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Abstract. We consider the problem faced by a wage-earner with an
uncertain lifetime having to reach decisions concerning consumption and
life-insurance purchase, while investing his savings in a financial market
comprised of one risk-free security and an arbitrary number of risky secu-
rities whose prices are determined by diffusive linear stochastic differen-
tial equations. We assume that life-insurance is continuously available
for the wage-earner to buy from a market composed by a fixed num-
ber of life-insurance companies offering pairwise distinct life-insurance
contracts. We characterize the optimal consumption, investment and
life-insurance selection and purchase strategies for the wage-earner with
an uncertain lifetime and whose goal is to maximize the expected utility
obtained from his family consumption, from the size of the estate in the
event of premature death, and from the size of the estate at the time
of retirement. We use dynamic programming techniques to obtain an
explicit solution in the case of discounted constant relative risk aversion
(CRRA) utility functions.

Keywords: stochastic optimal control; consumption-investment prob-
lems; life-insurance purchase

1. Introduction

We consider the case of a wage-earner whose lifetime is uncertain and
faced with the problem of optimizing his decisions regarding consumption,
investment and life-insurance selection and purchase during a random inter-
val of time of the form [0,min{τ, T}], where T is a fixed instant of time in the
future that can be seen as the retirement time of the wage-earner - and τ is a
continuous and non-negative random variable representing the wage-earner’s
eventual time of death. We assume that life-insurance is available for the
wage-earner to buy from a market composed by K life-insurance companies
and that the wage-earner’s aim is to buy life-insurance in order to protect
his family against the eventuality of his premature death. Each insurance
company continuously offers life-insurance contracts, and the wage-earner
buys life-insurance from insurance company k by paying a premium insur-
ance rate pk(t), k ∈ {1, 2, . . . ,K}. The insurance contracts to be considered
herein are like term insurance, with an infinitesimally small term. If the
wage-earner dies at time τ ≤ T while buying insurance at the rate pk(t)
from the kth insurance company, then that insurance company pays, at the
random time of death τ , an amount

Zk(τ) =
pk(τ)

ηk(τ)
1
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to his estate, where ηk : [0, T ] → R+ is assumed to be a continuous and
deterministic positive function, to which we call the kth insurance company
premium-payout ratio. Such ratio specifies the life-insurance contract payout
in the event of premature death and is regarded as fixed by the insurance
company. Throughout this paper, we will assume that the insurance con-
tracts offered by the K insurance companies operating in the market are
pairwise distinct in the sense that the corresponding premium-payout ra-
tios are pairwise distinct for Lebesgue a.e. t ∈ [0, T ]. Additionally, we
will assume that every contract ends when the wage-earner dies or achieves
retirement age, whichever happens first. Finally, we assume that the wage-
earner invests the full amount of his savings in a financial market comprised
of one risk-free security and a fixed number N ≥ 1 of risky securities driven
by a multi-dimensional Brownian motion.

Under the setup described above, the wage-earner is then faced with the
problem of finding strategies that maximize the joint expected utility ob-
tained from: his family consumption for all t ≤ min{τ, T}; his wealth at
retirement date T if he lives that long; and the value of his estate in the
event of premature death. We prove that the optimal life-insurance selection
and purchase strategy is to either buy no insurance from any company or
else to buy an optimal (positive) amount of life-insurance from a single com-
pany: the one offering the smallest premium-payout ratio at each instant of
time. The case where the optimal strategy is to buy no life-insurance at all
is associated with wage-earners who hold large enough levels of wealth and
close enough to retirement age, in such a way that paying for life-insurance
contributes little towards an improvement of the utility gained from increas-
ing the size of the estate in the event of premature death, while decreasing
the overall joint expected utility of the wage-earner.

To address the problem described above, we will resort to dynamic pro-
gramming techniques. Indeed, we should remark that the dynamic pro-
gramming principle became one of the main techniques used to solve op-
timal control problems, after its initial development by Bellman [5, 6, 7]
in the 1950s. Over the years, it has been extended to address stochastic
optimal control problems [8, 16, 17, 25] with an increasing level of sophis-
tication. The outcome of this technique is a backwards recursive relation
for the value function associated with such problems and, under additional
conditions, a nonlinear partial differential equation known as the Hamilton-
Jacobi-Bellman (HJB) equation. For further details on this subject, we refer
the reader to the textbooks by Fleming and Rishel [14], Fleming and Soner
[15] and Yong and Zhou [36].

A distinguishing feature of the problem under consideration here is that it
presents a random time horizon. Indeed, there are currently several papers
in topics related with Finance and Actuarial Science that can be formu-
lated as stochastic optimal control problems with a random time horizon.
One such example is the paper by Duarte et al. [12], where a wage-earner
with a random lifetime needs to decide about the optimal amount of life-
insurance to buy from a single insurance company while investing his savings
in a financial market. Shenab and Weib [33] considered an optimal invest-
ment, consumption and life-insurance purchase problem for a wage-earner
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in a complete market with Brownian information and random parameters
that are allowed to be unbounded. Previous works in this context were
produced by Blanchet-Scalliet et al. [9] and Pliska and Ye [30, 35]. The
present study is also related to the models proposed by Yarri [34], who in-
troduced an optimal consumption problem for an individual with uncertain
time of death within the setup of a pure deterministic investment environ-
ment, Hakansson [21, 22], who extended Yaari’s model to a discrete-time
case with uncertainty including risky-assets, Merton [28, 29], who studied a
continuous-time optimal consumption and investment problem (with no life-
insurance purchase component), and Richard [32], who combined the earlier
approaches to obtain a continuous-time model for optimal consumption, in-
vestment and life-insurance purchase. However, we should reinforce that the
problem considered herein looks into how a wage-earner should manage his
portfolio of life-insurance policies and investment portfolio, a point of view
which is somewhat complementary to the classical development of actuar-
ial science, which has a heavier focus on ruin theory problems. This latter
point of view has its roots on the seminal works leading to Cramér-Lundberg
model introduced in the early 20th century [26, 27, 11]. The earlier results
on ruin probability include the Lundberg inequality and Cramér-Lundberg
approximation. However, a closed form solution for the ruin probability is
known to be notoriously difficult to obtain, except for some very special
cases. Moreover, since the assumption used in the Cramér-Lundberg model
is too restrictive to be applicable in most cases, there has been intense
work towards the development of more general and realistic models. Ex-
amples include the Sparre Andersen Model [1], the Markov modulated risk
model [2, 3] and the diffusion-perturbed risk model [18]. Other approaches
to extend the theory include studying the behavior of the insurer’s surplus
through an expected discounted penalty function, known as the Gerber-Shiu
function [31, 20], and the analysis of other relevant quantities such as the
time of recovery from ruin as in [19, 13].

The practical relevance of the theoretical study presented herein lies on
the attempt to provide a realistic model for the interaction between a wage-
earner (who is simultaneously a saver and investor) and an insurance market
composed by multiple (competing) insurance companies. For the purpose of
our analysis, the wage-earner is assumed to be a completely rational agent
whose ultimate aim is to maximize a given expected utility which encodes
his preferences regarding consumption and wealth. As mentioned above,
this leads us to optimal solutions whereby a typical wage-earner would,
at any instant of time, buy life-insurance from the company offering the
cheaper premium for the same level of protection, switching immediately
to any competitor able to produce a better offer at a later instant in time.
We believe that it may be interesting to extend this analysis by combining
it with empirical data with the goal of assessing to what extent do real-life
wage-earners (who are not fully rational in the most commonly used sense in
economic theory) follow a reasonably similar pattern (allowing, eventually,
for some potential delay in the contract switches due to real-life economic
agents “bounded” rationality). Another possible extension for the results
found herein is to consider more general financial markets, in order to study
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the influence that jumps, nonlinearities and regime-switches may have on
the optimal strategies regarding life-insurance selection and purchase. Such
studies require a more general version of dynamic programming techniques
as discussed in [4].

This article is organized as follows. In Section 2 we describe the problem
we propose to address. Namely, we introduce the underlying financial and
insurance markets, the corresponding wealth process, and formulate the
problem we wish to address in the framework of a stochastic optimal control
with a random horizon. We then proceed to restate such problem as one with
a fixed planning horizon, providing the corresponding dynamic programming
principles and Hamilton-Jacobi-Bellman equation. We devote Section 3 to
characterize the optimal strategies for the wage-earner under consideration
here. An explicit solution for the case of discounted CRRA utility functions
in obtained in Section 4. We conclude in Section 5.

2. Problem formulation

Throughout this section, we will introduce the underlying financial market
available to the wage-earner, as well as the setup describing the insurance
contracts under consideration herein. By the end of this section we will
provide the definition of the wealth process for the wage-earner faced with
the problem of optimizing his decisions regarding consumption, investment
and life-insurance purchase during a given interval of time [0,min{τ, T}].

2.1. The financial market model. Let (Ω,F , P ) be a complete prob-
ability space equipped with a filtration F = (Ft)t∈[0,T ] given by the P -

augmentation of the filtration generated by a standardM -dimensional Brow-
nian motion W (·), σ (W (s) : s ≤ t) for t ≥ 0.

We consider a financial market consisting of one risk-free asset and finite
number of risky-assets. Their respective prices (S0(t))0≤t≤T and (Sn(t))0≤t≤T ,
for n = 1, ..., N , evolve according to the following stochastic differential
equations:

dS0(t) = r(t)S0(t)dt , S0(0) = s0 ,

dSn(t) = µn(t)Sn(t)dt+ Sn(t)

M∑
m=1

σnm(t)dWm(t) , Sn(0) = sn > 0 ,

where W (t) = (W1(t), . . . ,WM (t))T ∈ RM , r(t) is the riskless interest rate,
µ(t) = (µ1(t), . . . , µN (t))T ∈ RN is the vector of risky-assets appreciation
rates, and σ(t) = (σnm(t))1≤n≤N,1≤m≤M is the N×M matrix of risky-assets
volatilities. Each sub-σ-algebra Ft represents the information available to
any given agent observing the financial market during the time interval [0, t].

Assumption 2.1. The coefficients r(t), µ(t) and σ(t) are deterministic
continuous functions on the interval [0, T ]. Additionally, the following con-
ditions hold:

(i) the interest rate r(t) is positive for all t ∈ [0, T ];
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(ii) the matrix σ(t) is such that σ (t) (σ(t))T is non-singular for Lebesgue
almost all t ∈ [0, T ] and satisfies the following integrability condition

N∑
n=1

M∑
m=1

∫ T

0
σ2
nm(t)dt < ∞ ;

(iii) there exists an (Ft)0≤t≤T -progressively measurable process π(t) ∈
RM , called the market price of risk, such that for Lebesgue-almost-
every t ∈ [0, T ], the risk premium

α(t) = (µ1(t)− r(t), . . . , µN (t)− r(t))T ∈ RN (1)

is related to π(t) by the equation

α(t) = σ(t)π(t) a.s.

and the following two conditions hold∫ T

0
∥π(t)∥2 dt < ∞ a.s.

E

[
exp

(
−
∫ T

0
π(s)dW (s)− 1

2

∫ T

0
∥π(s)∥2 ds

)]
= 1 .

The existence of the market price of risk π(t) ensures the absence of arbitrage
opportunities in the financial market defined above. Note also that the
conditions on the matrix σ above do not imply market completeness. See
[23] for further details on market viability and completeness.

2.2. The life-insurance market model. The wage-earner is alive at time
t = 0 and his lifetime is a non-negative continuous random variable τ defined
on the probability space (Ω,F , P ).

Assumption 2.2. The random variable τ is independent of the filtration F
and has a distribution function G− : [0,∞) → [0, 1] with density g : [0,∞) →
R+ such that

G−(t) = P (τ ≤ t) =

∫ t

0
g(s) ds .

Recall that the survival function G+ : [0,∞) → [0, 1] is defined as the
probability for the wage-earner to survive past time t, i.e.

G+(t) = P (τ > t) = 1−G−(t) .

We shall also make use of the hazard rate function, the conditional, instan-
taneous death rate for the wage-earner surviving past time t, that is

λ(t) = lim
δt→0

P (t < τ ≤ t+ δt | τ > t)

δt
=

g(t)

G+(t)
.

Throughout this paper, we will suppose that the hazard rate function λ :
[0,∞) → R+ is a continuous and deterministic function such that∫ ∞

0
λ(t) dt = ∞ .

The concepts introduced above are standard in the context of Reliability
Theory and Actuarial Science (see, e.g. [24, 10]).
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As mentioned in the introduction, the life-insurance market under con-
sideration here is composed by K insurance companies, with each insurance
company continuously offering life-insurance contracts. The wage-earner
buys life-insurance from insurance company k by paying a premium insur-
ance rate pk(t) for each k = 1, 2, . . . ,K. The insurance contracts are like
term insurance, with an infinitesimally small term. If the wage-earner dies at
time τ ≤ T while buying insurance at the rate pk(t) from the kth insurance
company, then that insurance company pays an amount

Zk(τ) =
pk(τ)

ηk(τ)

to his estate, where ηk : [0, T ] → R+ is the kth insurance company premium-
payout ratio.

Assumption 2.3. For every k ∈ {1, . . . ,K}, the kth insurance company
premium-payout ratio ηk(t) is a continuous and deterministic function. Ad-
ditionally, we will assume that the K insurance companies under consider-
ation here offer pairwise distinct contracts in the sense that ηk1(t) ̸= ηk2(t)
for every k1 ̸= k2 and Lebesgue-almost-every t ∈ [0, T ].

As a consequence of Assumption 2.3 above, we have that the K×K sym-

metric matrix η (t)T η(t), where η(t) = (η1(t), η2(t), . . . , ηK(t))T ∈ (R+)
K
,

is non-singular for Lebesgue almost-every t ∈ [0, T ].
The contract ends when the wage-earner dies or achieves retirement age,

whichever happens first. Therefore, the wage-earner’s total legacy to his
estate in the event of a premature death at time τ ≤ T is given by

Z(τ) = X(τ) +

K∑
k=1

pk(τ)

ηk(τ)
, (2)

where X(t) denotes the wage-earner’s wealth at time t ∈ [0, T ].

2.3. The wealth process. The wage-earner receives income i(t) at a con-
tinuous rate during the period [0,min{τ, T}], i.e. the income will be termi-
nated either by his death or his retirement, whichever happens first.

Assumption 2.4. The income function i : [0, T ] → R+
0 is a deterministic

Borel-measurable function satisfying the integrability condition:∫ T

0
i(t) dt < ∞ .

The consumption process (c(t))0≤t≤T is a (Ft)0≤t≤T -progressively measur-
able non-negative process satisfying the following integrability condition for
the investment horizon T > 0:∫ T

0
c(t) dt < ∞ a.s. .

We assume also that for all k = 1, 2, . . . ,K, the kth company premium
insurance rate (pk(t))0≤t≤T is non-negative a (Ft)0≤t≤T -predictable process,
i.e. pk(t) is measurable with respect to the smallest σ-algebra on R+

0 × Ω
such that all left-continuous and adapted processes are measurable.
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For each n = 0, 1, ..., N and t ∈ [0, T ], let θn(t) denote the fraction of the
wage-earner’s wealth allocated to the asset Sn at time t. The wage-earner
portfolio process is then given by Θ(t) = (θ0(t), θ1(t), . . . , θN (t))T ∈ RN+1,
where

N∑
n=0

θn(t) = 1 , 0 ≤ t ≤ T . (3)

We assume that the portfolio process is (Ft)0≤t≤T -progressively measurable
and that for the fixed investment horizon T > 0 we have that∫ T

0
∥Θ(t)∥2 dt < ∞ a.s. ,

where ∥·∥ denotes the Euclidean norm in RN+1.
The wealth process X(t), t ∈ [0,min{τ, T}], is then defined by

X(t) = x+

∫ t

0

(
i(s)− c(s)−

K∑
k=1

pk(s)

)
ds

+

N∑
n=0

∫ t

0

θn(s)X(s)

Sn(s)
dSn (s) , (4)

where x is the wage-earner’s initial wealth. This last equation can be rewrit-
ten in differential form as

dX(t) =

(
i(t)− c(t)−

K∑
k=1

pk(t) +

(
θ0(t)r(t) +

N∑
n=1

θn(t)µn(t)

)
X(t)

)
dt

+
N∑

n=1

θn(t)X(t)
M∑

m=1

σnm(t)dWm(t) , (5)

where 0 ≤ t ≤ min{τ, T}.
Using relation (3), we can always write θ0(t) in terms of θ1(t), . . . , θN (t).

From now on, we will define the portfolio process in terms of the wage-earner
reduced portfolio process θ(t) ∈ RN , given by

θ(t) = (θ1(t), θ2(t), . . . , θN (t))T ∈ RN .

We shall represent the wage-earner life-insurance purchase rate as a vector

p(t) = (p1(t), p2(t), . . . , pK(t))T ∈ (R+
0 )

K ,

where for each k ∈ {1, 2, . . . ,K}, the quantity pk(t) denotes the life-insurance
purchase rate from the kth insurance company at time t ∈ [0,min{τ, T}].
Note that a zero component in p(t) represents the absence of any life-
insurance contract between the wage-earner and a certain insurance com-
pany.

2.4. The optimal control problem. The wage-earner is faced with the
problem of finding strategies that maximize the expected utility obtained
from: his family consumption for all t ≤ min{τ, T}; his wealth at retirement
date T if he lives that long; and the value of his estate in the event of
premature death.
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This problem can be formulated by means of optimal control theory. The
wage-earner goal is to maximize some cost functional subject to the (stochas-
tic) dynamics of the state variable, i.e. the dynamics of the wealth process
X(t) given by (4); constraints on the control variables, i.e. the consumption
process c(t), the premium insurance rates p(t) and the portfolio process θ(t);
and boundary conditions on the state variables.

Let us denote by A(0, x) the set of all admissible decision strategies, i.e.
all admissible choices for the control variables ν = (c(·), θ(·), p(·)). The
dependence of A(0, x) on x denotes the restriction imposed on the wealth
process by the boundary condition X(0) = x.

The wage-earner’s problem can then be restated as follows: find a strategy
ν = (c(·), θ(·), p(·)) ∈ A(0, x) which maximizes the expected utility

E0,x

[∫ τ∧T

0
U(s, c(s)) ds+B(τ, Z(τ))I[0,T ](τ) +W (X(T ))I(T,+∞)(τ)

]
,

(6)
where τ ∧ T = min{τ, T}, IA denotes the indicator function of the set A,
U(t, ·) is the utility function describing the wage-earner’s family preferences
regarding consumption at some instant of time t ∈ [0, T ], W (·) is the utility
function for the terminal wealth at retirement time T , and B(t, ·) is the
utility function for the size of the wage-earners’s legacy at some time t ∈
[0, T ] as given in (2).

Assumption 2.5. The utility functions U : [0, T ] × R+
0 → R+

0 and B :
[0, T ] × R+

0 → R+
0 are twice differentiable, strictly increasing and strictly

concave functions on their second variable, and W : R+
0 → R+

0 is a twice
differentiable, strictly increasing and strictly concave function.

In Section 4 we will specialize our analysis to the case where the wage-
earner’s preferences are described by discounted CRRA utility functions.

2.5. The stochastic optimal control problem. We use the techniques
introduced in [30, 35] to restate the stochastic optimal control problem for-
mulated above as one with a fixed planning horizon. We then state a dy-
namic programming principle and the corresponding HJB equation.

Denote byA(t, x) the set of admissible decision strategies ν = (c(·), θ(·), p(·))
for the dynamics of the wealth process with boundary condition X(t) = x.
For any ν ∈ A(t, x) we define

J(t, x; ν) = Et,x

[∫ τ∧T

t
U (s, c(s)) ds+B(τ, Z(τ))I[0,T ](τ)

+ W (Xv
t,x(T ))I(T,+∞)(τ)

∣∣∣ τ > t,Ft

]
,

where Xν
t,x(s) ≥ 0 denotes the wealth process starting from x at time t ≤ s

under the choice of the control ν ∈ A(t, x). That is, Xν
t,x(s) is the solution

of the stochastic differential equation (5) with initial condition X(t) = x.
For every 0 ≤ t ≤ s, let G+(s, t) denote the conditional probability for the

wage-earner be alive at time s conditional upon being alive at time t ≤ s,
given by

G+(s, t) = P
(
{τ > s} | {τ > t}

)
(7)
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and G−(s, t) denote the conditional probability for the wage-earner time of
death to occur at time s conditional upon being alive at time t ≤ s, given
by

G−(s, t) = P
(
{τ ≤ s} | {τ > t}

)
.

Let g−(s, t) denote the density function associated with the conditional dis-
tribution function G−(s, t), given by

g−(s, t) =
d

dt
G−(s, t) . (8)

The following lemma enables the transformation of the optimal control
problem above to an equivalent one with a fixed planning horizon. See [35]
for its proof.

Lemma 2.6. Suppose that assumptions (2.1)–(2.5) hold. If the random
variable τ is independent of the filtration F, then

J(t, x; ν) = Et,x

[ ∫ T

t

(
G+(s, t) U(s, c(s)) + g(s, t)B(s, Z(s))

)
ds

+ G+(T, t) W (X(T ))
∣∣∣ Ft

]
,

where the conditional probabilities G+(s, t) and g−(s, t) are as given in (7)
and (8), respectively.

The transformation to a fixed planning horizon provided above can be
given the following interpretation: a wage-earner facing unpredictable death
acts as if he will live until time T , but with a subjective rate of time pref-
erences equal to his “force of mortality” for the consumption of his family
and his terminal wealth.

Note that the optimal control problem (6) can now be restated in dynamic
programming form as

V (t, x) = sup
ν∈A(t,x)

J(t, x; ν) .

Using the previous lemma, one can state a dynamic programming prin-
ciple, obtaining a recursive relationship for the value function V (t, x). See
[35] for the proof.

Lemma 2.7 (Dynamic programming principle). Suppose that assumptions
(2.1)–(2.5) hold. For 0 ≤ t < s < T , the maximum expected utility V (t, x)
satisfies the recursive relation

V (t, x) = sup
ν∈A(t,x)

E

[
exp

(
−
∫ s

t
λ(u) du

)
V (s,Xν

t,x(s))

+

∫ s

t

(
G+(u, t) U(u, c(u)) + g(u, t)B(u,Zν

t,x(u))

)
du
∣∣∣ Ft

]
.

The dynamic programming principle enables us to state a HJB equation, a
second-order partial differential equation whose solution, whenever it exists,
is the value function of the optimal control problem under consideration
here. The techniques used in the derivation of the HJB equation and the
proof of the next theorem follow closely those in [15, 35, 36].
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Theorem 2.8 (Hamilton-Jacobi-Bellman equation). Suppose that assump-
tions (2.1)–(2.5) hold and that the value function V is of class C1,2 ([0, T ]× R,R).
Then V satisfies the Hamilton-Jacobi-Bellman equationVt(t, x)− λ(t)V (t, x) + sup

(c,θ,p)∈RN+1×(R+
0 )K

H(t, x; c, θ, p) = 0

V (T, x) = W (x)
, (9)

where the Hamiltonian function H is given by

H(t, x; ν) =

(
i(t)− c(t)−

K∑
k=1

pk +

(
r(t) +

N∑
n=1

θn(µn(t)− r(t))

)
x

)
Vx(t, x)

+
x2

2

M∑
m=1

(
N∑

n=1

θnσnm(t)

)2

Vxx(t, x) + U(t, c) + λ(t)B

(
t, x+

K∑
k=1

pk
ηk(t)

)
.

Moreover, an admissible strategy ν∗ = (c∗(·), θ∗(·), p∗(·)) ∈ A(t, x) whose
corresponding wealth is X∗ is optimal if and only if for a.e. s ∈ [t, T ] and
P -a.s. we have

Vt(s,X
∗(s))− λ(s)V (s,X∗(s)) +H(s,X∗(s); ν∗) = 0 . (10)

3. The optimal strategies

The second part of Theorem 2.8 provides a strategy for the computation
of the optimal insurance selection and purchase, portfolio and consumption
strategies for the wage-earner with uncertain lifetime under consideration
herein.

For each t ∈ [0, T ], let Ux(t, ·) and Bx(t, ·) denote, respectively, the deriva-
tives of the utility functions U(t, ·) and B(t, ·) with respect to their second
arguments. Since both U(t, ·) and B(t, ·) are strictly concave with respect to
their second arguments, the corresponding derivatives are invertible. Hence,
we define I1 : [0, T ]×R+

0 → R+
0 and I2 : [0, T ]×R+

0 → R+
0 to be the (unique)

functions such that

I1(t, Ux(t, x)) = x and Ux(t, I1(t, x)) = x

and

I2(t, Bx(t, x)) = x and Bx(t, I2(t, x)) = x

for every t ∈ [0, T ] and x ∈ R+
0 .

The next result provides a characterization for the optimal strategies in
terms of the value function and its derivatives.

Theorem 3.1. Suppose that assumptions (2.1)–(2.5) hold and that the value
function V is of class C1,2 ([0, T ]× R,R). Then the Hamiltonian function
H given in the statement of Theorem 2.8 has a unique maximum ν∗ =
(c∗(·), θ∗(·), p∗(·)) ∈ A(t, x). Moreover, the optimal strategies are given by

c∗(t, x) = I1

(
t, Vx(t, x)

)
θ∗(t, x) = − Vx(t, x)

x Vxx(t, x)
ξα(t)
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and, for each k ∈ {1, 2, . . . ,K}, we have that

p∗k(t, x) =

{
max

{
0,
[
I2

(
t, ηk(t) (λ(t))

−1 Vx(t, x)
)
− x
]
ηk(t)

}
, if k = k∗(t)

0 , otherwise
,

where

k∗(t) = argmin
k∈{1,2,...,K}

{ηk(t)} (11)

and ξ denotes the non-singular square matrix given by (σσT )−1 and α(t) is
as given in (1).

Proof. Using the second part of Theorem 2.8, an optimal admissible strat-
egy ν∗ = (c∗, θ∗, p∗) ∈ A(t, x) with wealth process X∗ must satisfy (10).
Therefore, ν∗ must be such that H attains its maximum value. We start
by remarking that the condition determining the maximum for H decouples
into three independent conditions:

sup
(c,θ,p)∈RN+1×(R+

0 )K
H(t, x; ν) = sup

c∈R

{
U(t, c)− cVx(t, x)

}
+ r(t)xVx(t, x)

+ sup
p∈(R+

0 )K

{
λ(t)B

(
t, x+

K∑
k=1

pk
ηk(t)

)
− Vx(t, x)

K∑
k=1

pk

}
+ i(t)Vx(t, x) (12)

+ sup
θ∈RN

{
x2

2

M∑
m=1

(
N∑

n=1

θnσnm(t)

)2

Vxx(t, x) +

N∑
n=1

θn(µn(t)− r(t)) x Vx(t, x)

}
.

Therefore, it is enough to study the variation of H with respect to each one
of the variables c, θ and p independently. We deal with the unconstrained
optimization problems associated with c and θ first. Computing the first-
order conditions with respect to c and θ we obtain, respectively, the following
N + 1 conditions:

−Vx(t, x) + Ux(t, c
∗) = 0

xVx(t, x)α+ x2Vxx(t, x)σσ
T θ∗ = 0RN , (13)

where α denotes the risk premium given in (1) and 0RN denotes the origin
of RN . Resorting to the inverse functions introduced before the statement
of Theorem 3.1, we can solve equation (13) for the control variables and get

c∗(t, x) = I1 (t, Vx(t, x))

θ∗(t, x) = − Vx(t, x)

x Vxx(t, x)
ξα(t) .

To solve the constrained optimization problem associated with the vari-
able p ∈ (R+

0 )
K , we resort to the Kuhn-Tucker conditions. Namely, we look

for a solution (p1(t, x), . . . , pK(t, x), µ1(t, x), . . . , µK(t, x)) to the following
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set of equalities and inequalities:

λ(t)

ηk(t)
Bx

(
t, x+

K∑
k=1

pk
ηk(t)

)
− Vx(t, x) = −µk ,

pk ≥ 0 , (14)

µk ≥ 0 , k = 1, 2, . . . ,K

pkµk = 0 .

We start by noting that for k1 ̸= k2, if we have µk1(t, x) = µk2(t, x) for some
(t, x) ∈ [0, T ]× R, one must have that ηk1(t) = ηk2(t). Thus, relying on the
assumption that all insurance companies offer pairwise distinct contracts,
we obtain that for every k1, k2 ∈ {1, 2, . . . ,K} such that k1 ̸= k2 and every
x ∈ R, µk1(t, x) ̸= µk2(t, x) for Lebesgue a.e. t ∈ [0, T ]. In particular, we
obtain that for every x ∈ R and Lebesgue a.e. t ∈ [0, T ], there is at most
one k ∈ {1, 2, . . . ,K} such that µk(t, x) = 0. Therefore, for Lebesgue a.e.
t ∈ [0, T ], there is at most one k ∈ {1, 2, . . . ,K} such that pk(t, x) ̸= 0.

Using once again the first identity in (14), we get that

ηk1(t) (Vx(t, x)− µk1) = ηk2(t) (Vx(t, x)− µk2) .

As a consequence of the identity above, we conclude that if µk1(t, x) >
µk2(t, x) for (t, x) ∈ [0, T ] × R, then ηk1(t) > ηk2(t). Furthermore, if for
some t ∈ [0, T ] we have µk1(t, x) = 0, then ηk1(t) < ηk2(t) for every k2 ∈
{1, 2, . . . ,K} such that k1 ̸= k2.

From this point onwards, let k∗(t) be as given in (11). Then, either
pk(t, x) = 0 for every k ∈ {1, 2, . . . ,K} or else pk∗(t)(t, x) > 0 is a solution
to

λ(t)

ηk∗(t)(t)
Bx

(
t, x+

pk∗(t)

ηk∗(t)(t)

)
= Vx(t, x) ,

yielding

p∗k(t, x) =

{
max

{
0,
[
I2

(
t, ηk(t) Vx(t,x)

λ(t)

)
− x
]
ηk(t)

}
, if k = k∗ (t)

0 otherwise .

Computing the second derivative with respect to each variable (the Hes-
sian matrix in the case of variable θ), we obtain

Hcc(t, x; ν
∗) = Ucc(t, c

∗)

Hpk1pk2
(t, x; ν∗) =

λ(t)

ηk1(t)ηk2(t)
Bxx

(
t, x+

p∗k∗(t)

ηk∗(t)(t)

)
, k1, k2 = 1, . . . ,K

Hθθ(t, x; ν
∗) = x2Vxx(t, x)σσ

T .

Optimality of c∗ and p∗ follows from strict concavity of the functions U and
B with respect to their second variables, which makes the first-order condi-
tions and the Kuhn-Tucker conditions not only necessary, but also sufficient.
In what concerns the optimization with respect to θ, we need to see that
Hθθ(t, x; ν

∗) is negative definite. Recall that σσT is assumed to be non-
singular and, thus, positive definite. Moreover, note that Vxx(t, x) must be
negative: if Vxx(t, x) was positive, then H would not be bounded above, and
as a consequence of the HJB equation, either Vt(t, x) or V (t, x) would have
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to be infinity, contradicting the smoothness assumption on V . Therefore,
Hθθ is negative definite and H has a unique regular interior maximum. �

Remark As time changes, the insurance company picked by the wage-
earner may change, and this happens according to the relative values of
the functions η1, η2, . . . , ηK : the client always picks the insurance company
offering the lowest ηk, if any. However, for a set of times with zero Lebesgue
measure, one may have equality of at least a pair of premium-payout ratios,
leading to some indeterminacy on the choice of the index k∗(t) in these in-
stants of time. Nevertheless, such instants of time correspond to switching
times between two alternative insurance companies, and such indeterminacy
has no impact on the behavior of the optimal strategies of Theorem 3.1.

Remark A final comment is in order regarding the cases where the optimal
strategy is to avoid buying any life-insurance. We prove in Theorem 3.1
that the optimal strategy is to buy insurance from at most one insurance
company at every instant of time. In [12], where the case of a single insur-
ance company was considered, it was observed that for wage-earners with
sufficiently large amount of wealth and age sufficiently close to retirement,
the optimal strategy would be, if possible from a practical point of view,
to take a short position on its own life-insurance contract. Since we work
here under the more realistic assumption of non-negative life-insurance pur-
chase, then such special cases correspond to optimal life-insurance purchase
strategies under which the wage-earner buys no life-insurance at all.

4. The family of discounted CRRA utilities

In this section we describe the special case where the wage-earner has the
same discounted CRRA utility functions for the consumption of his family,
the size of his estate in the event of premature death and his terminal wealth.
Henceforth, we assume that the utility functions are given by

U(t, c) = e−ρt c
γ

γ
, W (X) = e−ρT X

γ

γ
and B(t, Z) = e−ρtZ

γ

γ
, (15)

where the risk aversion parameter γ is such that γ < 1, γ ̸= 0 and the
discount rate ρ is positive.

4.1. The optimal strategies. Using the optimality criteria provided in
Theorem 3.1, we obtain the following optimal strategies for discounted
CRRA utility functions.

Proposition 4.1. Suppose that assumptions (2.1)–(2.4) hold. Let ξ denote
the non-singular square matrix given by (σσT )−1. The optimal strategies in
the case of discounted CRRA utility functions are given by

c∗(t, x) =
1

e(t)
(x+ b(t)) ,

θ∗(t, x) =
1

1− γ

x+ b(t)

x
ξα(t),

p∗k(t, x) =

{
max

{
0, ηk(t)

(
(D(t)− 1)x+D(t)b(t)

)}
, if k = k∗ (t)

0 otherwise ,
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where

b(t) =

∫ T

t
i(s) exp

(
−
∫ s

t

(
r(v) + ηk∗(v)(v)

)
dv

)
ds

D(t) =
1

e(t)

(
λ(t)

ηk∗(t)

)1/(1−γ)

e(t) = exp

(
−
∫ T

t
H(v) dv

)
+

∫ T

t
exp

(
−
∫ s

t
H(v) dv

)
L(s) ds

H(t) =
λ(t) + ρ

1− γ
− γ

1− γ
(r(t) + ηk∗(t)(t))−

γ

(1− γ)2
Σ(t)

L(t) = 1 +

(
λ(t)

(ηk∗(t)(t))γ

)1/(1−γ)

Σ(t) = αT (t)ξα(t)− 1

2
∥σT ξα(t)∥2 .

Proof. Assume that the utility functions U , B and W are as given in (15).
Using the results of Theorem 3.1, we obtain that the optimal strategies
depending on the value function V are given by

c∗(t, x) =
(
eρtVx(t, x)

)−1/(1−γ)

θ∗(t) = − Vx(t, x)

xVxx(t, x)
ξα(t) (16)

p∗k(t, x) =

 max

{
0,

((
ηk(t)e

ρtVx(t,x)
λ(t)

)−1/(1−γ)
− x

)
ηk(t)

}
, if k = k∗ (t)

0 otherwise .

We are now going to find an explicit solution for the HJB equation (9).
We substitute c, θ and pk in the HJB equation by the optimal strategies in
(16) and combine similar terms to arrive at the following partial differential
equation

Vt(t, x)− λ(t)V (t, x) +
(
i(t) + (r(t) + ηk∗(t)(t))x

)
Vx(t, x)

−Σ(t)
(Vx(t, x))

2

Vxx(t, x)
+

1− γ

γ
e−ρt/(1−γ)L(t)(Vx(t, x))

−γ/(1−γ) = 0 , (17)

where Σ(t) and L(t) are as given in the statement of this proposition, and
the terminal condition is given by

V (T, x) = W (x) . (18)

We consider an ansatz of the form

V (t, x) =
a(t)

γ
(x+ b(t))γ , (19)

and substitute it in (17) so that a(t) and b(t) are determined by the differ-
ential equation

1

γ

da(t)

dt
+

a(t)

x+ b(t)

db(t)

dt
− λ(t)

γ
a(t) +

(
i(t) + (r(t) + ηk∗(t)(t))x

)
x+ b(t)

a(t)

+Σ(t)
a(t)

1− γ
+

1− γ

γ
e−ρt/(1−γ)L(t)(a(t))−γ/(1−γ) = 0 .
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Note now that the previous differential equation and the terminal condition
(18) decouples into two independent boundary value problems for a(t) and
b(t) which are given, respectively, by

1

γ

da(t)

dt
+

(
r(t) + ηk∗(t)(t)−

λ(t)

γ
+

Σ(t)

1− γ

)
a(t)

+
1− γ

γ
e−ρt/(1−γ)L(t)(a(t))−γ/(1−γ) = 0

(20)

a(T ) = e−ρT ,

and

db(t)

dt
−
(
r(t) + ηk∗(t)(t)

)
b(t) + i(t) = 0

(21)

b(T ) = 0 .

To find a solution to the boundary value problem (20), we write a(t) in the
form

a(t) = e−ρt(e(t))1−γ ,

obtaining a new boundary value problem for the function e(t) of the form

de(t)

dt
−H(t)e(t) + L(t) = 0

e(T ) = 1 , (22)

where L(t) and H(t) are as given in the statement of this Proposition. Since
equation (22) is a linear, non-autonomous, first order ordinary differential
equation, it clearly has an explicit solution of the form

e(t) = exp

(
−
∫ T

t
H(v) dv

)
+

∫ T

t
exp

(
−
∫ s

t
H(v) dv

)
L(s) ds .

Therefore, we obtain that the solution of (20) is given by

a(t) = e−ρt

(
exp

(
−
∫ T

t
H(v) dv

)
+

∫ T

t
exp

(
−
∫ s

t
H(v) dv

)
L(s) ds

)1−γ

.(23)

To find a solution for the boundary value problem (21), we just note that
this is again a linear, non-autonomous, first order differential equation and
its solution is given by

b(t) =

∫ T

t
i(s) exp

(
−
∫ s

t

(
r(v) + ηk∗(v)(v)

)
dv

)
ds . (24)
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Combining (16) with (19), (23) and (24), we obtain that the optimal strate-
gies in the case of CRRA utilities are then given by

c∗(t, x) =
1

e(t)
(x+ b(t)) ,

θ∗(t, x) =
1

1− γ

x+ b(t)

x
ξα(t),

p∗k(t, x) =

{
max

{
0, ηk(t)

(
(D(t)− 1)x+D(t)b(t)

)}
, if k = k∗ (t)

0 otherwise ,

where e(t) and D(t) are as given in the statement of this Proposition. �
Remark It can be seen from Proposition 4.1 that for a wage-earner with a
sufficiently large wealth who is close to reaching retirement age, the optimal
life-insurance selection and purchase is to buy no life-insurance at all. To
see that this is indeed the case, note that as t → T , we have that e(t) → 1
and b(t) → 0. Then, provided that λ(t) < ηk∗(t)(t), we obtain that D(t) < 1.
Hence, for sufficiently large values of x, the term (D(t)− 1)x will dominate
the term D(t)b(t) and, thus, the quantity ηk∗(t)(t) ((D(t)− 1)x+D(t)b(t))
becomes negative.

5. Conclusions

We have studied the problem faced by a wage-earner with an uncertain
lifetime in what concerns finding optimal insurance purchase, consumption
and investment strategies among all of those available from an insurance
market with multiple competing companies and a financial market consist-
ing of one risk-free security and a fixed number of risky securities. We have
used a form of the dynamic programming principle to reduce the stochas-
tic optimal control problem under consideration here to one with a fixed
planning horizon, stating also the corresponding HJB equation. We have
determined the optimal strategies for the wage-earner in the special case of
discounted CRRA utility functions. We prove that at each instant of time,
such wage-earner either buys no life-insurance at all or buys life-insurance
from the insurance company offering the smallest premium-payout ratio,
abstaining from buying insurance from any other company.
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