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Abstract. We review some recent results concerning a connection between focal decomposi-
tion, renormalization and semiclassical physics. The dynamical behaviour of a family of me-
chanical systems that includes the pendulum at small neighbourhoods of the equilibrium but
after long intervals of time can be characterized through a renormalization scheme acting on
the dynamics of this family. We have proved that the asymptotic limit of this renormalization
scheme is universal: it is the same for all the elements in the considered class of mechanical
systems. As a consequence, we have obtained an asymptotic universal focal decomposition for
this family of mechanical systems that can now be used to compute estimates for propagators
in semiclassical physics.
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1. Introduction

In [5] we have introduced a renormalization scheme which acts on the dynamics of a family of
mechanical systems to which the pendulum belongs, at small neighbourhoods of the equilibrium
but after long intervals of time, so that the second order term of the period map can no longer
be neglected. The main theorem in that paper states that this renormalization scheme converges
under iteration to a family of asymptotic trajectories. As a corollary, we obtain a focal decom-
position associated with this asymptotic trajectories to which we call asymptotic universal focal

decomposition.
That was the first step towards a broader research program, proposed by Peixoto and Pinto,

connecting renormalization techniques, focal decomposition of differential equations and semi-
classical physics. The next steps of this research program include a proof of the convergence
of renormalized focal decompositions to the asymptotic universal focal decomposition of [5] and
an extension of this renormalization scheme to obtain a 4-dimensional asymptotic universal fo-
cal decomposition, i.e. with no restrictions on the base point of the boundary value problem.
The ultimate goal of such program would be to deal with applications of this renormalization
procedure to semiclassical physics.

We start this paper with some comments about focal decomposition and renormalization.
Sections 2.1, 2.2 and 2.3 contain a short overview of the main concepts and results in [5]: namely,
we define the renormalization scheme we work with, we state its main result, i.e. the convergence
of such renormalization scheme to the asymptotic trajectories, and discuss the existence of the
asymptotic universal focal decomposition induced by the asymptotic trajectories. In section 2.4
we define what we mean by a renormalized focal decomposition, state a new result concerning
the convergence of the renormalized focal decompositions to the asymptotic universal focal
decomposition, and give an idea of the main step towards the proof of this result. In sections 2.5
and 2.6 we state new results concerning the Hamiltonian character of the asymptotic trajectories
and its action. Section 3 contains a description of the utility that the asymptotic universal focal
decomposition may have in the computation of propagators in semiclassical physics. We conclude
with some remarks regarding potential applications for the theoretical results we are developing.
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1.1. Focal decomposition. The concept of focal decomposition was introduced by Peixoto in
[8] (under the name of σ-decomposition), and further developed by Peixoto and Thom in [9].
The starting point was the 2-point boundary value problem for ordinary differential equations
of the second order

ẍ = f(t, x, ẋ) , t, x, ẋ ∈ R

x(t1) = x1 , x(t2) = x2 , (1.1)

which was formulated for the equation of Euler at the beginnings of the calculus of variations in
the first half of the 18th Century. This is the simplest and oldest of all boundary value problems.
Accordingly, there is a vast literature, mostly in the context of applied mathematics where one
frequently uses the methods of functional analysis. Here we adopt a different point of view: we
look for the number i ∈ {0, 1, 2, . . .∞} = N of solutions of problem (1.1), and how this number
varies with the endpoints (t1, x1) and (t2, x2).

If one of the endpoints in (1.1) is kept fixed, say (t1, x1) = (0, 0), then we define σi, i =
1, 2, ...,∞ as the set of points (t2, x2) such that problem (1.1) has exactly i solutions. We put
(0, 0) ∈ σ∞ and (0, y) ∈ σ0 for y 6= 0. Then we say that the restricted two-point problem with
base point (0, 0) consists of finding the corresponding focal decomposition of R2 by the sets σi:

R2 = σ0 ∪ σ1 ∪ ... ∪ σ∞ .

A notable example of a focal decomposition due to Peixoto and Thom [9], is provided by the
focal decomposition of the pendulum equation ẍ + sinx = 0 with base point (0, 0) (see Figure
1). This focal decomposition contains non-empty sets σi with all finite indices. Every set σ2k−1,
k = 1, 2, ..., consists of a 2-dimensional open set plus the cusp-point (±kπ, 0); they all have
two connected components. All four connected components of the even-indexed sets σ2k are
open-arcs, asymptotic to one of the lines x = ± and incident to the cusp-points (±kπ, 0); the
lines x = ±π are part of σ1, except for the points (0,±π) which belong to σ0.
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Figure 1: The pendulum’s focal decomposition.
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1.2. Renormalization. The main idea behind renormalization is the introduction of an op-
erator — the renormalization operator — on a space of systems whose action on each system
is to remove its small scale behaviour and to rescale the remaining variables to preserve some
normalization. If a system converges to some limiting behaviour under iteration of the renor-
malization operator then we say that such behaviour is universal. Since the renormalization
operator relates different scales, such universal behaviour is self-similar. See [5] and references
therein for more details on renormalization.

The main subject of [5] is a renormalization scheme acting on the dynamics of a family of
mechanical systems that include the pendulum. Our motivation for the introduction of such
scheme comes from the restricted focal decomposition with base point (0, 0) of the pendulum
equation ẍ + sin x = 0 in Figure 1. It turns out that the sequence formed by the even-indexed
sets in the pendulum’s focal decomposition is approximately self-similar. The renormalization
scheme we introduce can then be described in the following way: for a large integer n, we consider
the even-indexed set σ2n and, contrary to previous renormalizations, we do not rescale time but
just shift it so that its origin is at t = nπ. We then restrict the initial velocities to a small
interval so that that the index corresponding to the shifted even-indexed set is equal to one; we
complete the procedure by normalizing space in such way a that the shifted even-indexed set
is asymptotic to the lines x = ±1. Under iteration of this renormalization scheme, we obtain
asymptotic trajectories that define an asymptotic focal decomposition. Both the asymptotic
trajectories and focal decomposition are universal and self-similar.

2. The asymptotic universal focal decomposition and some consequences

In this section we characterize the action of the renormalization scheme introduced in [5] on
the dynamics of a family of mechanical systems defined by a Lagrangian function L(x, ẋ) =
ẋ2/2−V (x), where V (x) is a given non-isochronous potential, i.e. not all the periodic solutions
of the corresponding Euler–Lagrange equation have the same period (see the paper [3] by Bolotin
and MacKay and references therein). For more information on mechanical systems see the books
[1, 2, 6, 7].

2.1. Setting. We consider mechanical systems defined by a Lagrangian function L : R2 → R

of the form

L

(

q,
dq

dτ

)

=
1

2
m

(

dq

dτ

)2

− V(q) , (2.1)

where the potential function V : R → R is a non–isochronous potential. Furthermore, we
assume that the potential V is a Cκ map (κ ≥ 5) with a Taylor expansion at a point q∗ ∈ R

given by

V(q) = V(q∗) +
V ′′(q∗)

2
(q − q∗)2 +

V(4)(q∗)

4!
(q − q∗)4 ± O

(

|q − q∗|5
)

,

where V ′′(q∗) > 0 and V(4)(q∗) 6= 0. The Euler–Lagrange equation associated with (2.1) is

m
d2q

dτ2
= −

dV

dq
(q) , (2.2)

and the corresponding Hamilton equations are given by

dq

dτ
=

p

m
dp

dτ
= −

dV

dq
(q) . (2.3)
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Therefore, the point q∗ is an elliptic equilibrium of (2.2) (or equivalently, (q∗, 0) is an elliptic
equilibrium of (2.3)) and thus, there is a 1–parameter family of periodic orbits covering a
neighbourhood of the equilibrium point.

2.2. Asymptotic universal behaviour for the trajectories. Since q∗ is an elliptic equi-
librium of (2.2) there is ǫ > 0 such that for all initial velocity ν ∈ [−ǫ, ǫ] the solutions q(ν; τ)
of the Euler–Lagrange equation (2.2) with initial conditions q(ν; 0) = q∗ and dq/dτ(ν; 0) = ν
are periodic. Thus, the trajectories q : [−ǫ, ǫ] × R → R of (2.2) are well-defined by q(ν; τ)
for all τ ∈ R and ν ∈ [−ǫ, ǫ]. Furthermore, there exist α > 0 small enough and N ≥ 1 large
enough such that, for every n ≥ N , the n-renormalized trajectories xn : [−1, 1] × [0, αn] → R

are well-defined by

xn(v; t) = (−1)n Γ−1
n,t µ−1

[

q

(

Γn,t µ ω v;
nπ − ℓt

ω

)

− q∗
]

,

where Γn,t is the (n, t)-scaling parameter

Γn,t =

(

8t

3πn

)1/2

, (2.4)

ℓ = ±1 depending on the sign of V(4)(q∗) and ω and µ are given by

ω =

(

V ′′(q∗)

m

)1/2

, µ =

(

3!V ′′(q∗)

|V (4)(q∗)|

)1/2

. (2.5)

Note that ω−1 and µ are the natural time and length scales for the dynamical system defined
by (2.2). Furthermore, the variables v and t are dimensionless, as well as the (n, t)-scaling
parameter Γn,t. Therefore, the n-renormalized trajectories xn(v; t) are dimensionless.

Definition The asymptotic trajectories Xℓ : [−1, 1] × R+
0 → R are defined by

Xℓ(v; t) = v sin
(

ℓt
(

v2 − 1
))

,

where ℓ = ±1 depending on the sign of V(4)(q∗).

The self-similarity of the asymptotic trajectories is exemplified in Figure 2. For fixed instants
of time (t = 3π/2 in Fig. 2a, t = 7π/2 in Fig. 2b and t = 11π/2 in Fig. 2c), the plots correspond
to the final position x of the asymptotic trajectories as function of the initial velocity v. Note
that Figure 2a is a rescaling of the dashed box in Figure 2b and the smaller dashed box in Figure
2c, while Figure 2b is a rescaling of the larger dashed box in Figure 2c.

The main result in [5] states that the n-renormalized trajectories converge to the asymptotic
trajectories as n → ∞.

Theorem 2.1. There exists β > 0 small enough, such that, for every 0 < ǫ < 1/3, we have that

‖xn(v; t) − Xℓ(v; t)‖C0([−1,1]×[0,βn1/3−ǫ],R) < O
(

n−3ǫ/2
)

,

where ℓ is the sign of V(4)(q∗).

2.3. Asymptotic universal focal decomposition. The asymptotic trajectories Xℓ(v; t) in-
duce an asymptotic universal focal decomposition of the cylinder C = R+

0 × [−1, 1] by the sets σi

whose elements are pairs (t, x) ∈ C such that Xℓ(v; t) = x has exactly i solutions v(t, x) ∈ [−1, 1],
each distinct solution corresponding to an asymptotic trajectory connecting the points (0, 0) ∈ C
and (t, x) ∈ C. Therefore, for each i ∈ {0, 1, ...,∞}, the set σi ⊂ C contains all points in (t, x) ∈ C
such that there exist exactly i asymptotic trajectories connecting (0, 0) ∈ C and (t, x) ∈ C.

The following result is a consequence of theorem 2.1.

Theorem 2.2. There exists an asymptotic universal focal decomposition for the Euler–Lagrange

equation (2.2) induced by the asymptotic trajectories Xℓ(v; t).
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Figure 2: The asymptotic trajectories Xℓ(v; t) plotted as functions of the initial velocity v for
fixed instants of time: (a) t = 3π

2 , (b) t = 7π
2 and (c) t = 11π

2 .

The asymptotic universal focal decomposition is shown in Figure 3. As in the case of the
focal decomposition with base point (0, 0) of the pendulum equation ẍ + sinx = 0 (see [9, pp.
631, 197]), the asymptotic universal focal decomposition also exhibits non-empty sets σi with
all finite indices. However, contrary to that focal decomposition, which gives a stratification
for the whole R2, our asymptotic universal focal decomposition gives only a stratification of
the half cylinder C = R+

0 × [−1, 1]. There are two main reasons for this to happen which we
pass to explain. Firstly, our renormalization scheme acts only on periodic orbits, neglecting the
high-energy non-periodic orbits, which restrains Xℓ(v; t) to the interval [−1, 1]. Secondly, we
have defined the renormalization operator only for positive times. Noticing that the mechanical
systems we renormalize have time-reversal symmetry, one can extend the asymptotic universal
focal decomposition to the cylinder R × [−1, 1] by a symmetry on the x axis.

Some comments about Figure 3 are appropriate here.
For every k ∈ N, the set σ2k is a 2-dimensional open set with two connected components. The

odd-indexed sets σ2k−1 are the union of two open arcs, asymptotic to one of the lines x = ±1 and
incident to the cusp-point ((k − 1)π, 0), and a line segment joining the cusp points ((k − 1)π, 0)
and (kπ, 0); the lines x = ±1 are part of σ0.

Thus, the even-indexed sets σ2k are 2-dimensional manifolds, while the odd-indexed sets σ2k−1

are not manifolds because they contain the cusp-points (kπ, 0).
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Figure 3: The asymptotic universal focal decomposition.

On the other hand, if we decompose the odd-indexed sets σ2k−1 into a cusp-point plus three 1-
dimensional manifolds (two open arcs and one line segment), then we get a decomposition of the
whole plane into a collection of disjoint connected manifolds. The above decomposition of C is an
example of what is called a stratification of C, the strata being the disjoint connected manifolds
into which C was decomposed. Hence σ1 consists of two 1-dimensional strata, σ2 consists of two
2-dimensional strata, σ3 consists of three 1-dimensional strata and one 0-dimensional strata and
so on. To complete the picture, σ0 consists of two 2-dimensional strata plus the x-axis minus
the origin which belongs to σ∞.

The differences in the indexes of the sets σi of the focal decompositions of Figure 1 and Figure
3 are due to the fact that the asymptotic trajectories Xℓ(v, t) have x = ±1 as equilibria, and
can be understood by an analysis of Figure 2.

2.4. The renormalized focal decompositions. Let us consider the asymptotic universal
focal decomposition of the cylinder C = R+

0 × [−1, 1]

C = ∪∞

k=0σk .

For each (t, x) ∈ σi we define the index i(t, x) of (t, x) equal to i.
Note that each n-renormalized trajectory xn induces a focal decomposition of the cylinder C

by the sets σn
i whose elements are pairs (t, x) ∈ C such that xn(v; t) = x has exactly i solutions

v(t, x) ∈ [−1, 1]. Therefore, the n-renormalized focal decomposition is given by

C = ∪∞

k=0σ
n
k .

Similarly, for each (t, x) ∈ σn
i we define the n-renormalized index in(t, x) of (t, x) as the integer

i.
The following result states that the sequence of n-renormalized focal decompositions converges

to the asymptotic universal focal decomposition.

Theorem 2.3. For every (t, x) ∈ C = R+
0 × [−1, 1], the n-renormalized index in(t, x) of (t, x)

converges to the index i(t, x).
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We should remark that unlike theorem 2.2, theorem 2.3 is not a consequence of theorem 2.1.
The key point on its proof is an extension of the estimates in theorem 2.1 to the C2 topology,
which we leave for a future publication.

2.5. The Hamiltonian character of the asymptotic trajectories. The renormalization
scheme of section 2.2 can be extended to act on the velocities

q̇(ν, τ) =
dq

dτ
(ν; τ)

associated with the periodic solutions q(ν; τ) of the Euler–Lagrange equation (2.2) with initial
conditions q(ν; 0) = q∗ and dq/dτ(ν; 0) = ν. By same reasoning of section 2.2, the velocities

q̇ : [−ǫ, ǫ]×R → R of (2.2) are well-defined by (2.5) for all τ ∈ R and ν ∈ [−ǫ, ǫ]. Furthermore,
there exist α > 0 small enough and N ≥ 1 large enough such that, for every n ≥ N , the
n-renormalized velocities yn : [−1, 1] × [0, αn] → R are well-defined by

yn(v; t) = (−1)n Γ−1
n,t µ−1ω−1q̇

(

Γn,t µ ω v;
nπ − ℓt

ω

)

,

where Γn,t is the (n, t)-scaling parameter defined in (2.4) and ω and µ are as given in (2.5). The
n-renormalized velocities yn(v; t) are also dimensionless.

Definition The asymptotic velocities Yℓ : [−1, 1] × R+
0 → R are defined by

Yℓ(v; t) = v cos
(

ℓt
(

v2 − 1
))

,

where ℓ = ±1 depending on the sign of V(4)(q∗).

The following result is a natural extension of theorem 2.1. Its proof will be given in a future
publication.

Theorem 2.4. There exists β > 0 small enough, such that, for every 0 < ǫ < 1/3, we have that

‖yn(v; t) − Yℓ(v; t)‖C0([−1,1]×[0,βn1/3−ǫ],R) < O
(

n−3ǫ/2
)

,

where ℓ is the sign of V(4)(q∗).

There is a strong geometrical and dynamical connection between the asymptotic trajectories
Xℓ(v; t) and the asymptotic velocities Yℓ(v; t). As stated in the following theorem, the pair
formed by the asymptotic trajectories and the asymptotic velocities is the flow of a canonical
Hamiltonian system.

Theorem 2.5. Let Xℓ(v; t) and Yℓ(v; t) denote, respectively, the asymptotic trajectories and

the asymptotic velocities introduced above. The flow φt(0; v) = (Xℓ(v; t), Yℓ(v; t)) with initial

condition φt(0; v) = (0, v) is the Hamiltonian flow of the canonical Hamiltonian system with

Hamiltonian function H : R2 → R given by

Hℓ(x, y) = ℓ

(

(

x2 + y2

2

)2

−
x2 + y2

2

)

.

2.6. The action of the asymptotic trajectories. Let N be a smooth manifold, M = T ∗N
its cotangent bundle, ∆ an interval in R and H : M × ∆ → R a smooth Hamiltonian function.
It is well known that a path ω : [t1, t2] → M , from p1 ∈ M to p2 ∈ M , starting at time t1 ∈ ∆
and ending at time t2 ∈ ∆, is a trajectory of the canonical Hamiltonian system (M, H) if it is a
critical point of the action functional in phase space

F [ω] =

∫

ω
p dq − H dt .
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An alternative approach is to write the action functional as the integral

F [ω] =

∫

ω
pq̇ − H dt

and regard the integrand as a Lagrangian function L : TM × ∆ → R, obtaining the action
functional

F [ω] =

∫

ω
L dt =

∫ t2

t1

L(ω̇(t), ω(t), t) dt .

Therefore, for any trajectory of the Euler-Lagrange equation determined by L, ω : [t1, t2] → M ,
one can compute its action F [ω]. Moreover, noticing the dependence of a trajectory ω on its
boundary conditions ω(t1) = p1 and ω(t2) = p2, one can define the action correspondence of the
trajectories ω connecting (t1, p1) to (t2, p2) S : (M × ∆)2 → R by

S(t1, p1; t2, p2) = {F [ω] : ω(t1) = p1, ω(t2) = p2} .

We remark that S is not a properly defined function, but a correspondence mapping each element
of (M×∆)2 to a subset of R. This is due to the fact that there might be more than one trajectory
of the Euler-Lagrange equation determined by L connecting (t1, x1) to (t2, x2).

We denote by Sℓ(t, x) the action correspondence of the asymptotic trajectories Xℓ(v; t) con-
necting (0, 0) to (t, x).

Theorem 2.6. The action correspondence of the asymptotic trajectories Xℓ(v; t) is given by

Sℓ(t, x) =

{

ℓ

4
v2
(

sin
(

2t(v2 − 1)
)

+ tv2
)

: v ∈ V̂ (t, x)

}

,

where, for each (t, x) ∈ C = R+
0 × [−1, 1], the set V̂ (t, x) is defined by

V̂ (t, x) = {v(t, x) ∈ [−1, 1] : Xℓ(v(t, x); t) = x} .

Sℓ

(

5π
2 , x

)

x
0

0

0.5-0.5

-0.5

-1

-1.5

-2

Figure 4: The action correspondence of the asymptotic trajectories for t = 5π
2 and ℓ = −1.

Note that the self-similarities of the asymptotic trajectories and the asymptotic universal focal
decomposition are naturally carried over to the graph of the action correspondence in Figure 4.
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3. Semiclassical physics

Focal decomposition is in fact a first step towards semiclassical quantization. This was already
recognized in the semiclassical calculation of partition functions for quantum mechanical sys-
tems, where the need to consider a varying number of classical solutions in different temperature
regimes became evident [4].

Either in quantum mechanics or in quantum statistical mechanics, the semiclassical approx-
imation has to sum over all, or part of, the classical paths satisfying fixed point boundary
conditions. The number and type of classical trajectories are the very ingredients which lead to
a focal decomposition. It should, therefore, be no surprise that the focal decomposition can be
viewed as the starting point for a semiclassical calculation.

As for the renormalization procedure, it was introduced to study the behavior of classical
trajectories for very short space and very long time separations of the fixed endpoints. It maps
those trajectories into n-renormalized ones, whose time separations are shifted by n half-periods,
and whose space separations are scaled up to values of order one. As it has been shown in [5], this
procedure converges to an asymptotic universal family of trajectories that have a well-defined
and simple functional form, and which define an asymptotic universal focal decomposition self-
similar to the original one.

The natural question to pose is whether the combination of focal decomposition and renor-
malization can be used to calculate semiclassical expansions for propagators in the short space,
long time separation of the endpoints, or analogously, for thermal density matrices for short
space separation and low temperatures (long euclidean time β~ is equivalent to low tempera-
tures T = 1/(kBβ)) by using the simple asymptotic forms alluded to in the previous paragraph
(see [5] for a detailed discussion).

The conjecture to be investigated in a forthcoming article is that this can be done in a relatively
simple way, thanks to the simple form of the asymptotes. This will bypass a much more difficult
(if not impossible) calculation involving Jacobi’s elliptic functions. Should our expectation be
realized, we would obtain semiclassical estimates for both propagators and thermal density
matrices in the short space/long time or short space/low temperature limits.

4. Conclusions

We study the dynamical behaviour of a family of mechanical systems that includes the pen-
dulum. The analysis is based on the introduction of a renormalization scheme acting on the
dynamics of this family of dynamical systems at small neighbourhoods of an elliptic equilibrium
and after long intervals of time. We obtain interesting results concerning the existence of an
asymptotic limit of this renormalization scheme, which is universal and self-similar. As a con-
sequence we obtain an asymptotic universal focal decomposition for this family of mechanical
systems. We review several new results concerning properties of the asymptotic limit of this
renormalization scheme.

We believe that the existence of an asymptotic universal focal decomposition might be useful
not only on the theory of boundary value problems of ordinary differential equations but also
on several distinct fields of the physical sciences such as quantum statistical mechanics, optics,
general relativity and even tsunami formation. Our belief on such applications is based on the
relevance that the concept of focal decomposition may have on the study of caustic formation
by focusing wavefronts, of such significance to those fields.
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and Ministério da Ciência, Tecnologia e Ensino Superior, Centro de Matemática da Universidade
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