkovitz and Fleming [5] and Friedman [18, 19]. The
theory aim is to describe from a general point of view the interaction among
agents, eventually in conflict, occurring in the most various situations, such
as armed conflicts, economic competition and parlour games. One very in-
teresting aspect is that any actions by the players both influence and are
influenced by the evolution of the state of the system over time, determined
by a given differential equation.

The key mathematical techniques used to address this class of problems
are closely related with optimal control theory, namely, the Pontryagin max-
imum principle and Bellman’s dynamic programming principle and the cor-
responding Hamilton-Jacobi-Bellman-Isaacs (HJBI) equation. It should be
noted, however, that differential games are usually far more complex than
optimal control problems. The reason behind this feature is not only related
with the fact that, unlike optimal control problems, differential games corre-
spond to the case where more than one controller or player are involved but,
more importantly, there isn’t an immediately obvious notion for what con-
stitutes a solution for the game. Indeed, over time, multiple proposals were
put forward for what should be considered a solution. Among these one can
list, for instance, minimax, Nash, Stackelberg, open-loop and closed-loop
solutions.

Isaacs did successfully set up the framework of differential game theory
even if he did not have a mathematically rigorous theory of differential game
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value. Early definitions of differential game value made use of time dis-
cretizations [18] and were later substituted by the more convenient Elliott-
Kalton notion of differential game value [15]. Evans and Souganidis [16]
characterized the upper and lower Elliott-Kalton value functions as unique
viscosity solutions of the corresponding HJBI PDEs by employing the theory
of viscosity solutions introduced by Crandall and Lions [13]. Resorting also
to viscosity solution methods, Souganidis [40] showed that the Elliott-Kalton
value functions are actually the same as those defined using time discretiza-
tions. The notion of differential game value extends naturally to the setup
of stochastic differential games. Fleming and Souganidis [17] proved the ex-
istence of value for two-player zero-sum stochastic differential games under
the assumption that the Isaacs condition holds. Recent developments of the
theory address differential games with more general state variable dynamics
[6, 20] and payoff functionals [9, 10, 26], as well as alternative control sets
[4, 41] and game formulations [11, 35].

To the best of our knowledge, differential games with a random time
horizon were first considered by Petrosyan and Murzov [32] within the setup
of zero-sum pursuit games with terminal payoffs at a random terminal time.
A more general formulation for differential games with a random planning
horizon was developed by Petrosyan and Shevkoplyas in [33, 34]. The theory
developed in [32, 33, 34] concerns a setup on which the random time horizon
has a probability measure with unbounded support and continuous density.
Moreover, the state variable dynamics considered therein are deterministic,
given by an ordinary differential equation.

In the present paper we study a two-player zero-sum stochastic differen-
tial game (SDG) with a random planning horizon. The planning horizon
is assumed to be of the form ξ = min{τ, T}, where τ is a continuous non-
negative random variable whose distribution is common knowledge to the
Players, and T > 0 is a deterministic constant. As a consequence, the prob-
ability measure of the random planning horizon ξ has support on a bounded
interval. Additionally, its distribution function is, in general, discontinuous
at T . The game’s state variable dynamics are given by a stochastic differen-
tial equation (SDE) of diffusive type, with the Brownian motion driving the
dynamics assumed to be independent of the random variable τ determining
the random planning horizon ξ. The game’s payoff functionals depend heav-
ily on the planning horizon ξ in the sense that the running payoff is given
as an integral over the random time interval [0, ξ] and the terminal payoff
is evaluated at time ξ. We handle this issue by transforming the problem
under consideration herein into one with a fixed planning horizon. This
is achieved by taking the expected value with respect to the distribution of
the random variable τ , carefully distinguishing the two complementary cases
where τ ≤ T and τ > T . As a result, we obtain a payoff functional which
resembles that of a differential game with non-constant discount rate, but
with an additional term reflecting the specificity of the random time hori-
zon ξ = min{τ, T} under consideration herein. We should remark that this
is somewhat connected with the analysis of Maŕın-Solano and Shevkoplyas
[29], with the key differences being that [29] concerns differential games with
deterministic state variable dynamics and a random time horizon with an



STOCHASTIC DIFFERENTIAL GAMES WITH A RANDOM HORIZON 3

absolutely continuous probability measure with a continuous density with
unbounded support. On the other hand, the main similarity with [29] is that,
at an intermediate step of our analysis, a transformation from a random to
a deterministic planning horizon is performed yielding a payoff functional
resembling that of a discounted differential game (with an additional term
due to the specific form of ξ), with non-constant discount rate related with
a certain family of conditional probabilities. Such transformation to a de-
terministic planning horizon admits the following intuitive interpretation:
agents plan their actions as if the game would continue until time T , but
with a subjective rate of time preferences.

We remark that the current stochastic differential games (SDGs) litera-
ture is mostly focused in games with either a deterministic finite time horizon
or an infinite time horizon. Henceforth, we believe in the value of extend-
ing the current literature to include the case of a random planning horizon.
Moreover, we think that this is not only relevant from a theoretical point of
view, but also that it might eventually contribute to a better understand-
ing of a number of economic and financial applications exhibiting random
planning horizons (see, e.g. [7, 8, 14, 27, 30, 36, 37, 42]).

We extend the strategy introduced by Fleming and Souganidis in [17] to
account for the introduction of the random time horizon into the stochastic
differential game formulation. More specifically, we employ a combination
of dynamic programming and viscosity solutions techniques to prove that
the value of the game exists and is the unique viscosity solution of a certain
nonlinear partial differential equation of HJBI type. We find this approach
to be rather amenable, as we are able to rely on some now classical and
seminal results, extending only those on which the influence of the random
planning horizon, or its distribution, is of relevance. We should remark
that the approach developed by Fleming and Souganidis in [17] relies on
an asymmetric formulation of the game under consideration. Indeed, when
employing such approach, two subgames are defined, with one player having
an information advantage on one of the subgames and the remaining player
having a similar advantage on the second subgame. The stronger player
uses Elliot-Kalton strategies while the weaker player resorts to open-loops
controls. Other examples where a dynamic programming principle is proved
resorting to asymmetric game formulations include, for instance, the papers
by Katsoulakis [25] and by Cardaliaguet and Rainer [11]. A very interest-
ing alternative approach, recently introduced by Ŝırbu [38] building up on
previous related work by Bayraktar and Ŝırbu [1, 2, 3], uses the stochas-
tic Perron’s method to show that the value of stochastic differential games
formulated symmetrically over appropriately specified elementary feedback
strategies are the unique continuous viscosity solutions of the corresponding
HJBI equation. Moreover, using such techniques, a dynamical programming
principle can be shown to hold over stopping rules, i.e. stopping times where
the decision to stop is based solely on observing the state variable, but not
for stopping times on the physical probability space.

This paper is organized as follows. In Section 2, we describe the problem
we propose to address and state our main results. Section 3 is concerned
with the characterization of the value functions of an auxiliary Two-player
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zero-sum discounted SDG with a deterministic time horizon. We prove our
main result in Section 4 and conclude in Section 5.

2. Framework and main results

In this section we formulate the problem under consideration herein and
state our main result.

2.1. Notation and setup. Let T > 0 be a deterministic finite time horizon
and, for every t ∈ [0, T ] and s ∈ [t, T ], let Ωω

t,s be the set of RM -valued
continuous functions on [t, s] taking the value 0 at t, i.e.

Ωω
t,s =

{
ω ∈ C

(
[t, s];RM

)
: ω(t) = 0

}
.

Let Gω
t,u be the σ-algebra generated by paths ω ∈ Ωω

t,s up to some time

u ∈ [t, s] with Gω
t,s =

{
Gω
t,u : u ∈ [t, s]

}
being the corresponding filtration.

When endowed with the Wiener measure Pω
t,s on Gω

t,s, Ω
ω
t,s becomes a clas-

sical Wiener space. Let Bt =
{
Bt(s) : s ∈ [t, T ], Bt(t) = 0

}
be a Brownian

motion on the filtered probability space
(
Ωω
t,T ,Gω

t,T ,Gω
t,T ,Pω

t,T

)
.

Let us introduce the following technical assumptions:

(A1) U and V are compact metric spaces.
(A2) The maps f : [0, T ]×RN ×U ×V → RN , σ : [0, T ]×RN ×U ×V →

RN×M , Ψ : [0, T ] × RN → R and L : [0, T ] × RN × U × V → R are
bounded, uniformly continuous with respect to all its variables, and
Lipschitz continuous with respect to (t, x) ∈ [0, T ] × RN uniformly
in (u, v) ∈ U × V .

(A3) τ is an (absolutely) continuous random variable (with respect to the
Lebesgue measure on R+ = (0,+∞)) defined on a probability space
(Ωτ ,Gτ ,Pτ ) and has a positive, bounded and Lipschitz continuous
probability density function defined on R+.

(A4) For each t ∈ [0, T ] the random variable τ is independent of the
filtration Gω

t,T generated by the Brownian motion Bt(·).
For t̂ ∈ (t, T ) and ω ∈ Ωω

t,T , let

ωt,t̂ = ω|[t,t̂] and ωt̂,T = ω − ω|[t̂,T ] ,

and define π : Ωω
t,T → Ωω

t,t̂
× Ωω

t̂,T
to be the map given by

π(ω) =
(
ωt,t̂, ωt̂,T

)
.

Then, π induces the identification

Ωω
t,T = Ωω

t,t̂
× Ωω

t̂,T

and the inverse of π acts on pairs of paths (ωt,t̂, ωt̂,T ) ∈ Ωω
t,t̂

× Ωω
t̂,T

by

concatenation, i.e. ω = π−1(ωt,t̂, ωt̂,T ) ∈ Ωω
t,T . Finally, notice that Pω

t,T =
Pω
t,t̂

⊗ Pω
t̂,T

, where Pω
t,t̂

and Pω
t̂,T

are the Wiener measures on Ωω
t,t̂

and Ωω
t̂,T

,

respectively.
For each t ∈ [0, T ], the probability measure Pτ of the random variable τ

induces a conditional probability measure on Ωτ
t = (t,∞) determined by

Pτ
t (τ ∈ A) = Pτ (τ ∈ A|τ > t) , A ∈ Gτ

t ,
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where Gτ
t = B(Ωτ

t ) denotes the Borel σ-algebra of Ωτ
t . Resorting to assump-

tion (A4) regarding independence between the Brownian motion Bt and the
random variable τ , we define Ωt as the direct product

Ωt = Ωω
t,T × Ωτ

t ,

defining accordingly the probability measure

Pt = Pω
t,T ⊗ Pτ

t , (1)

the σ-algebras Gt,s, s ∈ [t, T ], as the completion of Gω
t,s ⊗Gτ

t with respect to
the measure Pt, and the filtration Gt,T as Gt,T = {Gt,s : s ∈ [t, T ]}.

2.2. A Stochastic Differential Game with a Random Horizon. Let
us define the random horizon ξ as

ξ = min{τ, T} (2)

and notice that ξ takes values on the interval [0, T ] Pt-a.s.. The two-Player
zero-sum stochastic differential game with random horizon is defined on the
filtered probability space (Ωt,Gt,T ,Gt,T ,Pt) and consists of the controlled
stochastic differential equation

dX(s) = f (s,X(s), u(s), v(s)) ds+ σ (s,X(s), u(s), v(s)) dBt(s) , s ≥ t

X(t) = x (3)

and payoff functional

J(t, x;u(·), v(·)) = EPt

[∫ ξ

t
L
(
s,Xu,v

t,x (s), u(s), v(s)
)
ds

+Ψ
(
ξ,Xu,v

t,x (ξ)
) ]

, (4)

whereXu,v
t,x (s), s ∈ [t, T ], denotes the solution of the initial value problem (3)

associated with a specific choice of u(·), v(·). We will refer to the functions
L and Ψ determining the payoff functional J as the running payoff and
terminal payoff, respectively. Thus, in what the game is concerned, the
payoff functional (4) represents some payoff that a first Player is trying to
minimize (and thus a second Player seeks to maximize) subject to the state
variable dynamics defined by (3) and some constraints of the form u(s) ∈ U
and v(s) ∈ V for every appropriately defined instant of time s ≥ t.

An admissible control process u(·) (resp. v(·)) for Player I (resp. II) on
[t, T ] is a Gω

t,T -progressively measurable process taking values in U (resp. V ).

The set of all admissible controls for Player I (resp. II) on [t, T ] is denoted
by U(t, T ) (resp. V(t, T )). We say that two controls u1(·), u2(·) ∈ U(t, T )
are the same on [t, s], for some s ∈ [t, T ], and denote it by u1(·) ≈ u2(·),
if Pω

t,T {u1(·) = u2(·) a.e. in [t, s]} = 1. A similar convention is used for

elements of V(t, T ).
An admissible strategy α (resp. β) for Player I (resp. II) on [t, T ] is a

mapping α : V(t, T ) → U(t, T ) (resp. β : U(t, T ) → V(t, T )) such that if
v(·) ≈ ṽ(·) (resp. u(·) ≈ ũ(·)) on [t, s] for every s ∈ [t, T ], then α[v(·)] ≈
α[ṽ(·)] (resp. β[u(·)] ≈ β[ũ(·)]). The set of all admissible strategies for
Player I (resp. II) on [t, T ] is denoted by A(t, T ) (resp. B(t, T )).
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Let (t, x) ∈ [0, T ]×RN . The lower value function of the stochastic differ-
ential game (SDG) with random horizon (3)-(4) is given by

V −(t, x) = inf
β∈B(t,T )

sup
u(·)∈U(t,T )

J(t, x;u(·), β[u(·)]) (5)

while the corresponding upper value function is

V +(t, x) = sup
α∈A(t,T )

inf
v(·)∈V(t,T )

J(t, x;α[v(·)], v(·)) . (6)

We say that the SDG with random horizon (3)-(4) has a value if V +(t, x) =
V −(t, x) and call it the common value of the SDG game. We also note that
this definition is consistent with the standard notion of common value of
the game introduced by Elliot and Kalton [15] for differential games with a
deterministic horizon.

Choosing the controls at time t, the Player who moves first (the maxi-
mizing Player for the lower game, and the minimizing Player for the upper
game) is allowed to use the past of the Brownian motion Bt(·) driving (3),
while the Player with the advantage (Player II for the lower game, Player I
for the upper game), is allowed to use both the past of Bt(·) and the other
player’s control.

2.3. Statement of main results. For all 0 ≤ t ≤ s, denote by G+(s, t)
and G−(s, t) the conditional probabilities

G+(s, t) = Pτ
t (τ > s) = Pτ (τ > s|τ > t)

G−(s, t) = Pτ
t (τ ≤ s) = Pτ (τ ≤ s|τ > t) . (7)

Moreover, notice that for each fixed t ∈ [0, T ], G−(s, t) is the probability
distribution function of a continuous random variable and let g−(s, t) denote
the corresponding conditional density function

g−(s, t) =
d

ds
G−(s, t) . (8)

In general, the value functions V − and V + defined by the variational
identities (5) and (6) are not smooth. Nevertheless, they can still be char-
acterized using the language of partial differential equations, relying on the
notion of viscosity solutions originally proposed by Crandall and Lions in
[13] for the case of first order Hamilton-Jacobi equations. See Appendix
A for the definition of viscosity solution used herein. A central step to the
proof of our main result is the introduction of an auxiliary SDG, with a non-
constant discount rate related with the conditional probabilities (7) and a
deterministic time horizon. Indeed, the lower and upper value functions V −

and V + can be characterized in terms of the value functions of said auxiliary
game.

Theorem 2.1. Assume that assumptions (A1)-(A4) hold. The lower and
upper value functions V − and V + are the unique viscosity solutions of the
Hamilton-Jacobi-Bellman-Isaacs equation{

Wt − g−(t, t)W +H−(t, x,Wx,Wxx) = 0

W (T, x) = Ψ(T, x)
(9)
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and {
Wt − g−(t, t)W +H+(t, x,Wx,Wxx) = 0

W (T, x) = Ψ(T, x) ,
(10)

where, for A ∈ SN (the set of symmetric N × N matrices), p, x ∈ RN and
t ∈ [0, T ], we have

H−(t, x, p, A) = max
u∈U

min
v∈V

H(t, x, u, v, p, A)

H+(t, x, p, A) = min
v∈V

max
u∈U

H(t, x, u, v, p, A)

and

H(t, x, u, v, p, A) = tr

(
1

2
a(t, x, u, v)A

)
+ f(t, x, u, v)p

+L(t, x, u, v) + g−(t, t)Ψ(t, x)

with a = σσ′, σ′ denoting the transpose of σ.

Note the presence of the additional (non-standard) terms −g−(t, t)W (t, x)
and g−(t, t)Ψ(t, x) related with the conditional probabilities (7)-(8) on the
HJBI equations (9) and (10). Such terms reflect the randomness of the
planning horizon and encapsulate the agents behavior planning their actions
as if the horizon was fixed at T , but with subjective rate of time preferences
determined by the conditional probabilities (7).

We say that the Isaacs condition holds if for all (t, x, p, A) ∈ [0, T ]×RN ×
RN × SN the following relation holds:

H+(t, x, p, A) = H−(t, x, p, A) . (11)

The next result is then a consequence of combining Isaacs condition above
with the uniqueness of the viscosity solutions to (9) and (10), guaranteed
by Theorem 2.1. In particular, this ensures existence of value for the SDG
with random horizon (3)-(4) in the sense of Elliot and Kalton [15].

Corollary 2.2. If the Isaacs condition (11) holds, then the upper and the
lower value functions of the SDG with a random horizon (3)-(4) coincide.

The rest of the paper is devoted to the proof of Theorem 2.1. The anal-
ysis, in Section 3, of a related discounted SDG plays a central role in such
endeavor.

3. A discounted Stochastic Differential Game with
deterministic horizon

We will now momentarily divert our attention towards the following prob-
lem: a SDG with deterministic horizon T > 0 and non-constant discount
factor specified by a function Θ : D(Θ) → R, where D(Θ) = {(s, t) ∈
[0, T ]2 : s ≥ t}. Suppose the following conditions hold:

(D1) Θ is positive, bounded, and continuously differentiable on D(Θ).
(D2) For every (s, t), (ŝ, s) ∈ D(Θ), we have that

Θ(ŝ, t) = Θ(ŝ, s)Θ(s, t) .



8 M. FERREIRA, D. PINHEIRO, AND S. PINHEIRO

(D3) The derivative

θ(t) =
d

ds
Θ(s, t)|s=t

is positive, bounded, and Lipschitz continuous on [0, T ].

The two-Player zero-sum discounted stochastic differential game is de-
fined on the filtered probability space (Ωω

t,T ,Gω
t,T ,Gω

t,T ,Pω
t,T ) and consists of

the controlled stochastic differential equation (3) and the discounted payoff
functional

J (t, x;u(·), v(·)) = EPω
t,T

[∫ T

t
Θ(s, t)L

(
s,Xu,v

t,x (s), u(s), v(s)
)
ds

+Θ(T, t)Ψ
(
T,Xu,v

t,x (T )
) ]

,(12)

whereXu,v
t,x (s), s ∈ [t, T ], denotes the solution of the initial value problem (3)

associated with a specific choice of admissible controls (u(·), v(·)) ∈ U(t, T )×
V(t, T ).

The lower value function of the discounted SDG determined by (3) and
(12) is given by

W−(t, x) := inf
β∈B(t,T )

sup
u(·)∈U(t,T )

J (t, x;u(·), β[u(·)]) , (13)

while the upper value function of the discounted SDG determined by (3) and
(12) is

W+(t, x) := sup
α∈A(t,T )

inf
v(·)∈V(t,T )

J (t, x;α[v(·)], v(·)) . (14)

This section goal is to characterize the lower and upper value functions
W− and W+ of the discounted SDG determined by (3) and (12) as, respec-
tively, the unique viscosity solutions of the Hamilton-Jacobi-Bellman-Isaacs
equations {

Wt − θ(t)W +H−(t, x,Wx,Wxx) = 0

W (T, x) = Ψ(T, x)
(15)

and {
Wt − θ(t)W +H+(t, x,Wx,Wxx) = 0

W (T, x) = Ψ(T, x) ,
(16)

where, for A ∈ SN (the set of symmetric N × N matrices), p, x ∈ RN and
t ∈ [0, T ], we have

H−(t, x, p, A) = max
u∈U

min
v∈V

H(t, x, u, v, p, A)

H+(t, x, p, A) = min
v∈V

max
u∈U

H(t, x, u, v, p, A)

and

H(t, x, u, v, p, A) = tr

(
1

2
a(t, x, u, v)A

)
+ f(t, x, u, v)p

+L(t, x, u, v)

with a = σσ′, σ′ denoting the transpose of σ.
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We will resort to the concepts of r-strategies and r-lower and r-upper
values introduced by Fleming and Souganidis [17], which combined with an
appropriate discretization procedure, yield the existence and uniqueness of
viscosity solutions to the HJBI equations (15) and (16).

3.1. Some preliminary results. Before proceeding, we need to introduce
further notation and terminology that will be useful in the sequel. Let
(t, x) ∈ [0, T ] × RN be fixed and for any given u(·) ∈ U(t, T ) and v(·) ∈
V(t, T ), define

γ(s, ω) = (u(s, ω), v(s, ω))

for every s ≥ t and ω ∈ Ωω
t,T . By definition of the control processes

u(·) ∈ U(t, T ) and v(·) ∈ V(t, T ), it immediately follows that γ(·) is Gω
t,T -

progressively measurable. Moreover, by standard results from stochastic dif-
ferential equations theory (see e.g. [24, 28] for further details), it is known
that the SDE (3) admits a unique solution Xu,v

t,x (·) on the filtered probability
space (Ωω

t,T ,Gω
t,T ,Gω

t,T ,Pω
t,T ) for any fixed u(·) ∈ U(t, T ) and v(·) ∈ V(t, T ).

Moreover, Xu,v
t,x (·) satisfies

Xu,v
t,x (s) = Xu,v

t,x (t̂) +

∫ s

t̂
f(r,Xu,v

t,x (r), γ(r)) dr

+

∫ s

t̂
σ(r,Xu,v

t,x (r), γ(r)) dB
t(r) , (17)

where t ≤ t̂ ≤ s ≤ T . Additionally, noticing that

Bt(s, π−1(ωt,t̂, ωt̂,T ))−Bt(t̂, π−1(ωt,t̂, ωt̂,T )) = ωt̂,T (s) , (18)

we obtain that for Pω
t,t̂
-a.e. ωt,t̂ ∈ Ωω

t,t̂
the left hand side of (18) coincides

with the standard Brownian motion B t̂(s, ωt̂,T ) on the filtered probability
space (Ωω

t̂,T
,Gω

t̂,T
,Gω

t̂,T
,Pω

t̂,T
).

Define also

γ̃(s, ωt,t̂, ωt̂,T ) = γ(s, π−1(ωt,t̂, ωt̂,T ))

X̃(s, ωt,t̂, ωt̂,T ) = Xu,v
t,x (s, π

−1(ωt,t̂, ωt̂,T ))

and notice that the relation

X̃(s, ωt,t̂, ·) = Xu,v
t,x (t̂) +

∫ s

t̂
f(r, X̃(r, ωt,t̂, ·), γ̃(r, ωt,t̂, ·)) dr

+

∫ s

t̂
σ(r, X̃(r, ωt,t̂, ·), γ̃(r, ωt,t̂, ·)) dB t̂(r) (19)

holds Pω
t,t̂
-a.e. ωt,t̂ ∈ Ωω

t,t̂
as a consequence of (17) and the comments follow-

ing it. Moreover, by uniqueness of solutions of (3), we get that the paths

of X̃(s, ωt,t̂, ·), s ∈ [t̂, T ], coincide with those of (3) with initial condition

(t̂, Xu,v
t,x (t̂)) and controls (u(·, ωt,t̂), v(·, ωt,t̂)) for Pω

t,t̂
-a.e ωt,t̂ ∈ Ωω

t,t̂
. From

this point onwards we will also use the notation Xu,v
t,x (·) to refer to the sto-

chastic process X̃(·) on the filtered probability space (Ωω
t̂,T
,Gω

t̂,T
,Gω

t̂,T
,Pω

t̂,T
).

The comments above, together with the fact that

EPω
t,t̂

⊗Pω
t̂,T

[
ϕ
(
ωt,t̂, ωt̂,T

)
|Gω

t,t̂

]
= EPω

t̂,T

[
ϕ
(
ωt,t̂, ωt̂,T

)]
Pω
t,t̂

− a.s. (20)
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for any bounded and measurable function ϕ : Ωω
t,T → R yield the following

technical lemma.

Lemma 3.1. Suppose that (A1)-(A2) hold and let Xu,v
t,x (·) denote the solu-

tion of (3) with initial condition (t, x) ∈ [0, T ]×RN and controls (u(·), v(·)) ∈
U(t, T ) × V(t, T ). For any bounded continuous function ϕ and any deter-
ministic s ∈ [t̂, T ] we have that

EPω
t,T

[
ϕ
(
Xu,v

t,x (s), γ(s, ω)
)
|Gω

t,t̂

]
= EPω

t̂,T

[
ϕ

(
Xu,v

t̂,Xu,v
t,x (t̂)

(s), γ̃(s, ωt,t̂, ωt̂,T )

)]
holds Pω

t,t̂
almost surely.

The next lemma ensures boundedness of the value functionsW− andW+

introduced in (13) and (14), as well as their Lipschitz continuity with respect
to x and Hölder continuity with respect to t.

Lemma 3.2. Suppose that (A1)-(A2) and (D1)-(D2) hold. We have that:

i) For every u(·) ∈ U(t, T ), v(·) ∈ V(t, T ), α ∈ A(t, T ), and β ∈
B(t, T ), the discounted payoff functionals

x→ J (t, ·;α[v(·)], v(·)) and x→ J (t, ·;u(·), β[u(·)])

are bounded and Lipschitz continuous in x, uniformly in t, α, v(·)
and t, β, u(·), respectively.

ii) the discounted SDG value functions W− and W+ in (13) and (14)
are bounded and Lipschitz continuous in x, uniformly in t.

Proof. Let us start by proving item (i) for the discounted payoff functional

x→ J (t, ·;α[v(·)], v(·)) , (21)

where t ∈ [0, T ], v(·) ∈ V(t, T ) and α ∈ A(t, T ). The proof for x →
J (t, ·;u(·), β[u(·)]), with t ∈ [0, T ], u(·) ∈ U(t, T ) and β ∈ B(t, T ), is similar.

Boundedness of (21) follows from boundedness of L and Ψ, guaranteed
by Assumption (A2), as well as boundedness of the non-constant discount
factor Θ, guaranteed by Assumption (D1).

As for Lipschitz continuity of (21), this will follow from

EPω
t,T

[
|Xu,v

t,x (s)−Xu,v
t,y (s)|

]
≤ C|x− y| for all x, y ∈ RN , (22)

where Xu,v
t,x (s) and Xu,v

t,y (s), s ∈ [t, T ], are the solutions of (3) starting at t
from x and y, respectively, with the same control pair (u, v). To see that
(22) holds, set Z(s) = Xu,v

t,x (s)−Xu,v
t,y (s), s ∈ [t, T ]. From Itô’s formula, we

obtain

EPω
t,T

[
|Xu,v

t,x (s)−Xu,v
t,y (s)|2

]
= |x− y|2

+EPω
t,T

[∫ s

t

[
2Z(r) · f1(r,Xu,v

t,x (r), X
u,v
t,y (r), u(r), v(r))

+tr(σ1σ
T
1 )(r,X

u,v
t,x (r), X

u,v
t,y (r), u(r), v(r))

]
dr

]
,
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where f1 and σ1 are defined by

f1(t, x, y, u, v) = f(t, x, u, v)− f(t, y, u, v)

σ1(t, x, y, u, v) = σ(t, x, u, v)− σ(t, y, u, v)

for t ∈ [0, T ], x, y ∈ RN , u ∈ U and v ∈ V . Using Assumption (A2) and
Fubini-Tonelli’s Theorem, we obtain that there exists a positive constant C1

such that

EPω
t,T

[
|Xu,v

t,x (s)−Xu,v
t,y (s)|2

]
≤ |x− y|2 + C1

∫ s

t
EPω

t,T

[
|Xu,v

t,x (r)−Xu,v
t,y (r)|2

]
dr .

Applying Gronwall’s inequality, we get that there exist positive constants
C2 and C3 such that the following inequalities hold

EPω
t,T

[
|Xu,v

t,x (s)−Xu,v
t,y (s)|2

]
≤
(
1 +

∫ s

t
eC2rdr

)
|x− y|2 ≤ C3|x− y|2 . (23)

Inequality (22) now follows from combining (23) with Hölder’s inequality,
and Lipschitz continuity of (21) with respect to x follows from combining
inequality (22) with Lipschitz continuity of L and Ψ, as guaranteed by As-
sumption (A2).

As for the proof of item (ii), we note that boundedness ofW− andW+, as
well as Lipschitz continuity with respect to x, follow as a consequence of the
corresponding uniform properties of the discounted payoff functionals. �

In the next section we will introduce a special class of restrictive strate-
gies and the corresponding value functions, following a method originally
developed by Fleming and Souganidis [17]. These will enable us to prove
certain sub- and super-optimal dynamic programming principles.

3.2. Sub-optimal and super-optimal dynamic programming prin-
ciples. As noted by Fleming and Souganidis in their seminal paper [17],
serious measurability issues seem to prevent a generalization of the method
for the proof of the deterministic dynamic programming principle to the
stochastic setup. To overcome such difficulties, Fleming and Souganidis
have introduced the concept of restrictive strategies or, more commonly,
r-strategies, that we employ here.

Before proceeding to the definition of r-strategies, we notice that by def-
inition of admissible control process, for 0 ≤ t̄ ≤ t ≤ T , u(·) ∈ U(t̄, T ), and
Pω
t̄,t a.e. ω

t̄,t ∈ Ωω
t̄,t, the map u(ωt̄,t) : [t, T ]× Ωω

t,T → U defined through the

relation

u(ωt̄,t)(s, ωt,T ) = u(s, ω) ,

where ω = π−1(ωt̄,t, ωt,T ), is an admissible control for Player I, i.e. u(ωt̄,t) ∈
U(t, T ).

Given the discounted SDG determined by (3) and (12), we say that a r-
strategy β for Player II on [t, T ] is an admissible strategy with the following
additional property: for every t̄ < t < t̂ and u(·) ∈ U(t̄, T ) the map (s, ω) →
β[u(ωt̄,t)(·)](s, ωt,T ) is (B([t, t̂])⊗Gω

t,t̂
,B(U))-measurable, where B(X) stands

for the Borel σ-algebra of a set X. The set of r-strategies for Player II is
denoted by Br(t, T ). We define r-strategies for Player I in a similar fashion
and denote the set of such strategies by Ar(t, T ).
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The r-lower and r-upper value functions of the discounted SDG deter-
mined by (3) and (12) with initial data (t, x) are given by

W−
r (t, x) = inf

β∈Br(t,T )
sup

u(·)∈U(t,T )
J (t, x;u(·), β[u(·)])

and

W+
r (t, x) = sup

α∈Ar(t,T )
inf

v(·)∈V(t,T )
J (t, x;α[v(·)], v(·)) .

The next result is a consequence of Lemma 3.2, as well as of the definitions
of admissible strategies and r-strategies. We skip its proof.

Corollary 3.3. Suppose that (A1)-(A2) and (D1)-(D2) hold. Then:

(a) The r-value functions W−
r and W+

r of the discounted SDG deter-
mined by (3) and (12) are bounded and Lipschitz continuous in x,
uniformly in t.

(b) For every (t, x) ∈ [0, T ]× RN ,

W−(t, x) ≤W−
r (t, x) and W+

r (t, x) ≤W+(t, x) .

Although the r-value functions do not satisfy the full dynamic program-
ming principle, it is nevertheless possible to obtain sub- and super-optimal
dynamic programming principles for such functions. This is the content of
the next result.

Proposition 3.4 (Sub-optimal and super-optimal dynamic programming
principle). Suppose that conditions (A1)-(A2) and (D1)-(D2) hold. For any
(t, x) ∈ [0, T )× RN and every t̂ ∈ [t, T ), we have that:

W−
r (t, x) ≤ inf

β∈Br(t,T )
sup

u(·)∈U(t,T )
EPω

t,T

[
Θ(t̂, t)W−

r (t̂, Xu,v
t,x (t̂)) (24)

+

∫ t̂

t
Θ(s, t)L(s,Xu,v

t,x (s), u(s), β[u(·)](s)) ds

]
,

where Xu,v
t,x (·) is the solution of (3) with v(·) = β[u(·)](·) ∈ V(t, T ) for

u(·) ∈ U(t, T ), and

W+
r (t, x) ≥ sup

α∈Ar(t,T )
inf

v(·)∈V(t,T )
EPω

t,T

[
Θ(t̂, t)W+

r (t̂, Xu,v
t,x (t̂)) (25)

+

∫ t̂

t
Θ(s, t)L(s,Xu,v

t,x (s), α[v(·)](s), v(s)) ds

]
,

where Xu,v
t,x (·) is the solution of (3) with u(·) = α[v(·)](·) ∈ U(t, T ) for

v(·) ∈ V(t, T ).

Proof. We only prove inequality (24), with the proof of (25) being analogous.
For simplicity of notation, we will drop the superscripts u, v from the solution
Xu,v

t,x (·), with the precise controls used at each instant being clear from the
context.

Let (t, x) ∈ [0, T ) × RN be fixed, t̂ ∈ [t, T ) be arbitrary, and denote the
right-hand side of (24) by W (t, x). Notice that for any ϵ > 0 there exists



STOCHASTIC DIFFERENTIAL GAMES WITH A RANDOM HORIZON 13

βϵ(·) ∈ Br(t, T ) such that

W (t, x) ≥ EPω
t,T

[
Θ(t̂, t)W−

r (t̂, Xt,x(t̂))

+

∫ t̂

t
Θ(s, t)L(s,Xt,x(s), u(s), βϵ[u(·)](s)) ds

]
− ϵ(26)

for every u(·) ∈ U(t, T ). Moreover, for each y ∈ RN , we have that

W−
r (t̂, y) = inf

β∈Br(t̂,T )
sup

u(·)∈U(t̂,T )

J (t̂, y;u(·), β[u(·)]) . (27)

Hence, there exists βy ∈ Br(t̂, T ) such that

W−
r (t̂, y) ≥ sup

u(·)∈U(t̂,T )

J (t̂, y;u(·), βy[u(·)])− ϵ . (28)

Let {Di}i∈N be a Borel partition of RN with diameter diam (Di) < δ and
pick yi ∈ Di for each i ∈ N. By items a) of Lemma 3.2 and Corollary 3.3,
the diameter δ > 0 can be picked sufficiently small so that for any y ∈ Di,
we have that ∣∣J (t̂, y;u(·), β[u(·)])− J (t̂, yi;u(·), β[u(·)])

∣∣ < ϵ (29)

for every u(·) ∈ U(t̂, T ) and β ∈ B(t̂, T ), and also∣∣W−
r (t̂, y)−W−

r (t̂, yi)
∣∣ < ϵ .

For each (t̂, ω) ∈ [t, T ]× Ωω
t,T and u(·) ∈ U(t, T ), define

β̃[u(·)](s, ω) =

{
βϵ[u(·)](s, ω) if s ∈ [t, t̂)∑

i∈N 1Di(Xt,x(t̂))βyi [u(ω
t,t̂)(·)](s, ωt̄,T ) if s ∈ [t̂, T ]

,

where ω = (ωt,t̂, ωt̄,T ) ∈ Ωω
t,t̂
×Ωω

t̂,T
and u(ωt,t̂)(·) ∈ U(t̂, T ) is the admissible

control introduced immediately before the definition of the r-value functions.
Notice that β̃ is an r-strategy by construction, i.e. β̃ ∈ Br(t, T ).

Moreover, whenever Xt,x(t̂) ∈ Di for some i ∈ N and u(·) ∈ U(t, T ),
relation (28) and inequality (29) yield

W−
r (t̂, yi) ≥ J (t̂, yi;u(ω

t,t̂)(·), βyi [u(ωt,t̂)(·)])− ϵ

≥ J (t̂, Xt,x(t̂);u(ω
t,t̂)(·), βyi [u(ωt,t̂)(·)])− 2ϵ (30)

for all u(·) ∈ U(t, T ) and Pω
t,t̂
-a.e. ωt,t̂ ∈ Ωω

t,t̂
.
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From the definition of the discounted payoff functional in (12), we get

J (t, x;u(·), β̃[u(·)]) =

= EPω
t,T

[∫ T

t
Θ(s, t)L(s,Xt,x(s), u(s), β̃[u(·)](s)) ds+Θ(T, t)Ψ (T,Xt,x(T ))

]

= EPω
t,T

[∫ t̂

t
Θ(s, t)L(s,Xt,x(s), u(s), β̃[u(·)](s)) ds

+
∑
i∈N

1Di(Xt,x(t̂))

(∫ T

t̂
Θ(s, t)L(s,Xt,x(s), u(s), β̃[u(·)](s)) ds (31)

+Θ(T, t)Ψ (T,Xt,x(T ))

)]
.

Combining assumption (D2) with (31), we get

J (t, x;u(·), β̃[u(·)]) = EPω
t,T

[∫ t̂

t
Θ(s, t)L(s,Xt,x(s), u(s), β̃[u(·)](s)) ds

+Θ(t̂, t)
∑
i∈N

1Di(Xt,x(t̂))

(∫ T

t̂
Θ(s, t̂)L(s,Xt,x(s), u(s), β̃[u(·)](s)) ds

+Θ(T, t̂)Ψ (T,Xt,x(T ))

)]
.

From the definition of the r-strategy β̃, we get

J (t, x;u(·), β̃[u(·)]) = EPω
t,T

[∫ t̂

t
Θ(s, t)L(s,Xt,x(s), u(s), βϵ[u(·)](s)) ds

+Θ(t̂, t)
∑
i∈N

1Di(Xt,x(t̂))EPω
t,T

[ ∫ T

t̂
Θ(s, t̂)L(s,Xt,x(s), u(s), β̃[u(·)](s)) ds

+Θ(T, t̂)Ψ (T,Xt,x(T )) |Gt,t̂

]]
.

Combining the previous relation with Lemma 3.1, we obtain

J (t, x;u(·), β̃[u(·)]) = EPω
t,T

[∫ t̂

t
Θ(s, t)L(s,Xt,x(s), u(s), βϵ[u(·)](s)) ds

+Θ(t̂, t)
∑
i∈N

1Di(Xt,x(t̂))J
(
t̂, Xt,x(t̂);u(ω

t,t̂)(·), βyi [u(ωt,t̂)(·)]
)]

.
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Using inequalities (30) and (29), we get

J (t, x;u(·), β̃[u(·)]) ≤ EPω
t,T

[∫ t̂

t
Θ(s, t)L(s,Xt,x(s), u(s), βϵ[u(·)](s))ds

+Θ(t̂, t)
∑
i∈N

1Di(Xt,x(t̂))W
−
r (t̂, yi)

]
+ 2ϵ

≤ EPω
t,T

[∫ t̂

t
Θ(s, t)L(s,Xt,x(s), u(s), βϵ[u(·)](s))ds

+Θ(t̂, t)W−
r (t̂, Xt,x(t̂))

]
+ 3ϵ .

Finally, combining the previous inequality with (26), we conclude

J (t, x;u(·), β̃[u(·)]) ≤W (t, x) + 4ϵ

for every u(·) ∈ U(t, T ). As a consequence, we obtain

W−
r (t, x) ≤W (t, x) + 4ϵ .

The proof is completed by letting ϵ go to zero. �

Proposition 3.4 can be used to guarantee Hölder continuity of W−
r and

W+
r with respect to t.

Corollary 3.5. Suppose that (A1)-(A2) and (D1)-(D2) hold. The r-value
functions W−

r and W+
r of the discounted SDG determined by (3) and (12)

are 1
2 -Hölder continuous in t, uniformly in x.

Proof. We will focus on establishing Hölder continuity of W−
r with respect

to t, with the corresponding argument for W+
r being similar. To simplify

notation, we will drop the superscripts u, v from the solution Xu,v
t,x (·), with

the precise controls used at each instant being clear from the context.
Without loss of generality, suppose that t1, t2 ∈ [0, T ] are such that t1 < t2

and |t2 − t1| < 1. Using (24) and rearranging terms, we get

W−
r (t1, x)−W−

r (t2, x)

≤ inf
β∈Br(t1,T )

sup
u(·)∈U(t1,T )

EPω
t1,T

[∫ t2

t1

Θ(s, t1)L(s,Xt1,x(s), u(s), β[u(·)](s)) ds

+ Θ(t2, t1)
(
W−

r (t2, Xt1,x(t2))−W−
r (t2, x)

)
(32)

+ (Θ(t2, t1)−Θ(t1, t1))W
−
r (t2, x) .

Combining the inequality above with uniform Lipschitz continuity ofW−
r (t, x)

in x and of Θ(s, t) in s, as well as boundedness of Θ, L and W−
r , we obtain

that there exists a positive constant C1 such that

W−
r (t1, x)−W−

r (t2, x) ≤ C1

(
|t2 − t1|+ EPω

t1,T
[|Xt1,x(t2)− x|]

)
. (33)

A first-moment estimate for SDEs [28, Corollary 2.4.6] guarantees the exis-
tence of a positive constant C2 such that

EPω
t1,T

[|Xt1,x(t2)− x|] ≤ C2|t2 − t1|1/2 . (34)
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Putting together inequalities (33) and (34), we conclude that

W−
r (t1, x)−W−

r (t2, x) ≤ K1|t2 − t1|1/2 (35)

for some positive constant K1.
Given u(·) ∈ U(t2, T ), define u∗(·) ∈ U(t1, T ) as

u∗(s, ω) =

{
u(t2, ω

t1,t2) if s ∈ [t1, t2]

u(s, ωt1,t2) if s ∈ (t2, T ]
,

and given β∗ ∈ Br(t1, T ), define β ∈ Br(t2, T ) as

β[u(·)](s, ωt2,T ) = β∗[u∗(·)](s, π−1(ωt1,t2 , ωt2,T )) .

We now observe that for β∗ ∈ Br(t1, T ), we have

J (t1, x;u
∗(·), β∗[u∗(·)]) = EPω

t1,T

[∫ T

t1

Θ(s, t1)L (s,Xt1,x(s), u
∗(s), β∗[u∗(·)](s)) ds

+Θ(T, t1)Ψ (T,Xt1,x(T ))

]

= EPω
t1,T

[∫ t2

t1

Θ(s, t1)L (s,Xt1,x(s), u
∗(s), β∗[u∗(·)](s)) ds

+Θ(t2, t1)J (t2, Xt1,x(t2);u(·), β[u(·)])

]

= EPω
t1,T

[∫ t2

t1

Θ(s, t1)L (s,Xt1,x(s), u
∗(s), β∗[u∗(·)](s)) ds

+Θ(t2, t1) (J (t2, Xt1,x(t2);u(·), β[u(·)])− J (t2, x;u(·), β[u(·)]))

]

+(Θ(t2, t1)−Θ(t1, t1))J (t2, x;u(·), β[u(·)]) + J (t2, x;u(·), β[u(·)])

]
Combining the equality above with boundedness and Lipshitz continuity of
x 7→ J (t, x;u(·), v(·)), as guaranteed by Corollary 3.2, as well as bounded-
ness and Lipshitz continuity of Θ and boundedness of L, guaranteed by the
assumptions in the statement, we obtain that there exists a positive constant
C such that

J (t1, x;u
∗(·), β∗[u∗(·)])

≥ −C
(
|t2 − t1|+ EPω

t1,T
[|Xt1,x(t2)− x|]

)
+ J (t2, x;u(·), β[u(·)])

As a consequence, we have that

sup
u(·)∈U(t1,T )

J (t1, x;u(·), β∗[u(·)])

≥ −C
(
|t2 − t1|+ EPω

t1,T
[|Xt1,x(t2)− x|]

)
+ sup

u(·)∈U(t2,T )
J (t2, x;u(·), β[u(·)])

≥ −C
(
|t2 − t1|+ EPω

t1,T
[|Xt1,x(t2)− x|]

)
+W−

r (t2, x) .
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Resorting once more to the first-moment estimate (34), using the previous
inequality we are able to obtain that

W−
r (t1, x)−W−

r (t2, x) ≥ −K2|t2 − t1|1/2 (36)

for some positive constant K2. Hölder continuity of W−
r follows from com-

bining the estimates (35) and (36). �

We now observe that the r-value functions W−
r and W+

r are continuous
functions of (t, x), a consequence of Corollaries 3.3 and 3.5. Indeed, the
r-value functions W−

r and W+
r are, respectively, viscosity subsolutions and

supersolutions of the HJBI equations (15) and (16). The proof of such fact
is similar to that of [17, Proposition 1.12 ], with only minor adjustments
being required. We skip the details here for the sake of brevity.

Proposition 3.6. Suppose that conditions (A1)-(A2) and (D1)-(D3) hold.
The r-lower value function W−

r (resp. r-upper value function W+
r ) of the

discounted SDG determined by (3) and (12) is a viscosity subsolution (resp.
supersolution) of (15) (resp. (16)).

The next section employs an approximation procedure originally due to
Fleming and Souganidis [17, 39, 40]. Such procedure is based on a dis-
cretization of the time variable and yields viscosity solutions for (15) and
(16).

3.3. Time-discretization procedure. Let π = {0 = t0 < t1 < . . . < tm =
T} be a partition of [0, T ] and denote by

∥π∥ = max
1≤i≤m

(ti − ti−1)

the mesh of the partition π.
A π-admissible control u(·) for Player I on [t, T ] is an admissible control

with the following additional property: If i0 ∈ {0, . . . ,m − 1} is such that
t ∈ [ti0 , ti0+1), then u(s) = u for s ∈ [t, ti0+1) with u ∈ U and u(s) = utk for
s ∈ [tk, tk+1) for k = i0+1, . . . ,m−1 where utk is Gω

t,tk
-measurable. The set

of π-admissible controls for Player I on [t, T ] will be denoted by Uπ(t, T ). A
π-admissible control v(·) for Player II on [t, T ] is defined similarly and the
set of all such controls will be denoted by Vπ(t, T ).

A π-admissible strategy α for Player I on [t, T ] is an element of the set of
admissible strategies A(t, T ) with the additional properties that α[V(t, T )] ⊂
Uπ(t, T ), if t ∈ [ti0 , ti0+1) then for every v(·) ∈ V(t, T ) the resulting control
α[v(·)]|[t,ti0+1) does not depend on v(·), and if v(·) ≈ ṽ(·) on [t, tk], then

α[v(·)](tk) = α[ṽ(·)](tk), Pω
t,T -a.s. for every k ∈ {i0 + 1, . . . ,m}. The set of

all π-admissible strategies for Player I on [t, T ) will be denoted by Aπ(t, T ).
A π-admissible strategy β for Player II on [t, T ] is defined similarly and the
set of all such strategies will be denoted by Bπ(t, T ).

Let C0,1
b (RN ) denote the space of bounded, Lipschitz continuous func-

tions on RN . For every t ∈ [0, T ) and t̂ ∈ (t, T ], define the operator
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F−
t,t̂

: C0,1
b (RN ) → C0,1

b (RN ) by

F−
t,t̂
ϕ(x) = sup

u∈U
inf

v(·)∈V(t,t̂)
EPω

t,T

[
Θ(t̂, t)ϕ(Xu,v

t,x (t̂))

+

∫ t̂

t
Θ(s, t)L(s,Xu,v

t,x (s), u, v(s)) ds

]
,(37)

where V(t, t̂) denotes the set of admissible controls for Player II on [t, t̂) and
Xu,v

t,x (·) is the solution of (3) on [t, t̂) associated with the choice of admissible

controls u(·) ≡ u and v(·) ∈ V(t, t̂) having initial condition x at time t.

In a similar fashion, define the operator F+
t,t̂

: C0,1
b (RN ) → C0,1

b (RN ) as

F+
t,t̂
ϕ(x) = inf

v∈V
sup

u(·)∈U(t,t̂)

EPω
t,T

[
Θ(t̂, t)ϕ(Xu,v

t,x (t̂))

+

∫ t̂

t
Θ(s, t)L(s,Xu,v

t,x (s), u(s), v) ds

]
,

where U(t, t̂) denotes the set of admissible controls for Player I on [t, t̂) and
Xu,v

t,x (·) is the solution of (3) on [t, t̂) associated with the choice of admissible

controls v(·) ≡ v and u(·) ∈ U(t, t̂) having initial condition x at time t.
Let w−

π : [0, T ]× RN → R be such that w−
π (T, x) = Ψ(T, x) and

w−
π (t, x) = F−

t,ti0+1

m∏
k=i0+2

F−
tk−1,tk

Ψ(T, x) (38)

whenever t ∈ [ti0 , ti0+1), and similarly, let w+
π : [0, T ] × RN → R be such

that w+
π (T, x) = Ψ(T, x) and

w+
π (t, x) = F+

t,ti0+1

m∏
k=i0+2

F+
tk−1,tk

Ψ(T, x) (39)

whenever t ∈ [ti0 , ti0+1). Under assumptions (A1)-(A2) and (D1)-(D2), w−
π

and w+
π are both well defined. Moreover, w−

π and w+
π admit a stochastic

game characterization, as described in the next result.

Proposition 3.7. Suppose that conditions (A1)-(A2) and (D1)-(D2) hold.
For every (t, x) ∈ [0, T ]× RN , we have

w−
π (t, x) = inf

β∈B(t,T )
sup

u(·)∈Uπ(t,T )
J (t, x;u(·), β[u(·)]) (40)

and

w+
π (t, x) = sup

α∈A(t,T )
inf

v(·)∈Vπ(t,T )
J (t, x;α[v(·)], v(·)) . (41)

Proof. We prove relation (40) only, with the proof of (41) being similar. The
proof of (40) relies on the following two claims:

1) For every (t, x) ∈ [0, T ] × RN and every ϵ > 0, there exist αϵ ∈
Aπ(t, T ) and βϵ ∈ Bπ(t, T ) such that

J (t, x;u(·), βϵ[u(·)])− ϵ ≤ w−
π (t, x) ≤ J (t, x;αϵ[v(·)], v(·)) + ϵ (42)

for all u(·) ∈ Uπ(t, T ) and v(·) ∈ Vπ(t, T ).



STOCHASTIC DIFFERENTIAL GAMES WITH A RANDOM HORIZON 19

2) For any β ∈ B(t, T ), the pair of strategies αϵ ∈ Aπ(t, T ) and β ∈
B(t, T ) define controls uϵ(·) ∈ Uπ(t, T ) and v

ϵ(·) ∈ V(t, T ) for which
J (t, x;αϵ[v

ϵ(·)], vϵ(·)) = J (t, x;uϵ(·), β[uϵ(·)]) . (43)

Indeed, once the two claims above are proved, the result follows from
noticing that the left hand side of (42) guarantees that

w−
π (t, x) ≥ inf

β∈B(t,T )
sup

u(·)∈Uπ(t,T )
J (t, x;u(·), β[u(·)]) ,

while combining the right hand side of (42) with (43) yields the reverse
inequality.

The proof of claim 2 is similar to that of the corresponding statement in
[17] and we skip it. Let us prove claim 1) then. For φ ∈ C0,1

b (RN ), x ∈ RN ,

u ∈ U , t ∈ [0, T ] and t̂ ∈ (t, T ], define

ψ(x, u, t, t̂, φ) = inf
v(·)∈V(t,t̂)

EPω
t,T

[
Θ(t̂, t)φ(Xu,v

t,x (t̂))

+

∫ t̂

t
Θ(s, t)L(s,Xu,v

t,x (s), u, v(s)) ds

]
,

whereXu,v
t,x (·) is the solution of (3) under the choice of the admissible controls

u(s) ≡ u and v(·) ∈ V(t, t̂) and initial condition x at time t. Using assump-

tions (A1)-(A2) and (D1)-(D2), we obtain that ψ(·, ·, t, t̂, φ) ∈ C0,1
b (RN ×U)

and
F−
t,t̂
φ(x) = sup

u∈U
ψ(x, u, t, t̂, φ) ,

where Ft,t̂ is the operator defined in (37).

If t ∈ [ti0 , ti0+1) for i0 ∈ {0, 1, . . . ,m− 1}, let
φm = Ψ(T, ·)
φj = F−

tj ,tj+1
φj+1 , j = i0 + 1, . . . ,m− 1

φi0 = F−
t,ti0+1

φi0+1 .

Hence, we obtain that
φi0(x) = w−

π (t, x) .

Using [31, Lemma 1], we partition RN and U into Borel sets of diameter
less than some positive constant δ, to be determined below. Denote such
partitions by {Ak : k = 1, 2, . . .} and {Bℓ : ℓ = 1, 2, . . . , L}, respectively, and
pick xk ∈ Ak and uℓ ∈ Bℓ for each k = 1, 2, . . . and ℓ = 1, 2, . . . , L. For any
γ > 0 there exists δ small enough and u∗kj = uℓ(k,j) ∈ U , k = 1, 2, . . . and
j = i0 + 1, . . . ,m, such that

ψ(xk, u
∗
kj , tj−1, tj , φj) > F−

tj−1,tj
φj(xk)− γ . (44)

Additionally, we choose vℓkj(·) ∈ V (tj−1, tj) such that for u(·) identically

equal to uℓ ∈ U on the interval [tj−1, tj) we have that

EPω
tj−1,T

[
Θ(tj , tj−1)φ(X

ℓ
tj−1,xk

(tj))

+

∫ tj

tj−1

Θ(s, tj−1)L(s,X
ℓ
tj−1,xk

(s), uℓ, v
ℓ
kj(s)) ds

]
< ψ (xk, uℓ, tj−1, tj , φj) + γ ,
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with ti0 = t whenever j = i0 + 1. The notation Xℓ
tj−1,xk

(·) stands for the

solution of (3) with initial condition xk at time tj−1 subject to the admissible

controls u(·) ≡ uℓ and v
ℓ
kj(·).

We will now exhibit the strategies αϵ and βϵ in (42). Fix (t, x) ∈ RN ×
[0, T ). For v(·) ∈ V(t, T ), define

αϵ[v(·)](s) = I[t,ti0+1)(s)
∑
k

u∗ki0IAk
(x)

+

m−1∑
j=i0+1

I[tj ,tj+1)(s)
∑
k

u∗kjIAk
(X(tj)) ,

where X(·) is defined on each of the intervals [t, ti0+1] and [tj , tj+1], j =
i0+1, . . . ,m−1, as the solution of (3) with u(·) = αϵ[v(·)]. For u(·) ∈ U(t, T ),
define

βϵ[u(·)](s) = I[t,t0+1)(s)
∑
k,ℓ

v̂ℓki0(s)IAk
(x)IBℓ

(u(s))

+
m−1∑

j=i0+1

∑
k,ℓ

I[tj ,tj+1)(s)v̂
ℓ
kj(s)IAk

(X(tj))IBℓ
(u(s)) ,

where X(·) is now defined on each of the intervals [t, ti0+1] and [tj , tj+1],

j = i0+1, . . . ,m−1, as the solution of (3) with v(·) = βϵ[u(·)], and v̂ℓkj(·, ω) =
vℓkj(·, ωtj ,T ) using the identification of Ωω

t,T with Ωω
t,tj × Ωω

tj ,T
provided by

π(ω) = (ωt,tj , ωtj ,T ) discussed in Section 2.1.
Let J stand either for J (t, x;αϵ[v(·)], v(·)) or J (t, x;u(·), βϵ[u(·)]). For

any v(·) ∈ V(t, T ) and u(·) = αϵ[v(·)] or u(·) ∈ Uπ(t, T ) and v(·) = βϵ[u(·)],
we have

w−
π (t, x)− J

= φi0(x)− EPω
t,T

[∫ T

t
Θ(s, t)L (s,X(s), u(s), v(s)) ds+Θ(T, t)φm(X(T ))

]
=

m∑
j=i0+1

{
EPω

t,T
[Θ(tj−1, t)φj−1(X(tj−1))]− EPω

t,T
[Θ(tj , t)φj(X(tj))]

}
−EPω

t,T

[∫ T

t
Θ(s, t)L (s,X(s), u(s), v(s)) ds

]
. (45)
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Using Assumption (D2), we obtain that
m∑

j=i0+1

{
EPω

t,T
[Θ(tj−1, t)φj−1(X(tj−1))]− EPω

t,T
[Θ(tj , t)φj(X(tj))]

}
−EPω

t,T

[∫ T

t
Θ(s, t)L (s,X(s), u(s), v(s)) ds

]
=

m∑
j=i0+1

Θ(tj−1, t)

{
EPω

t,T
[φj−1(X(tj−1))]

−EPω
t,T

[
Θ(tj , tj−1)φj(X(tj))

+

∫ tj

tj−1

Θ(s, tj−1)L (s,X(s), u(s), v(s)) ds
]}

= EPω
t,T

[
m∑

j=i0+1

Θ(tj−1, t)

{
φj−1(X(tj−1))

−EPω
t,T

[
Θ(tj , tj−1)φj(X(tj)) (46)

+

∫ tj

tj−1

Θ(s, tj−1)L (s,X(s), u(s), v(s)) ds
∣∣∣Gω

t,tj−1

]}]
.

Combining (45) and (46), we get

w−
π (t, x)− J

= EPω
t,T

[
m∑

j=i0+1

Θ(tj−1, t)

{
φj−1(X(tj−1))

−EPω
t,T

[
Θ(tj , tj−1)φj(X(tj))

+

∫ tj

tj−1

Θ(s, tj−1)L (s,X(s), u(s), v(s)) ds
∣∣∣Gω

t,tj−1

]}]
.

Inequality (42) follows from the relation above after checking that the
following two statements hold Pω

t,T -a.s.:

(A) For any v(·) ∈ V(t, T ) and u(·) = αϵ[v(·)], we have that

φj−1(X(tj−1)) ≤ EPω
t,T

[
Θ(tj , tj−1)φj(X(tj))

+

∫ tj

tj−1

Θ(s, tj−1)L (s,X(s), u(s), v(s)) ds
∣∣∣Gω

t,tj−1

]
+ ϵ(tj − tj−1) .

(B) For any u(·) ∈ Uπ(t, T ) and v(·) = βϵ[u(·)], we have that

EPω
t,T

[
Θ(tj , tj−1)φj(X(tj)) +

∫ tj

tj−1

Θ(s, tj−1)L (s,X(s), u(s), v(s)) ds
∣∣∣Gω

t,tj−1

]
≤ φj−1(X(tj−1)) + ϵ(tj − tj−1) .

The proofs of (A) and (B) can be obtained by performing appropriate
adjustments to the proofs of analogous statements in [17]. We skip them to
keep the presentation brief. �
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The next lemma follows from assumptions (A1)-(A2) and (D1)-(D2), as
well as the characterizations of w−

π and w+
π given above.

Lemma 3.8. There exists a positive constant C, depending solely on as-
sumptions (A1)-(A2) and (D1)-(D2), such that the inequalities

|w±
π (t, x)| ≤ C , and

|w±
π (t, x)− w±

π (t̂, x̂)| ≤ C
(
|x− x̂|+ |t− t̂|1/2

)
hold for all x, x̂ ∈ RN and t, t̂ ∈ [0, T ].

Resorting to Lemma 3.8 above and the Arzela-Ascoli Theorem, we obtain
that the families of functions {w−

π } and {w+
π } converge uniformly as ∥π∥ → 0

along subsequences to bounded uniformly continuous functions. We will see
that such uniform limits are viscosity solutions of (15) and (16). That is the
content of the result below.

Proposition 3.9. Assume that (A1)-(A2) and (D1)-(D3) hold and let w−
π

and w+
π be given by (38) and (39), respectively. Then the limits

w− = lim
∥π∥→0

w−
π and w+ = lim

∥π∥→0
w+
π

exist locally uniformly and are the unique viscosity solution of (15) and (16),
respectively.

Proof. Existence of w− and w+ follow from a Comparison Theorem (Theo-
rem A.2 in the appendix) and Lemma 3.8 as long as one guarantees that any
subsequential limit of the families {w−

π } and {w+
π } as ∥π∥ → 0 is a viscosity

solution of (15) and (16), respectively. This can be achieved by employing
the same arguments as in [17, Proposition 2.5]. We omit the details here for
the sake of brevity. �

3.4. W− and W+ characterization as viscosity solutions of (15) and
(16). In what follows, we will compile the results obtained in the preced-
ing sections to complete the characterization of the lower and upper value
functions W− and W+ as the unique viscosity solutions of (15) and (16),
respectively. For that purpose, we start by noticing that since the limit
functions w− and w+ of Proposition 3.9 are the unique viscosity solutions of
(15) and (16), respectively, then Proposition 3.6 and a Comparison Theorem
(Theorem A.2 in the appendix) yield the following result.

Lemma 3.10. For every (t, x) ∈ [0, T ]× RN we have that

W−
r (t, x) ≤ w−(t, x) and W+

r (t, x) ≥ w+(t, x) .

We will now show that W−(t, x) ≥ w−(t, x) and W+(t, x) ≤ w+(t, x) for
every (t, x) ∈ [0, T ] × RN . As a consequence, we will obtain that the lower
and upper value functions W− and W+ are the unique viscosity solutions
of (15) and (16), respectively.

Theorem 3.11. Suppose that (A1)-(A2) and (D1)-(D3) hold. The lower
and upper value functionsW− andW+ of the discounted SDG determined by
(3) and (12) are, respectively, the unique viscosity solutions of the Hamilton-
Jacobi-Bellman-Isaacs equations (15) and (16). Moreover, if the Isaacs
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condition (11) holds, then the discounted SDG determined by (3) and (12)
has a value.

Proof. We only prove the statement concerning the lower value function,
with a similar proof holding for the corresponding statement concerning the
upper value function.

Combining Corollary 3.3 with Lemma 3.10 we obtain that W− ≤ W−
r ≤

w− on [0, T ]×RN . On the other hand, by Proposition 3.7 we have that for
every partition π of [0, T ], the inequality w−

π ≤ W− holds on [0, T ] × RN .
Proposition 3.9 then implies that w− ≤ W− on [0, T ] × RN , guaranteeing
that w− =W− on [0, T ]× RN .

Finally, if the Isaacs condition holds, then the HJBI equations (15) and
(16) coincide. Hence, uniqueness of the viscosity solutions – a consequence
of Theorem A.2 – ensures that W− and W+ are identical. �

Finally, we are able to state a dynamic programming principle for each
one of the value functions W− and W+, defined in (13) and (14).

Theorem 3.12 (Dynamic programming principle). Assume that conditions
(A1)-(A2) and (D1)-(D3) hold and let t, t̂ ∈ [0, T ] be such that t < t̂. Then,
for every x ∈ RN , we have that:

(i) the lower value function of the discounted SDG (3)-(14) is deter-
mined by the recursive relation

W−(t, x) = inf
β∈B(t,T )

sup
u∈U(t,T )

EPω
t,T

[
Θ(t̂, t)W− (t̂, Xu,v

t,x (t̂)
)

(47)

+

∫ t̂

t
Θ(s, t)L(s,Xu,v

t,x (s), u(s), β[u(·)](s)) ds

]
,

combined with the boundary condition W−(T, x) = Ψ(T, x), where
Xu,v

t,x (s), s ∈ [t, T ], is the solution of (3) with v(·) = β[u(·)] ∈ V(t, T )
for u(·) ∈ U(t, T ).

(ii) the upper value function of the discounted SDG (3)-(13) is deter-
mined by the recursive relation

W+(t, x) = sup
α∈A(t,T )

inf
v∈V(t,T )

EPω
t,T

[
Θ(t̂, t)W+

(
t̂, Xu,v

t,x (t̂)
)

(48)

+

∫ t̂

t
Θ(s, t)L(s,Xu,v

t,x (s), α[v(·)](s), v(s)) ds

]
,

combined with the boundary condition W+(T, x) = Ψ(T, x), where
Xu,v

t,x (s), s ∈ [t, T ], is the solution of (3) with u(·) = α[v(·)] ∈ U(t, T )
for v(·) ∈ V(t, T ).

Proof. We start by proving that the lower value function of the discounted
SDG (3)-(12) satisfies relation (47). The corresponding proof for the upper
value function is similar and we omit it here.

Let t̂ ∈ (0, T ] be fixed and let W (t, x) denote the right hand side of (47).
It is enough to consider in (47) controls u(·) and strategies β defined in
[t, t̂]. By Theorem 3.11, we have that W is the viscosity solution of (15) on
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[0, t̂] × RN with W (t̂, x) = W−(t̂, x). Since W− is the viscosity solution of
same problem, uniqueness of viscosity solutions yields that W =W−. �

4. Proof of Theorem 2.1

This section is devoted to the proof of Theorem 2.1. We will see that
the payoff functional (4) can be related with the payoff functional of an
auxiliary problem, with deterministic time horizon, but readjusted running
and terminal payoffs accounting for the uncertainty induced by the random
horizon via the introduction of a non-constant discount rate. We will then
discuss how to formulate the resulting problem as a zero-sum discounted
SDG, studied in detail in Section 3.

We start by stating and proving a simple lemma concerning an iterative
property for the conditional probabilities defined in (7).

Lemma 4.1. The identities

G+(s, t) = G+(s, t̂) G+(t̂, t)

g−(s, t) = g−(s, t̂) G+(t̂, t)

hold for every 0 ≤ t ≤ t̂ ≤ s ≤ T .

Proof. Recall the definition of the conditional probability G+(t, s) given in
(7):

G+(s, t) = Pτ
t (τ > s) = Pτ (τ > s|τ > t) . (49)

Using the definition of conditional probability and the fact that t ≤ t̂ ≤ s,
we get

Pτ (τ > s|τ > t) =
Pτ ({τ > s} ∩ {τ > t})

Pτ (τ > t)

=
Pτ
(
{τ > s} ∩ {τ > t̂}

)
Pτ
(
τ > t̂

) Pτ
(
{τ > t̂} ∩ {τ > t}

)
Pτ (τ > t)

(50)

= Pτ
(
τ > s|τ > t̂

)
Pτ
(
τ > t̂|τ > t

)
.

The first relation in the statement follows from combining (49) and (50).
The second relation is a consequence of the first one after noticing that
g−(s, t) is the density function associated with the distribution function
G−(s, t) = 1−G+(s, t). �

The next lemma plays a central role in the formulation of an auxiliary
discounted SDG with a deterministic time horizon associated with the SDG
with random horizon (3)-(4). In what follows we will denote the indicator
function of a set A by 1A.

Lemma 4.2. Let u : [t, T ] × Ωω
t,T → U and v : [t, T ] × Ωω

t,T → V be Gω
t,T -

adapted processes. For every (t, x) ∈ [0, T ) × RN , the payoff functional
J(t, x;u(·), v(·)) defined in (4) admits the representation

J(t, x;u(·), v(·)) = EPω
t,T

[∫ T

t
G+(s, t)L

(
s,Xu,v

t,x (s), u(s), v(s)
)
ds

+G+(T, t)Ψ
(
T,Xu,v

t,x (T )
) ]

, (51)
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where L is the conditional running payoff

L(t, x, u, v) = L (s, x, u, v) + g−(t, t)Ψ (t, x) , (52)

G+ and g− are as given in (7) and (8), respectively, and Xu,v
t,x (s), s ∈

[t, T ], denotes the solution of the initial value problem (3) associated with
(u(·), v(·)).

Proof. Given the definition of the random horizon ξ in (2) and that of the
payoff functional J in (4), we obtain

J(t, x;u(·), v(·)) =

EPt

[
1(T,+∞)(τ)

(∫ T

t
L
(
s,Xu,v

t,x (s), u(s), v(s)
)
ds+Ψ

(
T,Xu,v

t,x (T )
))

+1(t,T ](τ)

(∫ τ

t
L
(
s,Xu,v

t,x (s), u(s), v(s)
)
ds+Ψ

(
τ,Xu,v

t,x (τ)
))]

.

Combining the representation (1) for the probability measure Pt with the
linearity of the expected value with respect to the distribution of τ and
the definition of the conditional probabilities (7), we are able to rewrite the
relation above as

J(t, x;u(·), v(·)) =

= EPω
t,T

[
G+(T, t)

(∫ T

t
L
(
s,Xu,v

t,x (s), u(s), v(s)
)
ds+Ψ

(
T,Xu,v

t,x (T )
))

+

∫ T

t
g−(r, t)

∫ r

t
L
(
s,Xu,v

t,x (s), u(s), v(s)
)
dsdr (53)

+

∫ T

t
g−(s, t)Ψ

(
s,Xu,v

t,x (s)
)
ds

]
.

Applying Fubini-Tonelli’s Theorem to the second term on the right hand
side of relation (53), we get∫ T

t

∫ r

t
g−(r, t)L(s,Xu,v

t,x (s), u(s), v(s)) dsdr

=

∫ T

t

∫ T

s
g−(r, t)L(s,Xu,v

t,x (s), u(s), v(s)) drds

=

∫ T

t

(
G+(s, t)−G+(T, t)

)
L(s,Xu,v

t,x (s), u(s), v(s))) ds .

Combining the last equality with (53) and rearranging terms, we get

J(t, x;u(·), v(·)) =

= EPω
t,T

[∫ T

t
G+(s, t)L

(
s,Xu,v

t,x (s), u(s), v(s)
)
+ g−(s, t)Ψ

(
s,Xu,v

t,x (s)
)
ds

+G+(T, t)Ψ
(
T,Xu,v

t,x (T )
) ]

.
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The result now follows from Lemma 4.1 after factoring out the term G+(s, t)
from the integrand in the equality above. �

The representation (51) for the payoff functional (4) reflects the transfor-
mation of the SDG under consideration from a random planning horizon to
a deterministic one via the introduction of a subjective rate of time prefer-
ences, that resembles a non-constant discount factor related with the family
of conditional probabilities (7).

Proof of Theorem 2.1. We employ the representation for the payoff func-
tional (4) provided in Lemma 4.2. Start by observing that the payoff func-
tional (51) is of the same form as the discounted payoff functional (12), with
non-constant discount factor given by Θ(s, t) = G+(s, t) and running payoff
of the form (52). Moreover, combining assumption (A3), the definition of
the conditional probabilities (7) and (8), and Lemma 4.1, we obtain that
hypotheses (D1)-(D3) hold. Therefore, Theorem 3.11 ensures that the value
functions, say W− and W+, associated with the auxiliary discounted SDG
specified by (3) and (51) are, respectively, the unique viscosity solutions
of the HJBI equations (9) and (10), each of which can be obtained from
(15) and (16) by performing the appropriate adjustments listed above to
the discount factor Θ(s, t) and the running payoff L(t, x, u, v). Finally, by
Lemma 4.2, we conclude that the lower and upper value functions V − and
V + associated with the SDG with a random horizon (3)-(4) are, respec-
tively, identically equal to the lower and upper value functions W− and W+

associated with the auxiliary discounted SDG mentioned above. �

5. Conclusions

We have studied a two-player zero-sum stochastic differential game with
a random horizon and diffusive state variable dynamics. We have employed
dynamic programming and viscosity solutions techniques to prove that the
value function of such game is the unique viscosity solution of a certain HJBI
equation. Additionally, under the Isaacs condition, we have obtained that
the value of the game exists.

Appendix A. Viscosity solutions and a Comparison Theorem

Let Ω be an open subset of Rn. For any function u : Ω → R, define
u∗ : Ω̄ → R ∪ {−∞,∞} as

u∗(x) = lim
r→0+

sup {u(y) : y ∈ B(x; r) ∩ Ω} for x ∈ Ω̄ ,

and u∗ : Ω̄ → R ∪ {−∞,∞} as

u∗(x) = lim
r→0+

inf {u(y) : y ∈ B(x; r) ∩ Ω} for x ∈ Ω̄ .

Notice that u∗ ≥ u ≥ u∗ on Ω, u∗ is upper semi-continuous (u.s.c.) on Ω̄
and u∗ is lower semi-continuous (l.s.c.) on Ω̄. Note also that u∗ = (−u)∗
and that if u is u.s.c. at x ∈ Ω, then u∗(x) = u(x). The functions u∗ and
u∗ are called, respectively, the u.s.c. and l.s.c. envelopes of u.

Given A ∈ Rm×n, let A′ and ||A|| stand, respectively, for the transpose
and the norm of A. Let A and B be nonempty, and set Λ = Ω × A × B.
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Consider functions Σ : Λ → Rm×n, b : Λ → Rn, c : Λ → R, d : Λ → R, and
define A : Λ → Sn as

A(x, α, β) = Σ′(x, α, β)Σ(x, α, β)

and F : Ω× R× Rn × Sn → R as

F (x, r, p,X) = inf
β∈B

sup
α∈A

{−tr (A(x, α, β)X) + ⟨b(x, α, β), p⟩

+c(x, α, β)r + d(x, α, β)} .
Consider the nonlinear PDE

F (x, u,Du,D2u) = 0 in Ω . (54)

A function u : Ω → R is called a viscosity subsolution of (54) if u∗(x) < ∞
for x ∈ Ω̄ and if, whenever ϕ ∈ C2(Ω), y ∈ Ω and (u∗−ϕ)(y) = maxΩ(u

∗−ϕ),
F
(
y, u∗(y), Dϕ(y), D2ϕ(y)

)
≤ 0 .

In a similar way, a function u : Ω → R is called a viscosity supersolution
of (54) if u∗(x) > −∞ for x ∈ Ω̄ and if, whenever ϕ ∈ C2(Ω), y ∈ Ω and
(u∗ − ϕ)(y) = minΩ(u∗ − ϕ),

F
(
y, u∗(y), Dϕ(y), D

2ϕ(y)
)
≥ 0 .

A function u : Ω → R is called a viscosity solution of (54) if it is both a
viscosity sub- and supersolution of (54).

Consider the following assumptions:

(H1) For each bounded subset B of Ω, the functions A, b, c and d are
bounded on B ×A× B.

(H2) Σ and b are Lipschitz continuous with respect to x, i.e.

sup
||Σ(x, α, β)− Σ(y, α, β)||

|x− y|
<∞

and

sup
||b(x, α, β)− b(y, α, β)||

|x− y|
<∞ ,

where the supremum is taken for all (x, α, β), (y, α, β) ∈ Λ with
x ̸= y.

(H3) The functions f = c, d satisfy

lim
r→0

sup{|f(x, α, β)− f(y, α, β)| : x, y ∈ B

(α, β) ∈ A× B, |x− y| ≤ r} = 0 ,

for bounded subsets B of Ω.
(H4) inf{c(x, α, β) : (x, α, β) ∈ Λ} > 0 .

The following comparison result is due to Ishii [22, Thm 7.3].

Theorem A.1. Assume that (H1)-(H4) hold. Let u and v be, respectively,
viscosity sub- and supersolutions of

F (x, u,Du,D2u) = 0 in Ω .

If Ω is unbounded, then assume that

lim
x∈Ω,|x|→∞

u+(x)

log |x|
= 0 and lim

x∈Ω,|x|→∞

u−(x)

log |x|
= 0 .



28 M. FERREIRA, D. PINHEIRO, AND S. PINHEIRO

Suppose that u∗(x) ≤ v∗(x) for x ∈ ∂Ω. Then, u∗ ≤ v∗ on Ω.

Details regarding further extensions of the Theorem above, including on
how to extend to parabolic equations such as the ones under consideration
herein, may be found in [23] and the user’s guide to viscosity solutions of
second order partial differential equations [12]. In particular, the following
theorem holds.

Theorem A.2. Assume that the functions σ, f, L and Ψ are bounded and
Lipschitz continuous. If v and ṽ (resp. u and ũ) are a viscosity subsolution

and supersolution of (15) (resp. (16)) with boundary condition Ψ and Ψ̃

and if Ψ ≤ Ψ̃ on RN × {T}, then v ≤ ṽ (resp. u ≤ ũ) on RN × [0, T ].
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