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Abstract. We propose a minimization problem as a model for the in-
teraction between two agents trading a contingent claim in a incomplete
discrete-time multiperiod financial market. The agents personal valu-
ations for the contingent claim are assumed to depend on probability
measures representing their beliefs concerning the future states of the
world. The agents’ goal is to achieve a common price for the contingent
claim to be traded, while deviating as litle as possible from their initial
beliefs. Under appropriate conditions, we prove that the minimization
problem under consideration admits at least one solution. Furthermore,
we provide a detailed description for the minimizers – orbits of a fi-
nite horizon discrete time dynamical system on the space of probability
measures representing the agents beliefs.
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1. Introduction

The pricing of contingent claims in complete markets is by now well un-
derstood in terms of the theory of general equilibrium. A contingent claim
F which is traded in a complete market can be assigned a unique price in
terms of the (unique) risk neutral measure (pricing kernel) which is defined
by the market. This price is independent of the individual preferences to-
wards risk of the agents involved in the transaction and reflects in some sense
the information regarding the states of the world as filtered through the fi-
nancial market. Unfortunately, this elegant theory does not cover many
cases of practical financial interest, in which markets fail to be complete.
The failure of the assumption of completeness of the market may occur in
a variety of ways: transaction costs, market imperfections of various kinds,
constraints in the allowed portfolios used to hedge the contingent claims, or
absense of a well organized market for a contingent claim being just a few
reasons.

When markets are incomplete, absense of arbitrage is no longer enough
to provide a pricing rule for a contingent claim. The reason is that when
markets are incomplete an infinity of pricing kernels (as opposed to a unique
pricing kernel in the complete market case) is compatible with the assump-
tion of absense of arbitrage, therefore, this assumption may at best provide
an interval of prices at which the asset may be traded. The lower price in
this interval can be thought of as a bid price whereas the higher price in
this interval can be thought of as an ask price. However, any price within
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this interval is acceptable, and now the personal taste of agents towards
risk plays an important role in the choice of price (see [2, 7, 9]). To this
end utility pricing is employed, and the price of the asset is assessed as a
reservation price, determined as the price that makes the agent indifferent
between accepting a position in the asset and not accepting a position in it.
In this valuation the underlying market plays an important role, since it is
used in order to hedge the risk involved in taking up a position in the asset.
Since the buyer and the seller of the asset are in principle having a different
utility function, face different constraints with regards to the portfolios used
in hedging their positions, and take opposite positions with respect to the
contingent claim F , the reservation prices for the buyer and the seller of the
asset are unlikely to coincide.

However, the transaction of the asset takes place at a commonly agreed
price between the buyer and the seller. It is the aim of this paper to propose
a bargaining approach to this problem that may offer a scenario under which
a unique price for the asset can be reached. This scenario is based on two
intertemporal optimization problems: (a) a portfolio optimization problem
related to hedging of the risk involved in the different positions (open and
long) of the contingent claim and (b) a belief updating problem for the two
agents (concerning the probability of the future states of the world) which
is expressed in terms of an optimization problem in a space of probability
measures. During the course of the paper, we first state the relevant opti-
mization problems and argue that it is a plausible scheme for determining
a unique price of the asset, using arguments from economic theory and the
theory of bargaining and then consider the well posedness and qualitative
behaviour of the relevant optimization problems, using techniques from dy-
namic programming and the calculus of variations.

This paper is organized as follows. In Section 2 we motivate and describe
the intuition behind our model, leaving the mathematical formulation of the
model as an intertemporal minimization problem to Section 3. In Section
4 we study the existence of solutions to this minimization problem under
general assumptions on the bidding functions used by the agents in the
bargaining scheme, such as continuity or convexity, and provide qualitative
results on the solution. The methods used are techniques from stochastic
dynamic programming and convex optimization. In section 5 we provide ex-
amples of specific bidding rules compatible with economic theory that realize
the assumptions used in Section 4 and comment upon their effects on the
bargaining scheme. Finally, in Section 6 we provide our main conclusions.

2. Motivation

Consider two agents A and B, hereafter referred to as the seller and the
buyer, respectively, that wish to trade an indivisible asset which is a con-
tingent claim. The asset delivers an uncertain payoff F , at expiry T (a
deterministic time). There is an underlying financial market, to which both
of the agents have access, consisting of N + 1 securities, one of which is as-
sumed to be a riskless asset. The market is subject to uncertainty, modelled
in terms of a filtered probability space (Ω,F , P ), where P is assumed to be
the statistical measure for the market. The state of the market is modelled
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by a vector valued random variable S(·) = (S0(·), S1(·), · · · , SN (·)), where
S0 corresponds to the price of the riskless asset over the time period [0, T ].
To simplify the model, we assume time to be discrete. The contingent claim,
is assumed to depend on the state of the market, in the sense that its payoff
F can be considered as a random variable on the probability space (Ω,F , P ),
that may be partially correlated to the random variables S(·) or more sim-
ply S(T ). Note that this formulation allows us to consider contingent claims
possibly different than financial assets, like for example real assets (e.g. real
options) whose values are often only partially correlated with the underlying
financial market. Furthermore, we consider the claim to be exchanged by
the two agents only and not as being exchanged in a well organized market;
it is an over the counter transaction. These two features naturally bring us
into an incomplete market situation which is not covered by the standard
theory of asset pricing.

The agents wish to reach a decision upon a common price for the exchange
of the asset by time T0 (T0 < T ). We assume here that T0 is a deterministic
time, which is pre-decided by both agents. In principle the valuation of the
asset by the two agents will not coincide, so in order for the two agents
to reach a commonly acceptable price, they have to get involved into a
bargaining procedure. We assume that the two agents enter a sequential
bargaining scheme that takes place at times t = 1, · · · , T0 − 1, during which
they simultaneously state their bid and ask prices for the asset in question.
These prices are updated on each period so that by time T0 a common price
is reached.

We assume that the price quotes (bid and ask prices) for the asset at each
time t are determined as reservation prices by the two agents independently,
decided upon by using their own expected utility functions, representing
their preferences and attitudes towards risk. Importantly, we allow each
agent to have her own subjective views towards the future states of the
economy, and consequently towards the value of the payoff of the asset, F .
This subjective view is modelled in terms of probability measures QA, QB

respectively, which are used for the determination of the expected utility
function. Then, at each bargaining time t, each agent can use the market
to create a financial portfolio which is chosen optimally (i.e. as the one
maximizing the expected utility of wealth at T ) in two distinct situations,
(a) when involved in a position in the asset and (b) when choosing not to get
involved in the asset. The proposed price is chosen as the one leaving each
agent indifferent between these two positions. Clearly, this price depends on
the subjective probability of the agents as well as the state of the market.
For the time being, we state this simply as pβ(t) = Pβ(t, Qβ(t), S(t)) where
β = A,B and S denotes the state of the market (observable by both agents).
We explicitly include the time dependence t to emphasize that the prices
stated at time t depend on the beliefs that the two agents have at this time
concerning the future states of the economy, Qβ(t), as well as the state of the
market, S(t), which serves as a common signal concerning the state of the
economy accessible to both agents. In principle pB(t) ≤ pA(t), with strict
inequality meaning that the two agents fail to reach an agreement. Let us
assume for the time being, that at time t, strict inequality holds.
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The two agents are not very rigid about their beliefs concerning the future
state of the economy and at the same time wish to reach an agreement. They
are therefore, willing to change their subjective probabilities from Qβ(t) to
Qβ(t + 1), which in turn will lead to a new set of quoted prices pβ(t + 1).
The new prices may be such that the two parties may reach an agreement
or not, and the process is repeated until an agreement is reached at time T0.

Some comments are in order concerning the mechanism of this belief
updating process. Let us take agent A: At time t she has a subjective
belief QA(t) concerning the future states of the economy, and using that
and her knowledge of the market by time t−1 she quotes a reservation price
for the asset pA(t). Similarly for agent B. Now for the next offer, at time
t+1, agent A has access to the information provided by the market by time
t, but also knows the price pB(t) quoted by agent B at this time. By that
quote she may get an idea of what agent’s B subjective beliefs are, so she
may get an estimate for QB(t). Not being rigid about her beliefs, she is
willing to change to a new measure QA(t+1) so as to get closer to her idea
of what QB(t) was for two reasons: (a) because she is influenced by B’s
beliefs concerning the economy (as infered by the price quote she has made)
and (b) because this is a way to get closer to an agreement. Of course this
is made in such a way as to deviate as little as possible from her original
belief QA(t). Agent B is considered to act in a similar manner, and in this
way price quotes are updated until agreement is reached. In this paper, the
influence that the price quote of B has on the update of the beliefs for A
is modelled in the following simple manner: Suppose that pA(t) and pB(t)
are the price quotes of the two agents at time t. These obviously depend on
QA(t) and QB(t). One way of reaching an agreement would be for agent A
to settle for a price in the interval [pB(t), pA(t)], say αpB(t) + (1− α)pA(t)
for some α ∈ [0, 1]. This price would correspond to a new reservation price
for agent A if the subjective probability Q∗

A was adopted instead of QA(t).
In some sense agent A is influenced by the price quote of B and decides to
move her subjective beliefs towards Q∗

A but in such a way that she deviates
as little as possible from her original belief QA(t). Therefore, expressed in a
loose fashion, QA(t+ 1) is obtained by minimizing an appropriate distance
between QA(t) and Q∗

A. Agent B will act in a similar fashion. In other
words, the deviation from the initial beliefs is done with some hesitation or
reluctance that causes some disutility. A further source of disutility that
has to be taken into account stems from the distance of the stated prices at
each bargaining round; the further away the prices are, the more deviation
from the initial beliefs has to take place (i.e., more compromise needs to be
achieved and this causes additional disutility). Of course this disutility is
perceived in a different way from each counterparty.

As a simple illustrating example, consider a transaction that involves
the selling of a plant producing a particular commodity. The contract for
the transaction between the buyer and the seller will have to take place
at T0. The two parties enter a sequential bargaining procedure at times
t = 1, · · · , T0 − 1, by the end of which they reach an agreement for the
price of the transaction. The price of the plant will depend upon the future
value of its production, which in turn is subject to uncertainty and depends
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heavily on the price of the commodity that this plant produces in the relevant
commodity market. The underlying financial market plays a dual role in
determining the price of the plant. The first one is that the price of the
commodity that the plant produces (hence its value) is correlated with some
of the financial assets in the market (for example, if the product is related
to copper, it is certainly correlated with futures on copper, as well as with
the stocks of companies whose production relies on this commodity). The
second role is that both parties will rely on the financial market, to either
hedge away the risk involved in the investment or to gather the necessary
funds to embark upon the transaction.

In the remaining of the paper, we formulate the above conceptual model of
the bargaining procedure as a concrete optimization problem and consider its
well posedness and its qualitative properties, using techniques from dynamic
programming and convex optimization.

3. Mathematical formulation of the model

3.1. The financial market. Let (Ω,F, P ) be a probability space, with a fi-
nite sample space Ω = {ω1, . . . , ωK} endowed with a σ-algebra F and a prob-
ability measure P on F, assigning positive probability P (ω) to every ω ∈ Ω.
We will assume that Ω contains all the possible states of the world of a mul-
tiperiod financial market model with T +1 trading dates, T = {0, 1, . . . , T},
one risk-free asset S0 and an arbitrary but fixed number of risky-assets
S1, . . . , SN . The prices of all these assets are non-negative stochastic pro-
cesses on the probability space (Ω,F, P ). The process S0 = {S0(t) : t ∈ T}
is assumed to be risk-free, i.e. for every ω ∈ Ω the sample path S0(t, ω)
is non-decreasing with respect to t ∈ T. We denote by F = {Ft : t ∈ T}
the filtration generated by the stochastic processes S0, S1, . . . , SN . The fil-
tration F may be seen as encoding the flow of information made available
to the observers of the financial market through observation of the security
prices evolution with time.

We assume that the financial market under consideration is viable, i.e.
there are no arbitrage opportunities. It is a well known fact [8] that this is
equivalent to the existence of at least one risk neutral probability measure
(or martingale measure), i.e. a probability measure Q in (Ω,F) such that Q
is equivalent to P and for every n ∈ {1, . . . , N} and every t, s ∈ T such that
t+ s ≤ T we have that

EQ[S
∗
n(t+ s)|Ft] = S∗

n(t),

where S∗
n(t) denotes the discounted price process

S∗
n(t) =

Sn(t)

S0(t)
, n = 1, . . . , N.

The discounted price processes are non-negative stochastic processes repre-
senting the value of the risky assets in units determined by the value of the
risk-free asset at a given instant of time. Note that the stochastic processes
S∗
n(t) are martingales with respect to the measure Q.
A trading strategy is a set of rules that specifies an investor’s position

in each security at each point in time, and in each state of the world, i.e.
a vector π = (π0, π1, . . . , πN ) of stochastic processes πn = {πn(t) : t =
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1, 2, . . . , T}, n = 0, 1, . . . , N , where each component πn(t) represents the
number of units of each asset carried over from period t− 1 to period t. We
assume that each component of a trading strategy is predictable, i.e. πn(t)
is Ft−1-measurable for every n = 0, 1, . . . , N . The value process V = {Vt :
t = 0, 1, . . . , T} associated with the trading strategy π = (π0, π1, . . . , πN ) is

the stochastic process defined by V0(π) =
∑N

n=0 πn(1)Sn(0) when t = 0, and

Vt(π) =
∑N

n=0 πn(t)Sn(t) for 1 ≤ t ≤ T .
A trading strategy π = (π0, π1, . . . , πN ) is said to be self-financing if the

equality Vt(π) =
∑N

n=0 πn(t + 1)Sn(t) holds for every t = 1, . . . , T − 1, i.e.
no money is added or withdrawn from the portfolio between times t = 0 and
t = T .

Throughout this paper we will denote the set of FT -measurable random
variables on (Ω,F, P ) by BT (Ω). A European-type contingent claim is a
random variable F ∈ BT (Ω). A multiperiod financial market is said to be
complete if every contingent claim is marketable, i.e. there exists a self-
financing trading strategy whose value process at time t = T is equal to the
payoff of the contingent claim. A classical result in mathematical finance
ensures that a market is complete if and only if there exists a unique risk
neutral probability measure Q (see [8]). Throughout this paper we will
assume that the financial market under consideration is incomplete and in
particular that F can not be reproduced. Thus, there exists an infinite family
of risk neutral probability measures leading to an infinity of possible prices
for the asset. Moreover, note that each risk neutral probability measure
defines a (possibly) distinct price for a given contingent claim in BT (Ω).

3.2. A variational pricing problem. The problem we adress in this paper
is the one where a pair of agents, denoted by A and B from now on, need to
agree on a price p for the trade at time T0 ∈ {1, . . . , T − 1} of a contingent
claim with payoff F ∈ BT (Ω) at time T . Let A be the seller and B be
the buyer of such a contingent claim. We assume that the two agents have
beliefs about the likelihood of the future states of the world, which are given
by probability measures QA, QB ∈ ∆K , where ∆K is the unit simplex in
R
K . We allow QA and QB to change with time, representing the fact that

each agent is observing the evolution of the asset prices S0, S1, ..., SN , and
infering information from it, and furthermore being influenced by each other.

We assume that both agents have preferences described by utility func-
tions Uβ : T × R → R, β ∈ {A,B}. For each fixed t ∈ T, let Uβ(t, ·)
satisfy the usual Inada conditions [3], i.e. the utility functions have value
zero when x = 0, are strictly increasing, strictly concave and continuously
differentiable, and their first derivatives satisfy the following asymptotic
conditions

lim
x→−∞

U
′

β(t, x) = +∞, lim
x→+∞

U
′

β(t, x) = 0, β = A,B.

Moreover, for each fixed x ∈ R, let U(·, x) be a strictly decreasing function
of t ∈ T. The strict monotonicity with respect to time is modelling the
effect of discounting [4]. A particular example is the standard exponential
discounting factor whereupon U(t, x) = ρtU(x), ρ < 1.
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Assume that agents A and B have initial wealths xA and xB. Let Vβ,

β ∈ {A,B}, be compact convex subsets of RN+1. We assume that the agents
are allowed to allocate their wealth in the financial market by choosing
trading strategies {πβ(t)}t∈{1,...,T} ∈ (Vβ)

T , β ∈ {A,B}. The sets Vβ may be
interpreted as constraints on the portfolio strategies of the agents. For each

β ∈ {A,B}, we will denote byX
β,πβ

t0,xβ
(t, ω) the stochastic process representing

agent’s β wealth at time t ∈ {1, . . . , T} and state of the world ω ∈ Ω, when
choosing a trading strategy {πβ(t)}t∈{t0+1,...,t} starting with wealth xβ at
time t0. It is easy to chek that

Xβ,π
0,xβ

(t) = xβ + lβpI{t≥T0} − lβFI{t=T} +
t

∑

u=1

N
∑

j=0

πj(u)∆Sj(u), (3.1)

where lA = 1, lB = −1 and IA(x) denotes the indicator function of the set
A.

Each agent’s goal is to optimize her expected utility of wealth at the final
period t = T while trading at t = T0 the contingent claim with payoff F at
t = T . At each period of time t ∈ {0, . . . , T − 1}, agents A and B allocate
their wealth to the assets in the financial market by choosing trading strate-
gies π∗A,t = {πA(u)}u∈{t+1,...,T} ∈ (Vβ)

T−t and π∗B,t = {πB(u)}u∈{t+1,...,T} ∈

(Vβ)
T−t in such a way that maximizes their expected utilities, i.e.

π∗β,t = argmax
πβ,t∈(Vβ)T−t

EQβ

[

Uβ

(

T,X
β,πβ

0,xβ
(T, ω)

)∣

∣

∣
Ft

]

. (3.2)

Note that π∗β,t depends on the agent beliefs Qβ and initial wealth xβ, as well
as the contingent claim price p and payoff F . This utility optimization prob-
lem will play an important role in determining bidding prices (see section
5).

Let ∆K denote the K-dimensional simplex in R
K and for each u ∈

{0, . . . , T − 1} let T+
u denote the set T+

u = {u, . . . , T} and T
−
u denote the set

T
−
u = {0, . . . , u}.
For each β ∈ {A,B}, xβ ∈ R and t ∈ T

−
T0
, let pβ,t,xβ

: ∆K × BT (Ω) → R

be agent β price function at time t for the contingent claim F ∈ BT (Ω)
under the beliefs Qβ ∈ ∆k. Whenever F ∈ BT (Ω) is assumed to be fixed,
we write pβ,t,xβ

(Qβ) for simplicity of notation.

For each β ∈ {A,B}, let ψβ : T×∆K ×∆K → R be such that for every

t ∈ T
−
T0−1, ψβ(t, ·, ·) is a continuous function attaining its minimum value

on the diagonal set

D = {(x, y) ∈ ∆K ×∆K : x = y}. (3.3)

Moreover, assume that the functions φ : R → R and Γβ : R → R, β ∈
{A,B}, are continuous functions with a unique mimimum at 0.

At each period of time t ∈ T
−
T0−1, the two agents observe the market and

are allowed to update their beliefs about the future states of the world. The
updated beliefs are choosen in a way that jointly minimizes the deviation
form the agents’ initial beliefs and, eventually, the difference between the
agents’ valuation for the contigent claim F . More precisely, let x(u) =
(QA(u), QB(u)) ∈ ∆K ×∆K , u ∈ T

−
T0
, be the beliefs of the agents at time u
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and let L : T−
T0−1 × (∆K ×∆K)2 → R and H : (∆K ×∆K)2 → R be given

by

L(u, x(u), x(u+ 1)) = αψA (u,QA(u), QA(u+ 1))

+(1− α)ψB (u,QB(u), QB(u+ 1))

H(x(u), x(u+ 1)) = φ(D1(x(u+ 1))) (3.4)

+ΓA(D2(x(u), x(u+ 1))) + ΓB(D3(x(u), x(u+ 1)))

where

D1(x(u)) = pB,u,xB
(QB(u))− pA,u,xA

(QA(u))

D2(x(u), x(u+ 1)) = αpA,u,xA
(QA(u))

+(1− α)pB,u,xB
(QB(u))− pA,u+1,xA

(QA(u+ 1))

D3(x(u), x(u+ 1)) = pB,u+1,xB
(QB(u+ 1))

−αpA,u,xA
(QA(u))− (1− α)pB,u,xB

(QB(u)).

The agents choose beliefs {QA(t)}t∈T−

T0

, {QB(t)}t∈T−

T0

that minimize the

functional

J

(

{x(u)}u∈T−

T0

)

=

T0−1
∑

u=0

L(u, x(u), x(u+ 1)) +H(x(u), x(u+ 1)) (3.5)

subject to initial beliefs QA(0), QB(0) ∈ ∆K and under the constraint that
the transaction takes place at T0, i.e.

pA,T0,xA
(QA(T0)) ≤ pB,T0,xB

(QB(T0)) .

Function L models the reluctance (i.e., disutility) of the agents to deviate
from their initial beliefs, whereas function H models the influence that the
stated prices have on the beliefs update; agent B tries to infer the beliefs of
agent A from the prices that have been stated in the previous period, and
hence her beliefs are influenced by that. In our model this is captured by
the function H by making, e.g. agent A trying to approach a new belief that
would correspond to her stating a new price within the interval of bid and ask
prices at the previous period. The effect of this influence is quantified by the
parameter α ∈ (0, 1), which can be “interpreted” as a measure of the relative
bargaining power of the two agents. The functions ψβ , β ∈ {A,B}, model
the disutility the agents experience when updating their beliefs about the
future states of the world, the function φ measures the disutility experienced
by the agents when a common price for the contingent claim is not reached,
and finally, the functions Γβ , β ∈ {A,B}, provides a pricewise disutility for
the beliefs update.

Note that the price functions pβ,t,xβ
(Qβ , F ) play a key role in the mini-

mization problem described above. We will discuss two relevant examples.
In Section 5.2 and (3.5) we discuss two relevant examples of bidding rules,
leading to price functions producing with distinct properties.
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4. Solvability and qualitative properties for the minimization

problem (3.5)

In this section we will study the existence of solution to the minimization
problem (3.5) in the case where the agents’ bidding price functions are con-
tinuous. Section 4.1 contains an existence result and an description of the
minimizers main properties. In section 5.2 we consider the special case of
indifference price functions.

4.1. Existence of solution. The main result in this section guarantees the
existence of solutions to the minimization problem (3.5). We will use the
following set of assumptions:

(A1) for each β ∈ {A,B}, the functions ψβ : T×∆K ×∆K → R are such

that for every t ∈ T
−
T0−1, ψβ(t, ·, ·) is a continuous function attaining

its minimum value on the diagonal set (3.3).
(A2) the functions φ : R → R and Γβ : R → R, β ∈ {A,B} are continuous

functions with a unique minimum at 0.
(A3) for every u ∈ T

−
T0

and every xA, xB ∈ R the price functions pA,u,xA
(QA)

and pB,u,xB
(QB) are continuous with respect to QA ∈ ∆K and

QB ∈ ∆K , respectively.
(A4) the initial conditions Q0

A, Q
0
B ∈ ∆K are such that

pA,0,xA
(Q0

A, F ) ≥ pB,0,xB
(Q0

B, F )

for fixed levels of initial wealth xA, xB ∈ R.

Theorem 1. Let α ∈ [0, 1] be fixed and assume that (A1)-(A4) hold. Let L
and H be as given in (3.4). Then the minimization problem

min
{x(u)}

T0
u=0

∈(∆K×∆K)T0+1

T0−1
∑

u=0

L(u, x(u), x(u+ 1)) +H(x(u), x(u+ 1)) (4.1)

subject to the constraints

pA,T0,xA
(QA(T0)) ≤ pB,T0,xB

(QB(T0)), QA(0) = Q0
A and QB(0) = Q0

B

has at least one solution.

Furthermore, for any such solution Q∗ = {Q∗
A(t), Q

∗
B(t)}

T0

t=0 the following

statements hold:

a) for every t ∈ T
−
T0
, the inequality holds

pA,t,xA
(Q∗

A(t), F ) ≥ pB,t,xB
(Q∗

B(t), F );

b) if there exists t ∈ T
−
T0

such that pA,t,xA
(Q∗

A(t), F ) = pB,t,xB
(Q∗

B(t), F ),
then for every u such that u > t we have that

pA,u,xA
(Q∗

A(u), F ) = pB,u,xB
(Q∗

B(u), F );

c) at t = T0, we have that

pA,T0,xA
(Q∗

A(T0), F ) = pB,T0,xB
(Q∗

B(T0), F );

d) {pA(Q
∗
A(u))}u∈T−

T0

is a non-increasing sequence and {pB(Q
∗
B(u))}u∈T−

T0

is a non-decreasing sequence.
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e) the minimizers Q∗ depend continuously on the relative bargaining

power α ∈ (0, 1), as well as on the initial beliefs (Q0
A, Q

0
B) ∈ ∆K ×

∆K and the initial wealth levels xA, xB ∈ R.

Proof. Throughout this proof, we will use the notation

x(t) = (QA(t), QB(t)) ∈ ∆K ×∆K

and will denote pA,u,xA
by pA and pB,u,xB

by pB, whenever no confusion
arises.

Let Πi : (∆K × ∆K)T0+1 → ∆K × ∆K denote the projection onto the
i-th component of (∆K × ∆K)T0+1, i.e. Πi(z1, . . . , zT0+1) = zi for every
(z1, . . . , zT0+1) ∈ (∆K × ∆K)T0+1. Let S be the subset of (∆K × ∆K)T0+1

given by

S =
{

z ∈ (∆K ×∆K)T0+1 : Π1(z) = (Q0
A, Q

0
B), (pB − pA) ◦ΠT0+1(z) ≥ 0

}

.
(4.2)

We will start by proving the existence of solutions to the optimization prob-
lem (4.1). Note that S ⊆ (∆K×∆K)T0+1 is a closed subset of a compact set.
Thus, S is also a compact set. Moreover, note that the functional J intro-
duced in (3.5) is continuous by assumptions (A1)-(A2). The result follows
by Weierstrass Theorem.

We will now prove item a). Let Q∗ = {Q∗(u)}T0

u=0 be a solution of (4.1).
By contradiction, assume that there exists t ∈ {1, . . . , T0 − 1} such that

pA(Q
∗
A(t− 1)) ≥ pB(Q

∗
B(t− 1)) and pA(Q

∗
A(t)) < pB(Q

∗
B(t)).

Let xλ(t) = λQ∗(t − 1) + (1 − λ)Q∗(t), λ ∈ [0, 1], be a parametrization of
the line segment connecting Q∗(t − 1) to Q∗(t) on (∆K ×∆K). Denote by
Xλ the sequence given by

Xλ =

{

Xλ(u) = Q∗(u), if u 6= t

Xλ(u) = xλ(u), if u = t

and consider the map G : [0, 1] → R given by

G(λ) = J(Xλ) ,

where J is the functional in (3.5). The proof follows by noting that there ex-
ists 0 < ǫ < 1 such that for λ ∈ [0, ǫ] the map G is decreasing, contradicting
minimality of Q∗.

The proof of item b) is analogous. By contradiction, assume that Q∗ is
such that there exists t ∈ {1, . . . , T0 − 1} such that

pA(Q
∗
A(t− 1)) = pB(Q

∗
B(t− 1)) and pA(Q

∗
A(t)) > pB(Q

∗
B(t)).

Let xλ(t) ∈ ∆K × ∆K and Xλ ∈ (∆K × ∆K)T0+1 be as defined in the
proof of item a). Again, it is possible to check that the map G : [0, 1] → R

given by G(λ) = J(Xλ) is decreasing in a neighbourhood of 0, contradicting
minimality of Q∗.

Item c) follows from item a) and the constraint pA(Q
∗
A(T0)) ≤ pB(Q

∗
B(T0)).

In what concerns the proof of item d), we consider only the case of the
price function pA, the proof for the price function pB being similar. By
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contradiction, assume that Q∗ is such that there exists t ∈ {1, . . . , T0} such
that

pA(Q
∗
A(t− 1)) < pA(Q

∗
A(t)).

Let xλ(t) ∈ ∆K × ∆K and Xλ ∈ (∆K × ∆K)T0+1 be as defined in the
proof of item a). Using item a), it is again possibly to check that the
map G : [0, 1] → R given by G(λ) = J(Xλ) is decreasing, contradicting
minimality of Q∗.

Finally, we will prove item e). The continuity of the solution Q∗ of the
optimization problem (4.1) with respect to (Q0

A, Q
0
B, xA, xB, α) ∈ ∆K ×

∆K ×R
2 × [0, 1] is a consequence of Berge’s maximum Theorem [1, Ch. VI,

Sec. 3], which guarantees continuity of the minimal functional

J(Q0
A, Q

0
B, xA, xB, α,Q

∗)

with respect Q0
A, Q

0
B ∈ ∆K , α ∈ [0, 1], and xA, xB ∈ R, and upper semicon-

tinuity of the correspondence given by

(Q0
A, Q

0
B, xA, xB, α) → Q∗(Q0

A, Q
0
B, xA, xB, α),

which completes the proof. �

4.2. Existence and uniqueness of solution. In this section we prove
that, under appropriate convexity assumptions, the minimization problem
associated with functional (3.5) admits a unique solution. In section 5.3, we
show that the set of assumptions used here are reasonable by providing an
example of an alternative bidding rule leading to price functions with the
required convexity properties.

Consider the following set of assumptions:

(B1) for each β ∈ {A,B}, the functions ψβ : T×∆K ×∆K → R are such

that for every t ∈ T
−
T0−1, ψβ(t, ·, ·) are a strictly convex functions

attaining its minimum value on the diagonal set (3.3).
(B2) the functions φ : R → R and Γβ : R → R, β ∈ {A,B} are convex

functions with a unique minimum at 0.
(B3) for each β ∈ {A,B}, the bidding price functions pβ,t,xβ

are strictly
convex.

Proposition 1. Let α ∈ (0, 1) be fixed and assume that (B1)-(B3) and (A4)
hold. Then the minimization problem of Theorem 1 has a unique solution.

Furthermore, items a), b), c), d) and e) of Theorem 1 apply.

Proof. Recall the notation introduced in the proof of Theorem 1. Note
that assumptions (B3) and (A4) guarantee that the set S defined in (4.2) is
strictly convex and that assumptions (B1) and (B2) imply that the funtional
J is strictly convex. The result then follows from standard results in convex
optimization. �

The optimal solution of Proposition 1 will be the trajectory of a dynamical
system defined by the Euler-Lagrange equation associated with the first
order conditions given by Kuhn-Tucker Theorem applied to the minimization
problem of Theorem 1.
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4.3. Qualitative properties. The minimizers of (3.5) can be seen as the
orbits of a finite-time dynamical system with a common initial condition
(QA(0), QB(0)) = (Q0

A, Q
0
B) and a terminal condition on the set

{(QA, QB) ∈ ∆K ×∆K : pA,T0,xA
(QA) = pB,T0,xB

(QB)}.

Note that due to the non-uniqueness of solutions, each solution starting
from (Q0

A, Q
0
B) ∈ ∆K × ∆K may be seen as a local minimizer of (3.5). A

consequence of item b) in the previous theorem is that the set

C = {(QA, QB) ∈ ∆K ×∆K : pA,u,xA
(QA(u)) = pB,u,xB

(QB(u))}

is invariant under the finite-time dynamics.
The next result provides an additional characterization for the minimizers

of (3.5).

Proposition 2. Assume that the assumptions of Theorem 1 hold and let

Q∗ = {(Q∗
A(t), Q

∗
B(t))}

T0

t=0 be a minimizer of (3.5). If the functions φ,ΓA

and ΓB are constant, then for every t < T0 we have that

Q∗
A(t) = Q0

A and Q∗
B(t) = Q0

B.

Proof. Let t < T0 be such that

Q∗
A(t) 6= Q0

A or Q∗
B(t) 6= Q0

B.

Consider the finite sequence

Xλ(u) =

{

Xλ(u) = Q∗(u), if u 6= t

Xλ(u) = (1− λ)Q∗(u) + λQ0
A, if u = t

and define the map G : [0, 1] → R given by G(λ) = J(Xλ). Then G is
decreasing with λ contradicting minimality of Q∗. �

We will assume that the conditions of Theorem 1 are satisfied for the
remaining of this section. Fix xA, xB ∈ R, let ∆+ denote the set

∆+ =
{

(Q0
A, Q

0
B) ∈ ∆K ×∆K : pA,0,xA

(Q0
A) ≥ pB,0,xB

(Q0
B)

}

,

and let E denote the set

E = ∆+ × [0, 1].

We define the common price correspondence p∗ : E → R by

p∗(Q0
A, Q

0
B, α) =

{

pA,T0,xA
(Q∗

A(T0)) : {Q
∗(t)}t∈T−

T0

is a solution of (3.5)

}

=

{

pB,T0,xB
(Q∗

B(T0)) : {Q
∗(t)}t∈T−

T0

is a solution of (3.5)

}

.

Note that p∗ is a single-valued map whenever the price functions enjoy strict
convexity properties (see Proposition 1). Since the common price correspon-
dence is the evaluation of the bidding price functions at time T0, when the
bargaining procedure ends, it corresponds to the actual price that the asset
is traded for.

Proposition 3. The common price correspondence p∗ is continuous on E.

Proof. Follows from assumption (A3) and item e) of Theorem 1. �
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The next result describes the dependence of the common price correspon-
dence p∗ with respect to the relative bargaining power α ∈ [0, 1].

Proposition 4. Assume that the assumptions of Theorem 1 hold and fix

the agents initial beliefs (Q0
A, Q

0
B) ∈ ∆+. Let p∗(α) denote the dependence

of the common price correspondence on the agents relative bargaining power

α. If the functions φ,ΓA and ΓB are non-constant, the following statements

hold:

(i) if α = 0 then Q∗
B(t) = Q0

B for every t ∈ T
−
T0

and pB,T0,xB
(Q0

B) ∈

p∗(0);
(ii) if α = 1 then Q∗

A(t) = Q0
A for every t ∈ T

−
T0

and pA,T0,xA
(Q0

A) ∈

p∗(1);
(iii) the graph of p∗(α) is the union of graphs of increasing functions with

α, one for each minimizer of (3.5).

Proof. The proofs of items (ii) and (iii) are similar to Theorem 1 items b)
and c) and we skip it. Item (iii) follows by Theorem 1, the form of functional
J in (3.5) and the definition of the correspondence p∗(α). �

We remark that the final beliefs Q∗
A(T0), Q

∗
B(T0) ∈ ∆K , and hence the

price at which the asset F is finally traded, depend heavily on the relative
bargaining power α. This confirms our intuition, as posed in the motiva-
tion (Section 2), that the relative rigidity of the beliefs of the two agents
influences the price at which the trade is realized. In the limiting situations
where α is either zero or one, which implies that either agent A or agent B
is unwilling to change beliefs, whereas the counterparty is very flexible (or
less powerful), the price is influenced by the party having stronger bargain-
ing skills. This situation is reminiscent of the asymmetric Nash bargaining
equilibrium [5, 6]. Finally, we note that, as seen in Proposition 2, the effect
of the functions ΓA and ΓB quantifies the influence that the beliefs of agent
B, as induced by the stated prices by agent A, have on the belief update of
agent A, and vice-versa.

5. Alternative ways of determining the bidding price functions

In the previous section we have shown that our variational scheme for the
belief update and bargaining procedure is well posed and has certain desir-
able qualitative properties as long as the price functions, which are used by
the agents when bidding, are continuous with respect to the beliefs. Fur-
thermore, we have seen that the prices are unique if this functions enjoy
certain concavity properties. In this section we show that these assump-
tions are realistic and hold for a number of specific pricing schemes such
as indifference pricing using the full financial market or indifference pricing
using only the riskless asset. In particular, in Section 5.2 we offer an exam-
ple of a pricing scheme based on indifference pricing using the full financial
market that guarantees continuity of the price function with respect to the
beliefs, whereas in Section 5.3 we offer an alternative pricing scheme based
on indifference pricing for investors focusing only on the riskless asset which
guarantees strict convexity properties for the price functions.
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5.1. Portfolio optimization under subjective beliefs. In this subsec-
tion we provide a detailed analysis of the agents trading strategies and the
corresponding maximum expected utility functions. We focus on results re-
lated to the dependence of the solution of this problem with respect to the
beliefs of the agents. For the completeness of the paper, we also provide
certain results related with the dependence of the solution to this problem
with respect to the initial wealth and the chosen portfolio, which are well
known, in appendix A.

For each β ∈ {A,B}, xβ ∈ R and t ∈ T
−
T−1, we define the functional

Lβ,t,xβ
: (Vβ)

T−t → R

as

Lβ,t,xβ
(Q, p, F ;π) = EQ

[

Uβ

(

T,Xβ,π
0,xβ

(T, ω)
)
∣

∣

∣
Ft

]

, (5.1)

where the notation Lβ,t,xβ
(Q, p, F ;π) means that L is considered as a func-

tion of π, whereas Q, p, F are considered as fixed parameters.

Theorem 2. Let β ∈ {A,B}. For each fixed F ∈ BT (Ω), for every t ∈ T
−
T−1

and each xβ ∈ R, the optimal control problem

max
π∈(Vβ)T−t

Lβ,t,xβ
(Q, p, F ;π)

has a unique solution π∗xβ ,t
:= Π(Q, p, xβ), where Π : ∆K ×R

2 → (Vβ)
T−t is

a continuous function.

Proof. For simplicity of exposition, let us introduce the notation

z(t) = Xβ,π
0,xβ

(t).

We will prove that

Vβ(s, y) = sup
π∈Vβ,s,y

EQ

[

Vβ(s
′, Xβ,π

s,y (s
′))|Fs

]

:= Vβ(s, y), (5.2)

for every s′ ∈ T such that 0 ≤ s ≤ s′ ≤ T . By definition of supremum, we
have that

Vβ(s, y) ≥ Jβ(s, y, π) = EQ[Uβ(T,X
β,π
s,y (T ))|Fs]. (5.3)

Recalling that Fs ⊆ Fs′ , we have that

EQ[Uβ(T,X
β,π
s,y (T ))|Fs] = EQ

[

EQ[Uβ(T,X
β,π
s,y (T ))|Fs′ ]

∣

∣

∣
Fs

]

= EQ

[

EQ[Uβ(T,X
β,π

s′,z(s′)(T ))|Fs′ ]
∣

∣

∣
Fs

]

.

Recalling that the definition of the functional J , we obtain that

EQ

[

Uβ

(

T,Xβ,π
s,y (T )

)∣

∣

∣
Fs

]

= EQ[Jβ(s
′, z(s′), π)|Fs] (5.4)

and using (5.3) and (5.4), we obtain that

Vβ(s, y) ≥ EQ

[

Jβ(s
′, z(s′), π)

∣

∣

∣
Fs

]

for every π ∈ Vβ,s,y. Taking the supremum over π ∈ Vβ,s,y, we get

Vβ(s, y) ≥ Vβ(s, y). (5.5)
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Conversely, for any ǫ > 0 there exists πǫ ∈ Vβ,s,y such that

Vβ(s, y)− ǫ ≤ Jβ(s, y, πǫ).

Using (5.4) once more, we obtain that Jβ(s, y, πǫ) = EQ

[

Jβ(s
′, zǫ(s

′), πǫ)
∣

∣

∣
Fs

]

,

where zǫ(s
′) = Xβ,πǫ

0,xβ
(s′). Since Jβ(s

′, zǫ(s
′), πǫ) ≤ Vβ(s

′, zǫ(s
′)) ≤ Vβ(s, y),

we obtain that

Vβ(s, y)− ǫ ≤ Vβ(s, y). (5.6)

Combining (5.5) and (5.6), we conclude the proof of the dynamic program-
ming equation (5.2).

The dynamic programming equation obtained above decomposes the op-
timal control problem (3.2) into a finite set of static optimization problems
of the form

V (s, y) = sup
π∈Vβ,s,y

EQ

[

V (s+ 1, Xβ,π
s,y (s+ 1))

∣

∣

∣
Fs

]

, (5.7)

with V (T, y) = Uβ(T, y). Compactness of Vβ,s,y ensures that proceeding
by backwards induction one obtains the optimal portfolio πxβ ,t(u) for every
u ∈ {t + 1, . . . , T}. By Lemma A.2, we have that the value function V is

strictly concave with respect to y ∈ R. Hence, since Xβ,π
s,y (s+ 1) is an affine

function of π, we obtain that EQ

[

V (s + 1, Xβ,π
s,y (s + 1)

∣

∣

∣
Fs

]

is also strictly

concave with respect to π ∈ Vβ,s,y, proving the uniqueness of π∗β,t.

The continuity of the solution of the optimization problem (3.2) with
respect to Q ∈ ∆K , p ∈ R and xβ ∈ R is a consequence of Berge’s maximum
Theorem [1, Ch. VI, Sec. 3], which guarantees continuity of the minimal
functional

Lβ,t,xβ
(Q, p, F ;π∗)

with respect to (Q, p) ∈ ∆K × R and xβ ∈ R, and upper semicontinuity of
the correspondence given by

(Q, p, xβ) → π∗(Q, p, xβ),

Since the solution π∗xβ ,t
is unique, we get that the previous correspondence

is single-valued and therefore continuous. �

For each β ∈ {A,B}, xβ ∈ R and t ∈ T, define agent β maximum expected

utility function at time t, Uβ,t,xβ
: ∆K × R×BT (Ω) → R to be

Uβ,t,xβ
(Q, p, F ) = sup

π∈(Vβ)T−t

EQ

[

Uβ

(

T,Xβ,π
0,xβ

(T, ω)
) ∣

∣

∣
Ft

]

. (5.8)

Note that the properties obtained previously for the value function Vβ hold

for Uβ,t,xβ
.

Corollary 1. For each β ∈ {A,B}, every fixed F ∈ BT (Ω) and t ∈ T
−
T−1,

the map Uβ,t,xβ
: ∆k × R → R is well defined as a function of (Q, p) ∈

∆K × R. Moreover, Uβ,t,xβ
is a continuous function of its arguments, as

well as the parameter xβ ∈ R denoting the initial wealth.
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Proof. This result is a straightforward consequence of the previous theorem.
Note that Uβ,t,xβ

is a composition of the function Lβ,t,xβ
in (5.1) with the

optimal control π∗β,t of (3.2). Since both are continuous with respect to

(Q, p) ∈ ∆K ×R, so is Uβ,t,xβ
. Similar arguments apply for continuity with

respect to xβ. �

Corollary 2. For each β ∈ {A,B}, every fixed F ∈ BT (Ω), t ∈ T
−
T−1 and

every xβ ∈ R, the map Uβ,t,xβ
is strictly increasing and strictly concave with

respect to lβpβ, where lA = 1 and lB = −1.

Proof. Consequence of Lemma A.2 and the definition of Uβ,t,xβ
. �

Proposition 5. For each β ∈ {A,B}, every fixed F ∈ BT (Ω), t ∈ T
−
T−1

and xβ ∈ R, the map Uβ,t,xβ
is convex with respect to Q ∈ ∆K .

Proof. Let Q1, Q2 ∈ ∆K and λ ∈ (0, 1) be arbitrary, and let

Q = λQ1 + (1− λ)Q2.

By definition of Uβ,t,xβ
we have that

Uβ,t,xβ
(λQ1+(1−λ)Q2, p, F ) = sup

π∈(Vβ)T−t

EλQ1+(1−λ)Q2

[

Uβ

(

T,Xβ,π
0,xβ

)
∣

∣

∣
Ft

]

,

where the arguments of Xβ,π
0,xβ

(T, ω) have been dropped for simplicity of

notation. Using the linearity of the expected value we obtain that

Uβ,t,xβ
(λQ1 + (1− λ)Q2, p, F )

= sup
π∈(Vβ)T−t

(

λEQ1

[

Uβ

(

T,Xβ,π
0,xβ

) ∣

∣

∣
Ft

]

+ (1− λ)EQ2

[

Uβ

(

T,Xβ,π
0,xβ

) ∣

∣

∣
Ft

] )

.

Applying the properties of the supremum

Uβ,t,xβ
(λQ1 + (1− λ)Q2, p, F ) ≤ sup

π∈(Vβ)T−t

λEQ1

[

Uβ

(

T,Xβ,π
0,xβ

) ∣

∣

∣
Ft

]

+ sup
π∈(Vβ)T−t

(1− λ)EQ2

[

Uβ

(

T,Xβ,π
0,xβ

)
∣

∣

∣
Ft

]

= λ sup
π∈(Vβ)T−t

EQ1

[

Uβ

(

T,Xβ,π
0,xβ

) ∣

∣

∣
Ft

]

+ (1− λ) sup
π∈(Vβ)T−t

EQ2

[

Uβ

(

T,Xβ,π
0,xβ

) ∣

∣

∣
Ft

]

.

Therefore, we conclude that

Uβ,t,xβ
(λQ1+(1−λ)Q2, p, F ) ≤ λUβ,t,xβ

(Q1, p, F )+(1−λ)Uβ,t,xβ
(Q2, p, F ).

Thus, Uβ,t,xβ
is convex with respect to Q ∈ ∆K . �

5.2. Indifference bidding price functions. In this section we introduce
indifference bidding price functions in the setup of our problem. Moreover,
we provide a detailed analysis of its properties. Namely, we obtain that this
class of price functions is continuous with respect to the agents’ beliefs, thus
providing an example of application of Theorem 1.
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For each β ∈ {A,B}, xβ ∈ R and t ∈ T
−
T0
, the agent β indifference price

associated with the contingent claim F ∈ BT (Ω) is the function pβ,t,xβ
:

∆K ×BT (Ω) → R implicitly defined through

Uβ,t,xβ
(Q, 0, 0) = Uβ,t,xβ

(Q, pβ,t,xβ
, F ) . (5.9)

The concept of indifference price function can be interpreted in the following
way: it is the exact value that leaves a given agent, trading in the underlying
financial market, indifferent in what concerns buying or not buying the
contingent claim with respect to maximum expected utility. It should be
remarked that in a incomplete market the indifference prices for agents A
and B need not coincide. Moreover, the indifference price functions may
depend on the agents initial wealth.

Lemma 5.1. For each β ∈ {A,B}, every t ∈ T
−
T0

and every x ∈ R, the

indifference price pβ,t,x : ∆K ×B(Ω) → R is well defined.

Proof. Recall the definition of indifference price in (5.9). Note that Uβ,t,xβ

is a strictly increasing and strictly concave function of lβpβ,t,x by Corollary
2. Resorting to the Implicit Function Theorem, we obtain that there exists
a unique function pβ,t,x : ∆K ×B(Ω) → R implicity defined by (5.9). �

Lemma 5.2. For each β ∈ {A,B}, t ∈ T
−
T0

and xβ ∈ R, the indifference

price pβ,t,xβ
: ∆K ×BT (Ω) → R satisfies the inequalities

min
ω∈Ω

F [ω] ≤ pβ,t,xβ
(Qβ , F ) ≤ max

ω∈Ω
F [ω].

for every QA, QB ∈ ∆K and every F ∈ BT (Ω).

Proof. We will only prove the case β = A, the proof of the case β = B
being similar. For simplicity of notation we will denote pA,T0,xA

by pA and
pB,T0,xB

by pB. Recall that

XA,π
0,xA

(t) = xA + pAI{t≥T0} − FI{t=T} +
t

∑

u=1

k
∑

j=0

πj(u)∆Sj(u).

Hence, we have that XF (T ) = xA + pA − F + GT , where GT is the gain
process defined as

GT =
t

∑

u=1

k
∑

j=0

πj(u)∆Sj(u).

Since Ω is a finite set and the contingent claim F is non-constant, it is easy
to check that

min
ω∈Ω

F [ω] ≤ F [ω] ≤ max
ω∈Ω

F [ω] , ω ∈ Ω.

For simplicity of exposition, let us introduce the notation

F = min
ω∈Ω

F [ω] and F = max
ω∈Ω

F [ω].

Clearly, we have that

xA + pA − F +GT ≤ xA + pA − F +GT ≤ xA + pA − F +GT . (5.10)

We choose π∗0,0, π
∗
p,F ∈ (Vβ)

T−t in such a way that maximizes the functions

EQ[U(xA +GT )|Ft] and EQ[U(xA + pA − F +GT )|Ft], respectively. These
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optimal trading strategies are guaranteed to exist by Theorem 2. We now
observe that

Uβ,t,xA
(Q, pA, F ) = Uβ,t,xA+pA−F (Q, 0, 0) .

Moreover, from the definition of the value function Vβ in (A.1) we have that

Uβ,t,xA+pA−F (Q, 0, 0) = V(xA + pA − F , t).

Similarly, we get that

Uβ,t,xB−pB+F (Q, 0, 0) = V(xB − pB + F , t).

Combining (5.10) with Lemma A.2, we obtain

V(xA + pA − F , t) ≤ V(xA, t) ≤ V(xA + pA − F , t).

The Inverse Function Theorem and Lemma A.2 guarantee that V(·, t) has a
unique inverse. Thus, solving the previous inequalities with respect to pβ,
we conclude that

F ≤ pβ ≤ F .

�

Lemma 5.3. For each β ∈ {A,B}, every fixed F ∈ BT (Ω) and t ∈ T
−
T0
,

the indifference price functions pβ,t,xβ
are continuous with respect to Q and

differentiable with respect to xβ.

Proof. Consequence of Lemma 5.1 and Corollary 2. �

We remark that the indifference bidding price functions pA and pB are
not necessarily concave or convex with respect to QA and QB.

5.3. Indifference bidding price functions focusing on the riskless as-

set. We will now provide an example of a family of price functions satisfying
the strict convexity assumptions of the price functions, which according to
Proposition 1 guarantee a unique price for the asset, as obtained from the
solution to the minimization problem (3.5).

For each β ∈ {A,B}, xβ ∈ R and t ∈ T
−
T0
, define agent β price function

Pβ,t,xβ
: ∆K ×BT (Ω) → R through the implicit relation

Uβ

(

T,
S0(T, ω)

S0(t, ω)
Xβ,π

0,xβ
(t)

)

=

EQβ

[

Uβ

(

T,
S0(T, ω)

S0(t, ω)
Xβ,π

0,xβ
(t) +

S0(T, ω)

S0(T0, ω)
lβPβ,t,xβ

− lβF

)]

.(5.11)

This is an alternative price bidding rule where the investor used the full
financial market up to time t where the bid is placed to reach a level of

wealth Xβ,π
0,xβ

(t) and then simply used the riskless asset to invest this wealth

in order to estimate the reservation price for the asset being traded.

Lemma 5.4. For each β ∈ {A,B}, t ∈ T
−
T0

and x ∈ R, the price function

Pβ,t,x : ∆K ×BT (Ω) → R is well defined.
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Proof. We prove the statement for the price function of agent A, the proof

for agent B being similar. To simplify notation we will denote Xβ,π
0,xβ

(t) by

X(t). Recall that the expected utility function of agent A for the contingent
claim F , which we will denote by V , is given by

V (P ) = EQA

[

UA

(

T,
S0(T, ω)

S0(t, ω)
X(t) +

S0(T, ω)

S0(T0, ω)
P − F

)]

=
K
∑

k=1

Qk
AUA

(

T,
S0(T, ωk)

S0(t, ωk)
X(t) +

S0(T, ωk)

S0(T0, ωk)
P − F [ωk]

)

Note that the factors S0(T, ω)/S0(t, ω) and S0(T, ω)/S0(T0, ω) are both
greater or equal than one. Since the functions

UA

(

T,
S0(T, ωk)

S0(t, ωk)
X(t) +

S0(T, ωk)

S0(T0, ωk)
P − F [ωk]

)

are strictly increasing concave with respect to P for every k ∈ {1, . . . ,K},
we get that so is V (P ), being a linear combination of such functions. Thus,
the expected utility V is invertible. Therefore, the price PA of agent A is
well-defined as the solution of the equality

UA(T,X(t)) = V (PA(QA)) , (5.12)

for each QA ∈ ∆K . �

Lemma 5.5. For each β ∈ {A,B}, t ∈ T
−
T0

and x ∈ R, the price functions

lβPβ,t,x are strictly concave with respect to Qβ ∈ ∆K .

Proof. We prove the statement for the price function of agent A, the proof
for agent B being similar. Let Q1

A, Q
2
A ∈ ∆K and 0 ≤ λ ≤ 1. We introduce

the following simplifications to the notation

P 1
A =

S0(T, ω)

S0(T0, ω)
PA(Q

1
A)

P 2
A =

S0(T, ω)

S0(T0, ω)
PA(Q

2
A)

P λ
A =

S0(T, ω)

S0(T0, ω)
PA(λQ

1
A + (1− λ)Q2

A) ,

and

X =
S0(T, ω)

S0(t, ω)
X(t) .

Moreover, we will drop the explicit dependence of UA on T .
From equality (5.11) we get that

UA(X) = E
Q

j
A

[

UA(X + P j
A − F )

]

, j = 1, 2

UA(X) = EλQ1
A
+(1−λ)Q2

A

[

UA(X + P λ
A − F )

]

.

From the equalities above, we obtain that

EλQ1
A
+(1−λ)Q2

A

[

UA(X + P λ
A − F )

]

= λEQ1
A

[

UA(X +A1 − F )
]

+ (1− λ)EQ2
A

[

UA(X + P 2
A − F )

]
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which is equivalent to

EλQ1
A
+(1−λ)Q2

A

[

UA(X + P λ
A − F )

]

(5.13)

= EλQ1
A
+(1−λ)Q2

A

[

UA(X + λP 1
A + (1− λ)P 2

A − F )
]

+ IQ1
A
,Q2

A
(λ) ,

where IQ1
A
,Q2

A
(λ) is given by

IQ1
A
,Q2

A
(λ) = λEQ1

A

[

UA(X + P 1
A − F )

]

+ (1− λ)EQ2
A

[

UA(X + P 2
A − F )

]

−EλQ1
A
+(1−λ)Q2

A

[

UA(X + λP 1
A + (1− λ)P 2

A − F )
]

.

Assume that IQ1
A
,Q2

A
(λ) is non-negative for every Q1

A, Q
2
A ∈ ∆K and every

λ ∈ [0, 1]. Then, we obtain from (5.13) that

EλQ1
A
+(1−λ)Q2

A

[

UA(X + P λ
A − F )

]

≥ EλQ1
A
+(1−λ)Q2

A

[

UA(X + λP 1
A + (1− λ)P 2

A − F )
]

Since the previous inequality holds for arbitrary measures Q1
A and Q2

A, we
get that

UA(X + P λ
A − F ) ≥ UA(X + λP 1

A + (1− λ)P 2
A − F )

and by monotonicity of the utility function UA we obtain from the previous
inequality that

P λ
A ≥ λP 1

A + (1− λ)P 2
A ,

thus proving concavity of the seller price function PA.
We will now see that IQ1

A
,Q2

A
(λ) is non-negative for every Q1, Q2 ∈ ∆K

and λ ∈ [0, 1]. We first note that if P 1
A = P 2

A, then IQ1
A
,Q2

A
(λ) is identically

zero. It remains to see that IQ1
A
,Q2

A
(λ) is non-negative provided P 1

A 6= P 2
A.

Without loss of generality, we assume that P 1
A > P 2

A. Rearranging terms,
we write IQ1

A
,Q2

A
(λ) as

IQ1
A
,Q2

A
(λ) =

λEQ1
A

[

UA(X + P 1
A − F )− UA(X + λP 1

A + (1− λ)P 2
A − F )

]

(5.14)

+(1− λ)EQ2
A

[

UA(X + P 2
A − F )− UA(X + λP 1

A + (1− λ)P 2
A − F )

]

.

Since UA is differentiable, we obtain that there exists D1 ∈ (λP 1
A + (1 −

λ)P 2
A, P

1
A) such that

UA(X+P 1
A−F )−UA(X+λP 1

A+(1−λ)P 2
A)−F ) = (1−λ)P 1

A−P
2
AU

′
A(X+D1−F ).

(5.15)
Similarly, there exists C2 ∈ (P 2

A, λP
1
A + (1− λ)P 2

A) such that

UA(X+P 2
A−F )−UA(X+λP 1

A+(1−λ)P 2
A−F ) = −λP 1

A−P
2
AU

′
A(X+C2−F ).

(5.16)
Substituting (5.15) and (5.16) in (5.14), we get

IQ1
A
,Q2

A
(λ) = λ(1−λ)P 1

A−P
2
A

(

EQ1
A

[

U ′
A(X + C1 − F )

]

− EQ2
A

[

U ′
A(X + C2 − F )

]

)

.

(5.17)
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Recalling that UA is increasing, we obtain that for every C1 ∈ (λP 1
A + (1−

λ)P 2
A, P

1
A) we have

EQ1
A
[UA(X + C1 − F )] < EQ1

A

[

UA(X + P 1
A − F )

]

= UA(X(t)), (5.18)

and for every C2 ∈ (P 2
A, λP

1
A + (1− λ)P 2

A) we have

EQ2
A
[UA(X + C2 − F )] > EQ2

A

[

UA(X + P 2
A − F )

]

= UA(X(t)). (5.19)

Combining concavity of UA with (5.18) and (5.19), we obtain the inequality

EQ1
A

[

U ′
A(X + C1 − F )

]

> EQ2
A

[

U ′
A(X + C2 − F )

]

,

which, combined with (5.17), guarantees that IQ1
A
,Q2

A
(λ) is non-negative. �

Corollary 3. For each β ∈ {A,B}, t ∈ T
−
T0

and x ∈ R, the price function

Pβ,t,x : ∆K ×B(Ω) → R satisfies the inequalities

min
ω∈Ω

F [ω] ≤ Pβ,t,x(Qβ) ≤ max
ω∈Ω

F [ω]

for every Qβ ∈ ∆K .

Proof. Recall the notation introduced in the proof of Lemma 5.5. Since Ω
is a finite set and the contingent claim F is non-constant, it is easy to check
that

min
ω∈Ω

F [ω] ≤ F [ω] ≤ max
ω∈Ω

F [ω] , ω ∈ Ω.

For simplicity of exposition, as in Lemma 5.2 we use the notation

F = min
ω∈Ω

F [ω] and F = max
ω∈Ω

F [ω].

From the previous inequalities and monotonicity of the utility function UA,
we obtain that

UA

(

X − PA +min
ω∈Ω

F [ω]

)

≤ UA (X − PA + F [ω]) ≤ UA

(

X − PA +max
ω∈Ω

F [ω]

)

where ω ∈ Ω. Thus, we get

UA (X − PA + F ) ≤ EQA
[U (X − PA + F )] ≤ UA

(

X − PA + F
)

. (5.20)

Recalling the definition of agent A reservation price, we get that

UA(X) = EQA
[U (X − PA + F )] . (5.21)

Combining (5.20) and (5.21), we obtain

UA (X − PA + F ) ≤ UA(X) ≤ UA

(

X − PA + F
)

.

Solving the previous inequalities with respect to PA, we get the inequality
in the statement. Clearly, one can obtain the inequality from agent B from
analogous computation. �

6. Conclusion

We have used techniques from stochastic optimal control theory and opti-
mization to study a minimization problem modelling the interaction between
two agents trading a contingent claim in a incomplete discrete-time multi-
period financial market. We have proved the existence of solutions to this
minimization problem and provided a rather complete characterization for
its minimizers.
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Appendix A. Some auxiliary results on portfolio optimization

In this appendix, for completeness of the paper, we collect some results on
portfolio optimization and in particular, in connection with the behaviour
of the value functions with respect to the initial wealth

Lemma A.1. For each β ∈ {A,B}, xβ ∈ R and t ∈ T
−
T−1, the expected

utility functions Lβ,t,xβ
are strictly concave with respect to π ∈ (Vβ)

T−t.

Proof. Let π1, π2 be arbitrary distinct elements of (Vβ)
T−t. Recall the form

of the wealth process Xβ,π
0,xβ

(t) given in (3.1) and note that Xβ,π
0,xβ

(t) depends

linearly on the portfolio process π = {π(u)}u∈T+

1

. Since U(t, ·) is strictly

concave and using the linearity of the expected value, we obtain

Lβ,t,xβ
(Q, p, F ; (λπ1+(1−λ)π2) > λLβ,t,xβ

(Q, p, F ;π1)+(1−λ)Lβ,t,xβ
(Q, p, F ;π2),

for every λ ∈ (0, 1). We conclude that Lβ,t,xβ
(Q, p, F ;π) is strictly concave

with respect to π, as required. �

We resort to dynamic programming methods to deal with the discrete-
time stochastic optimal control problem (3.2). Take s ∈ T

−
T−1, y ∈ R and

define the functional

Jβ(s, y, π) = EQ[Uβ(T,X
β,π
s,y (T, ω))|Fs],

where π ∈ Vβ,s,y and Vβ,s,y is the set of admissable trading strategies

Vβ,s,y = {π ∈ (Vβ)
T−s : Xβ,π

0,xβ
(s) = y} .

Clearly, Vβ,s,y is a non-empty and convex set. To see this, let π1, π2 be

arbitrary elements of Vβ,s,y and note that π1, π2 ∈ (Vβ)
T−s are such that

Xβ,π1

0,xβ
(s) = y and Xβ,π2

0,xβ
(s) = y. Then, πα = απ1 + (1 − α)π2 ∈ (Vβ)

T−s is

such thatXβ,πα

0,xβ
(s) = y. We now define the value function Vβ : T−

T−1×R → R

to be given by

Vβ(s, y) = sup
π∈Vβ,s,y

Jβ(s, y, π), (A.1)

where Jβ is the functional defined above.

Lemma A.2. For each β ∈ {A,B}, if there exists an optimal control to the

problem (3.2), the function Vβ is strictly increasing and strictly concave.
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Proof. We start by proving that Vβ is an increasing function of y ∈ R. Fix

s ∈ T
−
T−1 and y1, y2 ∈ R such that y1 < y2. Then

Xβ,π

s,y1
(T, ω) < Xβ,π

s,y2
(T, ω)

for every π ∈ (Vβ)
T−t. By assumption, the function Uβ(T, ·) is strictly

increasing. Thus,

Uβ

(

T,Xβ,π

s,y1
(T, ω)

)

< Uβ

(

T,Xβ,π

s,y2
(T, ω)

)

for every π ∈ (Vβ)
T−t. As a consequence, we obtain that

EQ

[

Uβ

(

T,Xβ,π

s,y1
(T, ω)

)

|Fs

]

< EQ

[

Uβ

(

T,Xβ,π

s,y2
(T, ω)

)
∣

∣

∣
Fs

]

for every π ∈ (Vβ)
T−t. Taking the supremum of the right-hand side over all

π ∈ Vβ,s,y2 , we obtain that

EQ

[

Uβ

(

T,Xβ,π

s,y1
(T, ω)

)∣

∣

∣
Fs

]

< Vβ(s, y
2)

for every π ∈ (Vβ)
T−t. Therefore, we conclude that

Vβ(s, y
1) ≤ Vβ(s, y

2). (A.2)

Thus, Vβ is increasing with respect to y ∈ R.
We will now prove that Vβ is concave with respect to y ∈ R. Let π1, π2 ∈

Vβ,s,y, and λ ∈ (0, 1). We introduce the notation

yλ = λy1 + (1− λ)y2 and πλ = λπ1 + (1− λ)π2 .

From the linear dynamics of the wealth process we have that

Xβ,πλ

s,yλ
(T, ω) = λXβ,π1

s,y1
(T, ω) + (1− λ)Xβ,π2

s,y2
(T, ω) . (A.3)

To check this equality we will consider two cases: (i) s < t0 and (ii) s ≥ t0.
We will prove the case (i), case (ii) being similar. We have that

λXβ,π1

s,y1
(T, ω) + (1− λ)Xβ,π2

s,y2
(T, ω) =

= λ
(

y1 + lβ(p− F ) +
T
∑

u=t+1

N
∑

j=0

π1j (u)∆Sj(u)
)

+

+ (1− λ)
(

y2 + lβ(p− F ) +
T
∑

u=t+1

N
∑

j=0

π2j (u)∆Sj(u)
)

= λy1 + (1− λ)y2 + lβ(p− F ) +
T
∑

u=t+1

N
∑

j=0

(

λπ1j (u) + (1− λ)π2j (u)
)

∆Sj(u)
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By definition of yλ and πλ we check that

λXβ,π1

s,y1
(T, ω) + (1− λ)Xβ,π2

s,y2
(T, ω) =

= yλ + lβ(p− F ) +
T
∑

u=t+1

N
∑

j=0

πλj (u)∆Sj(u)

= Xβ,πλ

yλ,s
(T, ω),

concluding the proof of the equality above. By equality (A.3) and strict
concavity of the utility function Uβ, we obtain

Uβ(X
β,πλ

s,yλ
) = Uβ

(

λXβ,π

s,y1
+ (1− λ)Xβ,π

s,y2

)

> λUβ(X
β,π

s,y1
) + (1− λ)Uβ(X

β,π

s,y2
),

where the arguments of Xβ,π
s,y (T, ω) have been dropped for simplicity of no-

tation. Taking the supremum of the left-hand side over all π ∈ Vβ,s,yλ , we
obtain that

Vβ(λy
1 + (1− λ)y2) > λEQ[U(Xβ,π

s,y1
)] + (1− λ)EQ[U(Xβ,π

s,y2
)],

where the inequality holds for π1, π2 ∈ Vβ,s,y. We conclude that

Vβ(λy
1 + (1− λ)y2) ≥ λVβ(y

1) + (1− λ)Vβ(y
2), (A.4)

ending the proof of concavity of Vβ with respect to y ∈ R.
In the case where an optimal control π∗β,t of (3.2) exists, the inequalities

(A.2) and (A.4) are strict. �
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