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Abstract. The interaction of two charges moving in R
2 in a magnetic field B can be formu-

lated as a Hamiltonian system with 4 degrees of freedom. Assuming that the magnetic field
is uniform and the interaction potential has rotational symmetry we reduce this Hamiltonian
system to one with 2 degrees of freedom; for certain values of the conserved quantities and
choices of parameters, we obtain an integrable system. Furthermore, when the interaction
potential is of Coulomb type, we prove that, for suitable regime of parameters, there are in-
variant subsets on which this system contains a suspension of a subshift of finite type. This
implies non-integrability for this system with a Coulomb type interaction. Explicit knowledge
of the reconstruction map and a dynamical analysis of the reduced Hamiltonian systems are
the tools we use in order to give a description for the various types of dynamical behaviours
in this system: from periodic to quasiperiodic and chaotic orbits, from bounded to unbounded
motion.
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1. Introduction

Understanding the interaction of two charges in a magnetic field is important to plasma
physics but this problem seems to have been given little attention. What attention it has
received has tended to be in some limiting regimes such as very strong magnetic field or plasmas
with all the particles of the same kind (see [1, 2, 3, 4]) or with one heavy particle idealized as
fixed (the diamagnetic Kepler Problem, see [5, 6]). In this paper we will study the dynamics
of two charged particles in a uniform magnetic field without making any restrictions on the
sizes of the magnetic field, the charges or the masses. We will assume that the particles behave
classically and that their velocities and accelerations are small enough that we can neglect any
relativistic and radiation effects. Although it is well known that nonuniformity of the magnetic
field introduces further significant effects, we believe that there is value in establishing firm
results for the uniform case. Our ultimate goal is to treat the three–dimensional case but we
limit our attention here to the two-dimensional case, which will form an important part of the
three-dimensional case.

The motion of one particle in a uniform magnetic field is the well known gyromotion. The
particle moves in a circle of fixed centre - the guiding centre, and radius - gyroradius, with
constant angular velocity - gyrofrequency. Orienting the magnetic field upwards, the motion
in the circle is clockwise if the charge is positive and anticlockwise otherwise. We sign the
gyrofrequency according to the direction of rotation. This problem can be formulated as a
two degrees of freedom Hamiltonian System. It has three-dimensional Euclidean symmetry
(translation and rotation). These symmetries induce conserved quantities for this system and
it is easily seen to be integrable.

On the other hand, the interaction of two charges in the absence of a magnetic field is also
a well known problem. It is a standard two-body problem with four degrees of freedom. If
the interaction potential is chosen to depend only on the distance between the two particles
then the problem is integrable and for the particular case of a Coulomb potential the classical
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description obtained by Newton for the dynamics of a planet orbiting the Sun completely
describes the dynamics of this problem too.

In this paper, we study the interaction of two particles with non-zero charge, with an inter-
action potential depending on the distance between the particles, under the action of a uniform
magnetic field. It is then a mixture of the two problems briefly described above. In contrast to
those problems this one presents much greater complexity - there is a rich variety of dynamical
behaviour. The trajectories of the two particles no longer look like circles or ellipses and for
some regimes of parameters the trajectories can look extremely complicated. Indeed, we prove
that whenever the charges have opposite signs of charge (except for the case where the gyrofre-
quencies sum to zero) chaotic orbits exist for this system. This last statement implies that
with opposite signs of charge (except for the case where the gyrofrequencies sum to zero) this
problem is non-integrable. However, we also identify regimes of parameters where there is extra
symmetry in the system or an invariant subsystem so that it can be proven to be integrable.

We start section 2 by formulating our problem as a Hamiltonian system with a non–canonical
symplectic form (see [7]), that makes easier to identify the system symmetries. We identify
translational and rotational symmetries of the system and the corresponding conserved quan-
tities. Furthermore, we prove the existence of an exceptional conserved quantity when the two
particles have the same gyrofrequency.

In section 3 we start by proving that the problem of the interaction of two particle in a
magnetic field can be reduced to one with 2 degrees of freedom. Furthermore, when the two
particles have the same gyrofrequency we use the exceptional conserved quantity to prove
integrability of the Hamiltonian system in this case. We also prove that if the sum of the
two charges is zero the dynamics in the zero sets of the linear momenta are also integrable. We
do this by constructing a set of coordinates on which the system exhibits a reduction to two
degrees freedom, and integrability when it applies. We should remark that a similar reduction
is obtained in [8] for the problem of two interacting vortices with mass moving in a plane - in
that paper is also given the analogy between that problem and the one we treat here. However,
one key point of the present paper is that the total change of coordinates that exhibits the
reduction is computed. This change of coordinates is just the SE(2) lift that, given the base
dynamics of the reduced Hamiltonian systems, enables us to describe the full eight-dimensional
dynamics.

In section 4, we specialize our analysis of the problem by choosing a specific interaction
potential. The natural choice for the potential V is the Coulomb potential

V (r) =
e1e2
4πǫ0

1

r
, (1.1)

where r denotes the distance between the two particles, e1 and e2 denote the values of the
charges and ǫ0 denotes the permittivity of the vacuum. Depending on the problem other
potentials would be plausible as, for example, in [8] a logarithmic potential is chosen for the
interaction of two vortices. In fact, our results are valid for a class of potential functions
(described in section 4) that includes both the Coulomb potential and the screened Coulomb
potential. We give a brief description of the reduced Hamiltonian system obtained in section 3
with the generic potential V replaced by the Coulomb potential, including:

(1): boundedness of some of the variables on the reduced space. In particular, the distance
between the two particles is always bounded;

(2): existence of regimes of parameters where close approaches between the particles are
possible.

In conjunction with the explicit knowledge of the reconstruction map, point (1) gives

• boundedness of the trajectories of the two particles when the sum of the two charges is
non-zero;
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• unboundedness (typically) of the trajectories of the two particles when the sum of the
two charges is zero and certain restrictions on the level sets of the linear momenta are
satisfied.

Point (2) is crucial for the proof of existence of chaotic orbits later in the paper.
In section 5 we prove the existence of periodic and chaotic trajectories shadowing sequences

of collision orbits. In particular we obtain large subshifts of solutions of this type. The method
used here was developed in [9] for a proof of the existence of chaotic orbits of the second species
for the circular restricted 3-body problem. To apply it to our problem we choose appropriate
coordinates for our system - relative positions and corresponding canonically conjugate momenta
- and generalize the result in [9] to include our kind of system. The main ingredients are the
construction of a set of collision orbits satisfying some nondegeneracy conditions, the implicit
function theorem and Levi-Civita regularization. By a result of Moser, the existence of chaotic
orbits, and more precisely, the existence of an invariant subset on a energy level on which the
system contains a suspension of a subshift of finite type with positive entropy, implies that
the system is not integrable in the sense of Liouville, i.e., apart from the conserved quantities
exhibited in section 2 and the Hamiltonian function there are no independent analytic conserved
quantities - it is not possible to find a set of four conserved quantities independent and in
involution for all regimes of parameters.

2. Problem Formulation

We consider two particles with masses m1 and m2 (positive) and non–zero charges e1 and
e2, respectively, in a uniform magnetic field B of norm B 6= 0, orthogonal to the plane of the
motion and pointing upwards. Each one of the particles moving under the action of such a field
is subject to a Lorentz force of the form FL = eiBc

−1Jvi where vi = (vxi
, vyi

) ∈ R
2 is the i-th

particle velocity (i ∈ {1, 2}) and J is the standard symplectic matrix in R
2, given by

J =

(

0 1
−1 0

)

.

Furthermore, we assume that the interaction of the two particles is determined by a potential
V (r) depending on the distance r between the two particles.

The phase space M for this problem is R
8 with the singular points of the interaction potential

removed (six-dimensional planes if V is the Coulomb potential (1.1)). Let qi = (qxi
, qyi

) ∈ R
2

denote the vector position of the i-th particle and pi = (pxi
, pyi

) ∈ R
2 denote its (non–conjugate)

momentum

pi = mvi , i ∈ {1, 2} .

The motion of the two particles can be described by a Hamiltonian system, with Hamiltonian
function H : M −→ R and non–canonical symplectic form ω (see [7]), given by

H (q1, q2,p1,p2) =
1

2m1
|p1|2 +

1

2m2
|p2|2 + V (|q1 − q2|)

ω =
∑

i=1,2

dqxi
∧ dpxi

+ dqyi
∧ dpyi

+ ki dqxi
∧ dqyi

, (2.1)

where, for simplicity of notation, we introduce the constants

ki = −eiB
c

, i ∈ {1, 2} .
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The Poisson bracket associated with this symplectic form, {., .} : C∞(M)×C∞(M) → C∞(M),
is given by

{F,G} =
∑

i=1,2

∂F

∂qxi

∂G

∂pxi

− ∂G

∂qxi

∂F

∂pxi

+
∂F

∂qyi

∂G

∂pyi

− ∂G

∂qyi

∂F

∂pyi

−ki

(

∂F

∂pxi

∂G

∂pyi

− ∂G

∂pxi

∂F

∂pyi

)

. (2.2)

The Hamiltonian system defined by (2.1) is invariant under the group generated by the
following families of symmetries

φv (q1, q2,p1,p2) = (q1 + v, q2 + v,p1,p2)

φθ (q1, q2,p1,p2) = (Rθq1, Rθq2, Rθp1, Rθp2) , (2.3)

where v = (vx, vy) ∈ R
2 is a translation vector and Rθ is the rotation matrix in R

2, given by

Rθ =

(

cos θ − sin θ
sin θ cos θ

)

.

We define the (signed) gyrofrequency Ωi of each particle as

Ωi =
ki

mi
, i ∈ {1, 2} .

Proposition 2.1. The Hamiltonian System (2.1) has the following conserved quantities:

• Linear momentum P = (Px, Py) = p1 + p2 + J (k1q1 + k2q2).

• Angular momentum L =
∑

i=1,2 qi.Jpi − ki

2 |qi|2.
Furthermore, if the particles have equal gyrofrequencies Ω1 = Ω2, there exists another conserved
quantity W , given by

W = |p1 + p2|2 .

The following commutation relations between the conserved quantities given above hold:

{Px, Py} = k1 + k2 , {L,Px} = Py , {L,Py} = −Px ,
{W,L} = 0 , {W,Px} = 0 , {W,Py} = 0 .

Proof. The existence of a 1–parameter group of symmetries φλ : M → M (with parameter λ)
of a Hamiltonian system (M,ω,H) implies, by Noether’s theorem (see [10, 11]), the existence
of a conserved quantity J : M → R determined, up to an additive constant, by

ω

(

∂φλ

∂λ
, ξ

)

= dJ (ξ) ∀ ξ ∈ TM . (2.4)

Using the symmetry groups (2.3) and Noether’s theorem (2.4) we obtain the linear momentum
P = (Px, Py) and the angular momentum L.

Computing Hamilton’s equations and summing up the derivatives of the momenta of the two
particles, we get

ṗ1 + ṗ2 = −J

(

k1

m1
p1 +

k2

m2
p2

)

. (2.5)

Using (2.5), we obtain
d

dt
|p1 + p2|2 = 2

(

k1

m1
− k2

m2

)

p1.Jp2 . (2.6)

Hence, from (2.6) we obtain that W = |p1 + p2|2 is conserved provided Ω1 = Ω2.
The commutation relations can be obtained by inserting the conserved quantities L, Px, Py

and W in the Poisson bracket (2.2). �
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Remarks i) The conserved quantities P and L are, respectively, the usual linear and
angular momenta for the two-body problem with extra terms representing the presence
of the magnetic field and hence the effect of the Lorentz force on the particles.

ii) Combining Px and Py into the conserved quantity

P = |P |2 = Px
2 + Py

2 (2.7)

we obtain the following commutation relations

{L,P} = 0 , {L,W} = 0 , {P,W} = 0 , (2.8)

which show L, P and W to be in involution.
iii) Corresponding to W there is a “hidden” symmetry in the case of equal gyrofrequencies

Ω1 = Ω2, given by

q1 → q1 +
1

k1 + k2

[

R2(k1+k2)φ − Id2×2

]

J(p1 + p2)

q2 → q2 +
1

k1 + k2

[

R2(k1+k2)φ − Id2×2

]

J(p1 + p2)

p1 → p1 +
k1

k1 + k2

[

R2(k1+k2)φ − Id2×2

]

(p1 + p2)

p2 → p2 +
k2

k1 + k2

[

R2(k1+k2)φ − Id2×2

]

(p1 + p2) ,

where φ ∈ R.

If the interaction potential in (2.1) is chosen to be the Coulomb potential (1.1) (as we will
do in section 4) then the scaling transformation given by

qi = λqi , t = λ3/2 t , B = λ−3/2B ,

where λ > 0, transforms the Hamiltonian function and symplectic form (2.1) to H = λ−1H

and ω = λ1/2ω. We could then choose λ so that B = 1 by a rescaling of the level sets of the
Hamiltonian function in (2.1). Furthermore, choosing e1 and m1 to be units of charge and
mass, respectively, we could further reduce the number of parameters of (2.1) by two. The
Hamiltonian system (2.1) would then depend only on the charge e2, mass m2 and physical
constants c and ǫ0.

In the next section we will use the symmetries and conserved quantities discussed above in
order to derive reduced Hamiltonian Systems and respective reconstruction maps. The explicit
knowledge of the reconstruction map will enable us to recover the full dynamics from the reduced
dynamics.

3. Reduction

In this section we provide local coordinates that exhibit the reduction of the Hamiltonian
system (2.1) to 2 degrees of freedom. Moreover, we identify regimes of parameters and invariant
subsets of R

8 where the system can be proved to be integrable. To simplify notation we define
the combinations

M = m1 +m2 , m =
m1m2

m1 +m2
.

We separate our analysis into two cases: k1 + k2 6= 0 and k1 + k2 = 0.
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3.1. k1 + k2 6= 0. We start by noting that since k1 + k2 6= 0 the following combinations are
well-defined:

µ = k1 + k2 , e =
k1k2

k1 + k2
.

We make a change of coordinates given by

q = q1 − q2

p = e

(

1

k1
p1 −

1

k2
p2 +

1

2
J (q1 − q2)

)

f = p1 + p2 (3.1)

P = p1 + p2 + J (k1q1 + k2q2)

where q = (qx, qy) ∈ R
2 is the relative position of the two particles, p = (px, py) ∈ R

2 a
conjugate momentum, f = (fx, fy) ∈ R

2 and P = (Px, Py) ∈ R
2. Inverting (3.1) we obtain

q1 =
1

µ
J (f − P ) +

k2

µ
q

p1 =
k1

µ
f − e

2
Jq + p

q2 =
1

µ
J (f − P ) − k1

µ
q (3.2)

p2 =
k2

µ
f +

e

2
Jq − p .

Combining (3.2) with (2.1) , we obtain

H =
1

2m
|p|2 +

e2

8m
|q|2 +

e

2m
q.Jp +

k1Ω1 + k2Ω2

2µ2
|f |2 + ǫ (2p − eJq) .f + V (|q|)

ω = dqx ∧ dpx + dqy ∧ dpy +
1

µ
(dPx ∧ dPy − dfx ∧ dfy) , (3.3)

where

ǫ =
Ω1 − Ω2

2µ
(3.4)

measures the displacement from the set of parameters satisfying Ω1 = Ω2. The quantities L
and W are now given by

L = q.Jp +
1

2µ

(

|f |2 − |P |2
)

, W = |f |2 .

Since P is conserved we remove the − |P |2 /(2µ) term from the angular momentum, corre-
sponding to a change in the level set of the angular momentum, defining the following conserved
quantity

pθ = q.Jp +
1

2µ
|f |2 .

A final change of coordinates makes the system canonical and exhibits the reduction to two
degrees of freedom. It is given by writing

q = rer p = prer +
2µpθ−pφ

2µr eθ

f = p
1/2
φ e2µφ+θ

Px = µΠx Py = Πy ,

(3.5)

where θ is the direction of q, i.e.

er = cos θex + sin θey , eθ = − sin θex + cos θey , (3.6)



INTERACTION OF TWO CHARGES IN A UNIFORM MAGNETIC FIELD 7

with ex = (1, 0) ∈ R
2 and ey = (0, 1) ∈ R

2. The vector e2µφ+θ is defined in the same way as eθ

with θ replaced by 2µφ+ θ. The coordinate change given in (3.5) is singular at pφ = 0 since φ
is undefined in this case. There exists another coordinate singularity at r = 0, but since that
corresponds to collisions it will be excluded in the case of interaction of Coulomb type.

We obtain the following result.

Theorem 3.1. Let k1 + k2 6= 0. Then, under the change of coordinates given by

q1 = −JP

µ
+

1

µ

(

k2rer + p
1/2
φ Je2µφ+θ

)

q2 = −JP

µ
− 1

µ

(

k1rer − p
1/2
φ Je2µφ+θ

)

p1 =
k1

µ
p
1/2
φ e2µφ+θ +

(

prer +

(

e

2
r +

2µpθ − pφ

2µr

)

eθ

)

(3.7)

p2 =
k2

µ
p
1/2
φ e2µφ+θ −

(

prer +

(

e

2
r +

2µpθ − pφ

2µr

)

eθ

)

,

where

pθ = L+
1

2µ
P , (µΠx,Πy) = P , pφ = W ,

the Hamiltonian system (2.1) reduces to one with 2 degrees of freedom in the variables (r, pr, φ, pφ),
given by

H = H0(r, pr, pθ, pφ) + ǫH1 (r, pr, pθ, φ, pφ)

ω = dr ∧ dpr + dφ ∧ dpφ + dθ ∧ dpθ + dΠx ∧ dΠy , (3.8)

where H0(r, pr, pθ, pφ) is given by

H0 =
1

2m
pr

2 +
1

2m

(

2µpθ − pφ

2µr

)2

+
e2

8m
r2 +

e

2m

(

pθ +
pφ

2µ

)

+ V (r)

and H1 (r, pr, pθ, φ, pφ) is given by

H1 = pφ
1/2

((

er +
2µpθ − pφ

µr

)

cos (2µφ) − 2pr sin (2µφ)

)

+
k1 − k2

µ
pφ .

The reduced phase space for the Hamiltonian system (3.8) is the symplectic blow up of C
2

(see [12] for more details).
If the gyrofrequencies of the two particles are equal, i.e. Ω1 = Ω2, we have that ǫ = 0.

Applying Theorem 3.1 we see that φ is ignorable and so we obtain the following result.

Corollary 3.2. If Ω1 = Ω2, using the change of coordinates (3.7) given in Theorem 3.1 the
Hamiltonian system (2.1) reduces to one with 1 degree of freedom in the variables (r, pr), given
by

H = H0(r, pr, pθ, pφ)

ω = dr ∧ dpr + dφ ∧ dpφ + dθ ∧ dpθ + dΠx ∧ dΠy ,

where H0 is as given in Theorem 3.1.

3.2. k1 + k2 = 0. We treat now the case where the charges sum to zero. To simplify notation,
we define

κ = k1 = −k2 .
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We make the change of coordinates given by

q = q1 − q2

p =
1

2
(p1 − p2)

C = −1

2
J (q1 + q2) (3.9)

Π = κ (q1 − q2) − J (p1 + p2) ,

where q = (qx, qy) ∈ R
2 is the relative position of the two particles, p = (px, py) ∈ R

2 a
conjugate momentum, C = (Cx, Cy) ∈ R

2 and Π = (Πx,Πy) ∈ R
2. Inverting (3.9) we obtain

q1 = JC +
1

2
q

q2 = JC − 1

2
q

p1 =
1

2
JΠ − κ

2
Jq + p (3.10)

p2 =
1

2
JΠ − κ

2
Jq − p .

From (3.10) and (2.1), we get the Hamiltonian system

H =
1

2m
|p|2 +

κ2

8m
|q|2 +

(m2 −m1)κ

2m1m2
q.Jp + V (|q|)

−
(

κ

4m
q +

m2 −m1

2m1m2
Jp

)

.Π +
1

8m
|Π|2

ω = dqx ∧ dpx + dqy ∧ dpy + dCx ∧ dΠx + dCy ∧ dΠy ,

with the conserved quantities

P = JΠ , L = q.Jp + C.JΠ . (3.11)

The Hamiltonian system (3.11) is already reduced to 2 degrees of freedom by conservation of
Π and elimination of C. Unless Π = 0 (or equivalently P = 0), it is not possible to use the
angular momentum L to reduce further (3.11) since L depends on the cyclic variables C and
hence it is not a function defined on the reduced space. We make a final change of coordinates,
given by

q = rer , p = prer +
pθ

r
eθ , (3.12)

where er and eθ are as given in (3.6). We obtain the following result.

Theorem 3.3. Let k1 + k2 = 0. Then, under the change of coordinates given by

q1 = JC +
1

2
rer

q2 = JC − 1

2
rer

p1 =
1

2
P + prer +

(pθ

r
+
κr

2

)

eθ (3.13)

p2 =
1

2
P − prer −

(pθ

r
− κr

2

)

eθ ,

where

pθ = L− C.JΠ , Π = −JP ,
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the Hamiltonian system (2.1) reduces to one with 2 degrees of freedom in the variables (r, pr, θ, pθ),
given by

H = H0(r, pr, pθ) +H1 (r, pr, θ, pθ,Πx,Πy)

ω = dr ∧ dpr + dθ ∧ dpθ + dCx ∧ dΠx + dCy ∧ dΠy , (3.14)

where H0(r, pr, pθ) is given by

H0 =
1

2m
pr

2 +
1

2m

(pθ

r

)2
+
κ2

8m
r2 +

(m2 −m1)κ

2m1m2
pθ + V (r)

and H1 (r, pr, θ, pθ,Πx,Πy) is given by

H1 = −
((

κ

4m
r +

m2 −m1

2m1m2

pθ

r

)

er −
m2 −m1

2m1m2
preθ

)

.Π +
1

8m
|Π|2 .

If P = 0 then Π = 0 and hence H1, as given in the statement of Theorem 3.3, is identically
zero. From Theorem 3.3, we obtain the following result.

Corollary 3.4. If k1 + k2 = 0 and P = 0 then, using the change of coordinates (3.13) given
in Theorem 3.3 the Hamiltonian system (2.1) reduces to one with 1 degree of freedom in the
variables (r, pr), given by

H = H0(r, pr, pθ)

ω = dr ∧ dpr + dθ ∧ dpθ + dCx ∧ dΠx + dCy ∧ dΠy ,

where H0 is as given in Theorem 3.3.

4. Reconstructed Dynamics for a Coulomb potential

In this section we use the reduced Hamiltonian systems and the corresponding reconstruction
maps obtained in section 3 to provide a qualitative description of the possible types of dynamics
in the full eight-dimensional phase space in terms of the properties of the dynamics of the
reduced systems. Throughout this section we consider the interaction potential to be Coulomb

V (r) =
e1e2
4πǫ0

1

r
,

where r is the distance between the particles and ǫ0 is the permittivity of the vacuum. We
should remark, however, that the description given below still holds for a class of Coulomb-type
potentials of the form

W (r) =
e1e2
4πǫ0

f(r)

r
,

where f(r) is a positive bounded smooth function. A physically interesting particular case is

the screened Coulomb potential where f(r) = e−r/rD and rD is the Debye length.
The next two lemmas follow from an analysis of the form of the Hamiltonian functions given

in Theorem 3.1 and 3.3, respectively. We skip their proof.

Lemma 4.1. Let k1 + k2 6= 0 and consider the reduced Hamiltonian system given in Theorem
3.1. For every level set of the Hamiltonian function the dynamics of r and pφ are bounded for
all time.

Lemma 4.2. Let k1 + k2 = 0 and consider the reduced Hamiltonian system given in Theorem
3.3. For every level set of the Hamiltonian function the dynamics of r and pθ are bounded for
all time.

In the next lemma we provide a complete description for the orbits in the two-dimensional
phase space corresponding to the integrable reduced Hamiltonian systems given in Corollaries
3.2 and 3.4.
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Lemma 4.3. • Let Ω1 = Ω2. The reduced Hamiltonian system given in Corollary 3.2 has
a unique equilibrium. The equilibrium is elliptic and the rest of the reduced phase space
is filled by periodic orbits.

• Let k1 +k2 = 0, P = 0 and pθ 6= 0. The reduced Hamiltonian system given in Corollary
3.4 has a unique equilibrium. The equilibrium is elliptic and the rest of the reduced
phase space is filled by periodic orbits.

• Let k1 + k2 = 0, P = 0 and pθ = 0. The phase space of reduced Hamiltonian system
given in Corollary 3.4 is filled by orbits doubly asymptotic to a collision.

Proof. From Corollaries 3.2 and 3.4 we have that in the integrable regimes the Hamiltonian
system (2.1) reduces to one of one degree of freedom of the form

H = Apr
2 +

(

B

r

)2

+ Cr2 +
D

r

ω = dr ∧ dpr , (4.1)

where A and C are positive and D is non-zero. Let U(r) denote the effective potential

U(r) = Cr2 +

(

B

r

)2

+
D

r
.

Differentiating with respect to r we obtain

U ′(r) = 2Cr − 2B2

r3
− D

r2
, U ′′(r) = 2C +

6B2

r4
+

2D

r3
. (4.2)

We separate our analysis into three cases.

1): Assume that D > 0. Using (4.2) we obtain that U ′′(r) > 0 for every r > 0 and
hence U ′(r) is strictly increasing in that range. Since we also have that limr→0+ U ′(r) =
−∞ and limr→+∞ U ′(r) = +∞ we obtain that U ′(r) has a unique zero on (0,+∞)
corresponding to an elliptic equilibrium of (4.1). Apart from the equilibrium, all the
level sets of H are regular and closed, so the orbits of (4.1) are periodic.

2): Assume that D < 0 and B 6= 0 and rewrite U ′(r) as

U ′(r) =
1

r3
g(r) ,

where g(r) = 2Cr4 − 2B2 − Dr. Noting that g(r) is strictly increasing in [0,+∞),
g(0) < 0 and limr→+∞ g(r) = +∞ we obtain that g(r) has a unique zero in (0,+∞)
which implies that U ′(r) has a unique zero on (0,+∞). Since limr→0+ U ′(r) = −∞ and
limr→+∞ U ′(r) = +∞ we obtain that U ′(r) has a unique zero on (0,+∞) corresponding
to an elliptic equilibrium of (4.1). Apart from the equilibrium, all the level sets of H
are regular and closed, so the orbits of (4.1) are periodic.

3): Assume that D < 0 and B = 0. From (4.2) we obtain that U ′(r) > 0 for every
r > 0 and hence U(r) is strictly increasing in that range. Furthermore, we have that
limr→0+ U(r) = −∞ and limr→+∞ U(r) = +∞. In this case (4.1) does not have any
equilibria and all the orbits in the reduced phase space are doubly asymptotic to a
collision.

�

By conservation of the linear momenta P and putting together Lemma 4.1 and the recon-
struction map (3.7) given in the statement of Theorem 3.1, we obtain the following result.

Corollary 4.4. Let k1 + k2 6= 0. Then the positions of the two particles are bounded for all
time. More precisely, there exists D > 0 such that for all t ∈ R the following inequalities hold.

|q1(t)| < D , |q2(t)| < D .
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For any function v of time we define the average value by

〈v〉 = lim
T→∞

1

T

∫ T

0
v(t)dt

if the limit exists. By Birkhoff’s ergodic theorem, if v is the value of a continuous function on
the state space evaluated along an orbit of a volume-preserving system of finite volume, the
limit exists for the orbit of almost every point.

Corollary 4.5. If k1 + k2 = 0 and P 6= 0, then although q1 − q2 is bounded the motion of q1

and q2 is typically unbounded: they drift with a non-zero average velocity.

Proof. From (3.14), we compute

Ċ =

(

∂H

∂Πx
,
∂H

∂Πy

)

=
1

4m
Π −Rθ(t) v (r(t), pr(t), pθ(t)) , (4.3)

where the evolution of θ is determined by

θ̇ =
∂H

∂pθ
=

1

m

pθ

r2
+
m2 −m1

2m1m2

(

κ− er.Π

r

)

, (4.4)

Rθ(t) denotes the rotation by the angle θ(t) and v (r, pr, pθ) is the vector in R
2 given by

v (r, pr, pθ) =

(

κ

4m
r +

m2 −m1

2m1m2

pθ

r
,−m2 −m1

2m1m2
pr

)

.

From (4.3) we obtain that

〈Ċ〉 =
1

4m
Π − lim

T→∞

1

T

∫ T

0
Rθ(t) v (r(t), pr(t), pθ(t))dt , (4.5)

and hence we obtain that for those orbits with 〈Ċ〉 6= 0, C(t) grows like 〈Ċ〉t. For P 6= 0
the third term of (4.4) induces a preference for θ to be in the direction of Π, so it would be
an unlikely accident for the second term of (4.5) to exactly cancel the first. From Lemma 4.2
and the reconstruction map (3.13) we get that the motion is unbounded with average velocity

J〈Ċ〉. �

Remarks i) If k1 + k2 = 0, P = 0 and pθ 6= 0, then Π/(4m) = 0, the reduced motion is

periodic with period T depending on the values of pθ and H and θ̇ is independent of θ,
so the second term in (4.5) vanishes if

α =

∫ T

0

1

m

pθ

r2(t)
+

(m2 −m1)κ

2m1m2
dt /∈ 2πZ .

Now α is an analytic function of the value h of H (above its minimum) and is not
identically 2πN for any N ∈ Z (as h tends to infinity, for every non-zero pθ the period T
tends to 4πm/|κ| and α approaches the value sign(κ)2π(m2 −m1)/M in a non-constant
way), so there are at most isolated values of h (given pθ) for which α ∈ 2πZ. If these

orbits are avoided then 〈Ċ〉 = 0 and the positions of the two particles are bounded for
all time.

ii) Evaluating the integral of Ċ over the level sets of the energy and conserved quantites,
with respect to the invariant measure induced from Liouville measure, we obtain that
it is zero when we restrict to level sets with P = 0. Differentiating that integral with
respect to Πx and Πy we obtain that at least one of these partial derivatives is nonzero
when evaluated at P = 0. It follows that in a small neighbourhood of the level sets
P = 0 the integral of Ċ over the level sets of the energy and conserved quantites is
non-zero. Hence, the drift velocity 〈Ċ〉 must be nonzero for a subset of positive measure.
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One of the key steps for the proof of the existence of chaotic orbits is proving the existence
of an abundant number of trajectories connecting two close approaches between the particles.
The next two lemmas describe the set of parameters and level sets of the conserved quantities
where such trajectories might exist. We skip the proofs of these lemmas, which follow from an
analysis of the Hamiltonian functions given in Theorems 3.1 and 3.3.

Lemma 4.6. Let k1 + k2 6= 0. Then

• if k1k2 > 0, or k1k2 < 0 and the value of the conserved quantity pθ is fixed so that
µpθ < 0, the distance between the two particles is bounded away from zero, i.e. there
exists d > 0 such that r(t) > d for all t ∈ R.

• if k1k2 < 0 and the value of the conserved quantity pθ is fixed so that µpθ is positive,
the distance r between the two particles can be arbitrarily close to 0, i.e. the level sets
of the conserved quantities include collisions. Furthermore, pr → ∞ and pφ → 2µpθ as
r → 0.

Lemma 4.7. Let k1 + k2 = 0. Then

• if P = 0 and pθ 6= 0, the distance between the two particles is bounded away from zero,
i.e. there exists d > 0 such that r(t) > d for all t ∈ R.

• if P = 0 and pθ = 0, the distance r between the two particles can be arbitrarily close to
0, i.e. the level sets of the conserved quantities include collisions. Furthermore, pr → ∞
as r → 0.

• if P 6= 0, the distance r between the two particles can be arbitrarily close to 0, i.e.
the level sets of the conserved quantities include collisions. Furthermore, pr → ∞ and
pθ → 0 as r → 0.

The dynamics of the Hamiltonian System (2.1) are completely characterized by the dynamics
of the reduced Hamiltonian systems and their cyclic variables (θ and φ in the case k1 + k2 6= 0,
θ and C if k1 + k2 = 0) given in Theorems 3.1 and 3.3 and the respective reconstruction maps.
The full dynamics correspond to Euclidean extensions, given by the reconstruction maps, of the
reduced dynamics. Corollaries 4.4 and 4.5 are consistent with the general theory of Euclidean
invariant Hamiltonian systems (see [13]).

The reduced Hamiltonian systems exhibit a rich dynamical behaviour:

• In the integrable regimes the energy levels are foliated by periodic orbits.
• Close to the integrable regimes most of the periodic orbits cease to exist but almost all

orbits in the energy levels are quasiperiodic and hence the dynamics still look regular.
• As we will prove in the next section, for opposite signs of charge (except for the case

Ω1 + Ω2 = 0) there is chaotic dynamics which, as said in the Introduction, implies
non-integrability for this system.

Using the reconstruction maps we obtain that

1): If k1 +k2 6= 0 periodic and quasiperiodic base dynamics lift to quasiperiodic dynamics
under the reconstruction map (figures 1a-1c). In this case the dynamics are, generically,
quasiperiodic with 3 rationally independent frequencies. The particles rotate with these
3 frequencies about a fixed centre determined by the linear momenta.

2): If k1 + k2 = 0 periodic and quasiperiodic base dynamics lift to possibly unbounded
motion corresponding to a combination of a drift and quasiperiodic dynamics. The
quasiperiodic dynamics have, generically, 2 rationally independent frequencies.

3): Chaotic dynamics lift to chaotic dynamics under the reconstruction maps. The motion
is always bounded if k1 + k2 6= 0 (figures 1d-1f) and typically unbounded otherwise
(figures 1g-1i).
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Figure 1: Three distinct dynamical behaviours. For all the figures we fix the parameters e1 =
m1 = 1, B = c = 1 and ǫ0 = 0.1 and initial conditions qy1

(0) = qy2
(0) = py1

(0) = py2
(0) = 0

and px1
(0) = px2

(0) = 1. On the left and centre columns we have plots of projections of the
reduced dynamics on the r−pr and φ−pφ planes respectively (r−pr and θ−pθ on the bottom
line) and on the right column the respective reconstructed dynamics i.e., trajectories of the two
particles in R

2, where the thin (black) trajectory corresponds to the first particle and the thick
(red) trajectory corresponds to the second particle. On the top figures e2 = 2, m2 = 6 and
qx1

(0) = −qx2
(0) = 2, on the centre figures e2 = −8, m2 = π and qx1

(0) = −qx2
(0) = 1 and on

the bottom figures e2 = −1, m2 = 5 and qx1
(0) = −qx2

(0) = 1.

5. Nonintegrability of (2.1) with a Coulomb-type potential and opposite signs

of charge

In this section we will prove that the Hamiltonian system (2.1) is, for opposite signs of charge
(except for the case Ω1 + Ω2 = 0), not integrable. We use a method developed in [9] to prove
that there exist regimes of parameters and energy for which there is an invariant subset where
the system contains a suspension of a subshift of finite type and has positive entropy. Roughly,
this corresponds to the existence of a horseshoe in the dynamics and hence, from a result in
[14] we obtain that, for the two degree of freedom Hamiltonian systems in Theorems 3.1 and
3.3, there is no other analytic conserved quantity independent of the Hamiltonian function.

By Lemma 4.3, the integrable case Ω1 = Ω2 described in Corollary 3.2 does not have any
saddle point in its reduced phase space, so there are no possibilities for a simple use of Melnikov
method to obtain chaos for nearby Ω1 6= Ω2.

The condition of opposite signs for the charges is needed to guarantee, by Lemmas 4.6
and 4.7, arbitrarily close approaches on the level sets of the conserved quantities of (2.1). The
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construction of a large set of collision orbits will form an important part in the proof of existence
of chaotic orbits.

Let Q = R
2 and consider a two degrees of freedom canonical Hamiltonian system with phase

space M = T ∗(Q\{0}) and Hamiltonian function Hδ : M → R, given by

Hδ = H + δV (q) , δ ∈ R . (5.1)

We assume that H is C4 on M and has the the form

H =
1

2
|p|2 +W (q,p) , (5.2)

where W : M → R is a C4 function of M , such that

W (q,p) = W1 (q) +W2 (q.Jp) + (a.q + b.p)W3 (q.Jp) , (5.3)

where W1 : Q→ R and W2,W3 : R → R are at least C4 functions and a, b are constant vectors
in R

2. Furthermore, we assume that, V : Q→ R is of the form

V (q) = −f (q)

|q| ,

where f : Q → R is a C4 function with f (0) 6= 0. We will study the Hamiltonian system
(5.1), for small δ > 0, as a perturbation of the canonical Hamiltonian system with Hamiltonian
function (5.2). The main example we are concerned with is the interaction of two charges in a
uniform magnetic field. In Lemma 5.2 we will prove that the Hamiltonian system (2.1) can be
reduced to a canonical Hamiltonian system of the form (5.1).

We consider energies E satisfying

i): the domain D = {q ∈ Q : W (q,0) < E} contains 0,

ii): E > W (0,0) − (|b|W3(0))2 /2,

and study the system (5.1) on the energy level {Hδ = E} ⊂ M . We say that a trajectory
γ : [0, τ ] → D is a collision trajectory of the Hamiltonian system (5.2) if γ (0) = 0, γ (τ) = 0 and
γ(t) 6= 0 for every t ∈ (0, τ). Let q (λ, t) ,p (λ, t) represent the general solution of the Hamilton-
ian system (5.2), where λ is a parameter of dimension 2 dimQ. ThenH (q (λ, t) ,p (λ, t)) = h (λ)
for some function h. Collision orbits with energy E correspond to solutions of the system of
equations

q (λ, 0) = 0 , q (λ, τ) = 0 , h(λ) = E , (5.4)

in the variables λ, τ . A solution of (5.4) is nondegenerate if the rank of the derivative of (5.4)
at the solution is maximal, i.e. equals 2 dimQ+1. The definition of nondegeneracy given above
is suitable for verification of nondegeneracy on concrete examples. For completeness we give
below two equivalent formulations of nondegeneracy that will be useful later in the paper. See
[9] and references therein for more details.

i) We say that a collision orbit γ : [0, τ ] → D is non-degenerate if the points γ(0) and γ(τ)
are not conjugate along γ on the energy level {H = E}.

ii) Let Ω be the space of W 1,2 curves u : [0, 1] → Q such that u(0) = u(1) = 0. Any point
(u, τ) ∈ Ω × R

+ defines a curve γ : [0, τ ] → Q by γ(t) = u(t/τ). Let (γ(t), ξ(t)) be the
orbit in phase space corresponding to the trajectory γ(t) and define its action as

F (u, τ) =

∫ τ

0
ξ(t).

∂H

∂p
(γ(t), ξ(t)) dt .

Then F is a C2 functional on Ω × R
+ and its critical points correspond to trajectories

of energy E = H (γ(t), ξ(t)) connecting two collisions. A collision orbit γ : [0, τ ] → D is
non-degenerate if (u, τ), where u(t) = γ (tτ) is a non-degenerate critical point for F .
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Let K be a finite set of non-degenerate collision trajectories of (5.2). Denote such trajectories
by γk : [0, τk] → D, k ∈ K. A sequence (γki

)i∈Z
of non-degenerate collision trajectories is

called a chain if there exists ki ∈ K such that γ̇ki
(τki

) 6= ±γ̇ki+1
(0) for all i ∈ Z. Let Wk be a

small neighbourhood of γk ([0, τk]). We say that a trajectory γ : R → D\{0} shadows the chain
(γki

)i∈Z
if there exists an increasing sequence (ti)i∈Z such that γ ([ti, ti+1]) ⊂Wki

.

Theorem 5.1. Given a finite set K of non-degenerate collision orbits, there exists δ0 > 0 such
that for all δ ∈ (0, δ0] and any chain (γki

)i∈Z
, ki ∈ K, the following statements hold.

• there exists a trajectory γ : R → D\{0} of energy E for the canonical Hamiltonian
system determined by (5.1) shadowing the chain (γki

)i∈Z
, and it is unique (up to a time

shift) if the neighbourhoods Wki
of γki

(0, τki
) in D are chosen small enough.

• The orbit γ converges to the chain of collision orbits as δ → 0, i.e. there exists an
increasing sequence (ti)i∈Z

such that

max
ti≤t≤ti+1

dist (γ(t), γki
([0, τki

])) ≤ Cδ ,

where the constant C > 0 depends only on the set K of collision orbits.
• the orbit γ avoids collision by a distance of order δ, i.e. there exists a constant c ∈ (0, C),

depending only on K such that

cδ ≤ min
ti≤t≤ti+1

dist (γ(t),0) .

A more precise version of Theorem 5.1 is given in Theorem 5.11 of section 5.3. Theorem 5.1
implies that there is an invariant subset in {Hδ = E} on which the system contains a suspension
of a subshift of finite type (see [15, 16]). The topological entropy is positive provided the graph
with the set of vertices K and the set of edges

G =
{

(k, l) ∈ K2 : γ̇k (τk) 6= ±γ̇l (0)
}

(5.5)

has a connected branched subgraph. In this last case Theorem 5.1 implies nonintegrability, i.e.
the Hamiltonian system determined by (5.1) does not have any more analytic first integrals
apart from the Hamiltonian function (see [14]). Theorem 5.1 generalizes the main Theorem in
[9] where function W in (5.3) was allowed to depend on p through only a linear term in p. This
Theorem still holds for Hamiltonian systems of the form (5.1) with n degrees of freedom and
for potentials V with several Newtonian singularities and for kinetic energy given by a general
Riemannian metric (see [9] for more details). For simplicity of exposition however, we choose
not to deal with such a general system here. The proof of Theorem 5.1 occupies sections 5.3–5.4
and follows the technique developed in [9] up to some minor modifications that are due to the
chosen dependence of the function W on the momenta p.

5.1. Application to the problem of the interaction of two charges in a uniform
magnetic field. In this section we start by proving that the Hamiltonian system (2.1) with
a Coulomb interaction potential can be reduced to one of the form (5.1). Then, we use the
collision orbits constructed in section 5.2 and Theorem 5.1 to prove the existence of chaotic
orbits in the interaction of two charges in a uniform magnetic field.

Lemma 5.2. The Hamiltonian System (2.1) can always be reduced to a two degrees of freedom
canonical Hamiltonian System of the form (5.1).

Proof. As in section 3 we separate the proof into two cases. If k1 + k2 = 0, apply the change of
coordinates given by

q 7→ 1

m1/2
q , p 7→ m1/2p (5.6)
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to the Hamiltonian system given by (3.11) to obtain one in the form (5.1) with

W1 (x) =
κ2

8m2
|x|2 +

1

8m
|Π|2 , W2 (ℓ) =

(m2 −m1)κ

2m1m2
ℓ , W3 (ℓ) = 1 ,

where

a = − κ

4m3/2
Π , b =

(m2 −m1)

2m1/2M
JΠ , δ =

|e1e2|m1/2

4πǫ0
, f(q) = 1 .

If k1 + k2 6= 0, we consider the three degrees of freedom Hamiltonian system given by (3.3).
This system has the following symmetry

φθ (q,p,f) = (Rθq, Rθp, Rθf) , (5.7)

with an associated conserved quantity L = q.Jp + |f |2 /(2µ). To quotient by the symmetry
group (5.7), we use the equivalence relation between elements of the phase space (already
reduced by translations), given by

(q,p,f) ∼
(

q′,p′,f ′)

if and only if there exist θ ∈ S1 such that (q′,p′,f ′) = (Rθq, Rθp, Rθf), and choose for repre-
sentative elements of the equivalence classes of the above relation elements satisfying fy = 0,
fx ≥ 0, and use conservation of L to obtain

fx =
√

2µ (L− q.Jp) .

Applying the above reduction to the Hamiltonian system (3.3), we get the following two degrees
of freedom canonical Hamiltonian system in the variables (q,p):

H =
1

2m
|p|2+

e2

8m
|q|2+ΛL+

( e

2m
− Λ

)

q.Jp+ǫ (2px − eqy)
√

2µ (L− q.Jp)+V (|q|) , (5.8)

where

Λ =
k1Ω1 + k2Ω2

µ
.

Apply the change of coordinates (5.6) to the Hamiltonian system determined by (5.8) to obtain
one of the form (5.1) with

W1 (x) =
e2

8m2
|x|2 + ΛL , W2 (ℓ) =

( e

2m
− Λ

)

ℓ , W3 (ℓ) = ǫ
√

2µ (L− ℓ) ,

where

a =
(

0,− e

m1/2

)

, b =
(

2m1/2, 0
)

, δ =
|e1e2|m1/2

4πǫ0
, f(q) = 1 .

�

Theorem 5.3. Let e1 and e2 be non-zero and have opposite signs. Furthermore, assume that
e1 + e2 is non-zero and fix values ℓ ∈ R of L and h > 0 of H such that

ξ =
(k1 + k2)l

h
∈ (0,m1 +m2) . (5.9)

Then,

• if Ω1 and Ω2 are rationally independent then for every ξ ∈ (0,m1 + m2) there are
infinitely many non-degenerate collision trajectories of energy h and for any finite set
K of them there exists δ0 > 0 such that for every chain (γki

)i∈Z
, ki ∈ K, and δ ∈ (0, δ0)

there is a unique trajectory of energy h near the collision chain and converging to the
chain as δ → 0.

• If |Ω1/Ω2| is rational, say N1/N2 in lowest terms, then
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(i) if min{m1,m2} ≥ m′ and N1 > 2 (resp. N2 > 2) there is a subinterval (m1,m
∗)

(resp. (m2,m
∗)) of (0,m1+m2) such that for all ξ ∈ (m1,m

∗) (resp. ξ ∈ (m2,m
∗))

there are at least 4 non-degenerate collision trajectories of energy h, and the set
of chains formed from them has positive entropy. Furthermore, if N2 − 2 < N1

or N1 − 2 < N2 there is a subinterval (m′′,m′) of (0,m1 + m2) such that for all
ξ ∈ (m′′,m′) there are at least 4 non-degenerate collision trajectories of energy h,
and the set of chains formed from them has positive entropy.

(ii) if m2 < m′ < m1 (resp. m1 < m′ < m2) and N1 > 2 (resp. N2 > 2) there is a
subinterval (m1,m

∗) (resp. (m2,m
∗)) of (0,m1+m2) such that for all ξ ∈ (m1,m

∗)
(resp. ξ ∈ (m2,m

∗)) there are at least 4 non-degenerate collision trajectories of
energy h, and the set of chains formed from them has positive entropy.

(iii) if m′ < min{m1,m2} there is a subinterval (m′,min{m1,m2}) of (0,m1 +m2) with
2(N1 +N2 − 1) non-degenerate collision trajectories of energy h.

Given a finite set K of non-degenerate collision trajectories, there exists δ0 > 0 such
that for every chain (γki

)i∈Z
, ki ∈ K, and δ ∈ (0, δ0) there is a unique trajectory of

energy h near the collision chain and converging to the chain as δ → 0.

Proof. The result follows from Theorem 5.1 above and Lemmas 5.6, 5.8 and 5.9 whose state-
ments and proofs are in section 5.2. Positivity of (k1 +k2)ℓ and Lemma 4.6 allow the possibility
of collisions. The condition that (k1 + k2)ℓ/h < (m1 + m2) guarantees the hyperbolicity of
collisions, i.e., hyperbolicity of the equilibrium of the regularized system. �

Theorem 5.4. Let e1 and e2 be non-zero and assume that e1 + e2 = 0. Fix the values p ∈ R
2

of P and h > 0 of H such that

ξ =
|p|2
2h

∈ (0,m1 +m2) . (5.10)

Then,

• if Ω1 and Ω2 are rationally independent then for every ξ ∈ (0,m1 + m2) there are
infinitely many non-degenerate collision trajectories of energy h, and for any finite set
K of them there exists δ0 > 0 such that for every chain (γki

)i∈Z
, ki ∈ K, and δ ∈ (0, δ0)

there is a unique trajectory of energy h near the collision chain and converging to the
chain as δ → 0.

• If |Ω1/Ω2| is rational and not equal to 1, say N1/N2 in lowest terms, for all ξ ∈ (0,m1 +
m2) there is at least one chain and for ξ ∈ (0,min{m1,m2}) there is a set of chains
with entropy at least log(N1 +N2 −1). For each finite set K of non-degenerate collision
trajectories there exists δ0 > 0 such that for every chain (γki

)i∈Z
, ki ∈ K, and δ ∈ (0, δ0)

there is a unique trajectory of energy h near the collision chain and converging to the
chain as δ → 0.

Proof. The result follows from Theorem 5.1 above and Lemmas 5.7, 5.8 and 5.9 whose state-
ments and proofs are in section 5.2. The fact that p is non-zero together with Lemma 4.7 allows
the possibility of collisions (if P = 0 then the particles move in circles with the same centre).
The condition |p|2/2h < (m1 +m2) guarantees the hyperbolicity of collisions, i.e., hyperbolicity
of the equilibrium of the regularized system. �

Remark Note that in the case Ω1 = −Ω2, Theorem 5.3 for k1 + k2 6= 0 produces only one
orbit (in fact it is periodic with two near collisions per period) and Theorem 5.4 for k1 + k2 = 0
produces none (because we will see in the proof of Lemma 5.9 that in this case the direction
change condition can not be satisfied). For all other negative frequency ratios, Theorems 5.3
and 5.4 produce chaos.



18 D. PINHEIRO AND R. S. MACKAY

5.2. Construction of Collision orbits. In this section we prove the existence of a countably
infinite subset of collision orbits for the Hamiltonian System (2.1) after reduction to the form
(5.1), as given in Lemma 5.2, for δ = 0. Furthermore, we prove that the collision orbits are non-
degenerate and satisfy the direction change condition on the reduced space. This construction
combined with Theorem 5.1 implies Theorems 5.3 and 5.4 .

The general solution for the Hamiltonian system (2.1) with zero interaction potential can be
written as

qi(t) = Ri + ρiJeΩit+φi
, pi(t) = kiρieΩit+φi

, (5.11)

for i ∈ {1, 2}, where Ri = (Rxi
, Ryi

) ∈ R
2 are the guiding centres of the particles, ρi ≥ 0

their gyroradii, Ωi ∈ R their gyrofrequencies, φi ∈ S1 their initial phases and eΩit+φi
=

(− sin(Ωit+ φi), cos(Ωit+ φi)). Substituting (5.11) in the expressions for the Hamiltonian func-
tion given in (2.1) and the linear and angular momenta given in Proposition 2.1, we obtain the
conserved quantities of the Hamiltonian system (2.1) as functions of the parameters introduced
above

H =
k1Ω1

2
ρ1

2 +
k2Ω2

2
ρ2

2 (5.12)

P = J (k1R1 + k2R2) (5.13)

L =
∑

i=1,2

ki

2

(

ρ2
i − |Ri|2

)

. (5.14)

By Lemma 5.2, on level sets {H = h, L = ℓ,P = p} of the Hamiltonian and the conserved
quantities, to each orbit of the Hamiltonian system (2.1), satisfying the conditions

q1(0) = q2(0) , q1(τ) = q2(τ) , (5.15)

for some τ > 0 and such that q1(t) 6= q2(t) for every 0 < t < τ , there exists a collision orbit

q(t) =
1

m1/2
(q1(t) − q2(t)) ,

of the corresponding reduced Hamiltonian system, given in Lemma 5.2, on the level set with
energy h and fixed parameters L = ℓ and P = p such that

q(0) = 0 , q(τ) = 0 ,

for some τ > 0 and q(t) 6= 0 for every 0 < t < τ .
The next lemma follows by some simple geometric arguments. We skip its proof.

Lemma 5.5. Assume that the trajectories of the two particles are given by (5.11). Then

• the images of the trajectories intersect in two distinct points if and only if the inequalities

|ρ1 − ρ2| < |R1 − R2| < ρ1 + ρ2 .

are satisfied. Furthermore, the intersections are transversal and φ2 − φ1 6= 0 (mod π).
• if Ω1 and Ω2 are rationally independent then the two particles collide at most once at

each of the intersection points.

We now prove the existence of a large set of collision orbits of (2.1) on fixed level sets of the
conserved quantities. In the construction we choose these collision orbits to connect distinct
collision points since collision orbits connecting a point to itself are possible only for rationally
dependent gyrofrequencies. Moreover, such orbits turn out to be degenerate. As before, we
separate the analysis into two cases: k1 + k2 6= 0 and k1 + k2 = 0.
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5.2.1. Case k1 + k2 6= 0.

Lemma 5.6. Let e1 and e2 be such that e1 + e2 6= 0 and e1e2 < 0 and fix ℓ ∈ R and h > 0 such
that

ξ =
(k1 + k2)l

h
∈ (0,m1 +m2) . (5.16)

Then,

• if Ω1 and Ω2 are rationally independent then for every ξ ∈ (0,m1 + m2) there are
infinitely many SE(2) equivalence classes of orbits of the Hamiltonian system (2.1)
with zero interaction on the level set

{

(q1, q2,p1,p2) ∈ R
8 : H = h , L = ℓ ,P = p

}

(5.17)

satisfying (5.15) with no early collisions.
• If |Ω1/Ω2| is rational, say N1/N2 in lowest terms, then:

(i) if min{m1,m2} ≥ m′ and N1 > 2 (resp. N2 > 2) there is a subinterval (m1,m
∗)

(resp. (m2,m
∗)) of (0,m1+m2) such that for all ξ ∈ (m1,m

∗) (resp. ξ ∈ (m2,m
∗))

there are at least 4 SE(2) equivalence classes of orbits of the Hamiltonian system
(2.1) with zero interaction on the level set (5.17) satisfying (5.15) with no early
collisions. Furthermore, if N2 − 2 < N1 or N1 − 2 < N2 there is a subinterval
(m′′,m′) of (0,m1 +m2) such that for all ξ ∈ (m′′,m′) there are at least 4 of such
equivalence classes.

(ii) if m2 < m′ < m1 (resp. m1 < m′ < m2) and N1 > 2 (resp. N2 > 2) there is a
subinterval (m1,m

∗) (resp. (m2,m
∗)) of (0,m1+m2) such that for all ξ ∈ (m1,m

∗)
(resp. ξ ∈ (m2,m

∗)) there are at least 4 of such equivalence classes.
(iii) if m′ < min{m1,m2} there is a subinterval (m′,min{m1,m2}) of (0,m1 +m2) with

2(N1 +N2 − 1) of such equivalence classes.

Proof. We fix the values of the masses m1 > 0 and m2 > 0 and charges e1 and e2 such that
e1e2 < 0 and e1 + e2 6= 0. We assume that k1 + k2 > 0, as the case k1 + k2 < 0 can be
transformed to this by time reversal. Without loss of generality we assume that k1 > 0 and
k2 < 0. With this choice we also have Ω1 = k1/m1 > 0 and Ω2 = k2/m2 < 0.

From (5.13) we get that the centre of charge of the guiding centres

k1R1 + k2R2

k1 + k2
=

−JP

k1 + k2

is a constant. So by a translation we can assume it and P are 0. This implies the relation

R2 = −k1

k2
R1 . (5.18)

We remove the symmetry associated with the conservation of angular momentum using a ro-
tation that makes the gyrocentre of the first particle R1 = (Rx1

, Ry1
) a horizontal vector,

i.e.

Ry1
= 0 , Rx1

> 0 . (5.19)

Let us treat the case where at time t = 0 the two charges are at the intersection point of the
two circles above the horizontal axis. We will treat the other case similarly. The situation is
pictured in Fig. 2.

From the sine-rule we obtain

ρ1 =
r sinφ2

sin(φ1 + φ2)
, ρ2 =

r sinφ1

sin(φ1 + φ2)
, (5.20)

where φ1 and φ2 belong to the set

S =
{

(φ1, φ2) ∈ S1 × S1 : 0 < φ1 < π, 0 < φ2 < π − φ1

}

, (5.21)
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ρ2ρ1

φ2φ1

e2

e1

Rx2
Rx1

Figure 2: Trajectories of the two charges between collision points (for k1 ≥ |k2|).

and r denotes the distance between the guiding centres of the particles and satisfies

Rx1
= − k2

k1 + k2
r . (5.22)

From (5.12) and (5.20) we obtain

H =
r2

2 sin2(φ1 + φ2)

(

k1Ω1 sin2 φ2 + k2Ω2 sin2 φ1

)

. (5.23)

Similarly, using (5.14), (5.18), (5.20) and (5.22) we obtain that

L =
r2

2 sin2(φ1 + φ2)

(

k1 sin2 φ2 + k2 sin2 φ1 −
k1k2

k1 + k2
sin2(φ1 + φ2)

)

. (5.24)

We define the function

Ξ =
(k1 + k2)L

H
=

(k1 + k2)
(

k1 sin2 φ2 + k2 sin2 φ1

)

− k1k2 sin2(φ1 + φ2)

k1Ω1 sin2 φ2 + k2Ω2 sin2 φ1
(5.25)

and note that Ξ has range (0,m1 +m2) and takes the values m1, m2 and

m′ =
(k1 + k2)

2

k1Ω1 + k2Ω2
(5.26)

along the boundaries φ1 = 0, φ2 = 0 and φ1+φ2 = π respectively. Note thatm′ < max {m1,m2}
(in particular, since we are assuming k1 +k2 > 0 then m′ < m1) and if m1 = m2 then m′ < m1.
The supremum m1+m2 of Ξ is approached along the line φ2/φ1 = |Ω2|/Ω1 to (0, 0). Its infimum
0 is approached along the line φ2/(π − φ1) = |k2|/k1 to (π, 0). See Fig. 3 for plots of the level
sets of Ξ.

From an analysis of Fig. 2 we get that the time τ > 0 in (5.15) for the particles to collide at
the intersection point lying below the horizontal line must satisfy the conditions

τ =
2πn1 − 2φ1

Ω1
=

2πn2 − 2φ2

|Ω2|
, (5.27)

for some integers n1, n2 ≥ 1.
If the gyrofrequencies Ω1 and Ω2 are rationally independent then, by Lemma 5.5, there are

no collisions for times t ∈ (0, τ). On the other hand, if Ω1 and Ω2 are rationally dependent,
say Ω1/|Ω2| = N1/N2 in lowest terms, then early collisions might occur, i.e, there might exist



INTERACTION OF TWO CHARGES IN A UNIFORM MAGNETIC FIELD 21

φ1

φ2

0 0.5

0.5

1

1

1.5

1.5

2

2

2.5

2.5

3

3

(a)
φ1

φ2

0 0.5

0.5

1

1

1.5

1.5

2

2

2.5

2.5

3

3

(b)
φ1

φ2

0 0.5

0.5

1

1

1.5

1.5

2

2

2.5

2.5

3

3

(c)

φ1

φ2

0 0.5

0.5

1

1

1.5

1.5

2

2

2.5

2.5

3

3

(d)
φ1

φ2

0 0.5

0.5

1

1

1.5

1.5

2

2

2.5

2.5

3

3

(e)

Figure 3: Contour plots of Ξ in the set S for k1 > |k2|. From left to right, on the top line
are the cases m′ < m1 < m2 (3a), m′ < m1 = m2 (3b) and m′ < m2 < m1 (3c) and on the
bottom line are the cases m′ = m2 < m1 (3d) and m2 < m′ < m1 (3e). The contour plots
are qualitatively the same for all parameters in these ranges; the values used in the figures are
k1 = m1 = 1 and (k2,m2,m

′) = (−1/2, 2, 2/9) (3a), (−1/2, 1, 1/5) (3b), (−1/2, 1/2, 1/6) (3c),
(−1/4, 1/2, 1/2) (3d), (−1/4, 1/4, 9/20) (3e).

0 < t∗ < τ such that q1(t
∗) = q2(t

∗). It suffices, however, to reduce (n1, n2) by the first integer
multiple of (N1, N2) to make n1 ≤ N1 or n2 ≤ N2 (maintaining n1, n2 ≥ 1) to obtain a collision
trajectory with the same start and end as before with no early collisions.

Also from (5.27) we get the relation

φ2 = |Ω2|
(

C(n1, n2) +
φ1

Ω1

)

, (5.28)

where C (n1, n2) is given by

C (n1, n2) =
πn2

|Ω2|
− πn1

Ω1
.

The case where at t = 0 the two particles are at the lower intersection of Fig. 2 is similar,
but

τ =
2φ1 + 2πn′1

Ω1
=

2φ2 + 2πn′2
|Ω2|

for some integers n′1, n
′
2 ≥ 0. So the two cases can be combined by allowing (n1, n2) in (5.27)

to range over N =
{

(n1, n2) ∈ Z
2 : n1, n2 ≥ 1 or n1, n2 ≤ 0

}

(reduced suitably by multiples of
(N1, N2) in the rational case to avoid early collisions).
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We fix a level set of Ξ = ξ, where ξ ∈ (0,m1+m2). Collision orbits correspond to intersections
of that level set with the set of lines in S given by (5.28) for n1, n2 ∈ N . Now we separate the
analysis into two cases.

Claim 1:: If Ω1 and Ω2 are rationally independent there are infinitely many transverse
intersections in S for any given ξ ∈ (0,m1 +m2).

Claim 2:: If Ω1 and Ω2 are rationally dependent, say Ω1/|Ω2| = N1/N2 in lowest terms
there are transverse intersections for all ξ ∈ (m′,m1 +m2). Furthermore, we have that:
(i) if min{m1,m2} ≥ m′ and N1 > 2 (resp. N2 > 2) there are at least two transverse

intersections for all ξ ∈ (m1,m
∗) (resp. ξ ∈ (m2,m

∗)) for some m∗ ∈ (m1,m1+m2)
(resp. m∗ ∈ (m2,m1 +m2)). Moreover, if N2 − 2 < N1 or N1 − 2 < N2 there are
at least two transverse intersections for all ξ ∈ (m′′,m′) for some m′′ ∈ (0,m′).

(ii) if m2 < m′ < m1 and N1 > 2 there are at least two transverse intersections for all
ξ ∈ (m1,m

∗) for some m∗ ∈ (m1,m1 +m2).
(iii) if m′ < min{m1,m2} there is a subinterval (m′,min{m1,m2}) with at least (N1 +

N2 − 1) transverse intersections.
(iv) each intersection defines two collision trajectories, one from the upper point to the

lower point, the other from the lower to the upper.

Claim 1 is trivial since rational independence of Ω1 and Ω2 implies that the lines (5.28) densely
fill the set S and hence have infinitely many intersections with each level set ξ ∈ (0,m1 +m2)
of Ξ. Infinitely many of them are transverse.

We now prove Claim 2. Equation (5.28) defines N1 +N2 − 1 lines of slope N2/N1, from the
origin, the points nπ/N1 on the φ2-axis and the points nπ/N2 on the φ1-axis. On the line from
(0, 0) one of the two situations happen: either Ξ decreases at non-zero rate from m1 +m2 to a
minimum and then rises at non-zero rate to m′ or Ξ decreases at non-zero rate to m′. Thus,
transverse intersections exist for all ξ ∈ (m′,m1 +m2).

Now if N1 > 2 there is a line starting from π/N1 on the φ2-axis. On this line Ξ rises at
non-zero rate from m1 to a maximum value and then either Ξ decreases to m′ at non-zero rate
or Ξ decreases to a minimum below m′ to rise again to m′. Take m∗ to be the maximum value
in this line. If N2 > 2 there is a line starting from π/N2 on the φ1-axis. On this line Ξ rises
at non-zero rate from m2 to a maximum value and then either Ξ decreases to m′ at non-zero
rate or Ξ decreases to a minimum below m′ to rise again to m′. Take m∗ to be the maximum
value of Ξ on this line. To finish the proof of (i) note that the condition N2 − 2 < N1 implies
that on the line from π/N2 the map Ξ has a maximum above m′ and a minimum m′′ below m′.
The condition N1 − 2 < N2 implies the same conclusion when the line from π/N1 is considered.
To prove (ii) note that if m2 < m′ < m1 then on the line from π/N1 on the φ2-axis Ξ rises
at non-zero rate from m1 to a maximum value and then either Ξ decreases to m′ at non-zero
rate or Ξ decreases to a minimum below m′ to rise again to m′. For (iii), note that on all the
N1 +N2 − 1 lines, Ξ connects one of m1 +m2 (at (0, 0)), m1 (at φ1 = 0) or m2 (at φ2 = 0) to
m′ at φ1 + φ2 = π. Statement (iv) is a result of the rational frequency ratio. This finishes the
proof of Claim 2.

To finish the proof of Lemma 5.6 we note that given (φ1, φ2) ∈ S and fixing H = h in (5.23)
we determine r. Having determined r we obtain R1 and R2 by (5.18) and (5.22). The values of
ρ1 and ρ2 are determined by (5.20) once r, φ1 and φ2 are known. The results for k1 + k2 < 0
are obtained by time reversal, the only effect being that the case m1 < m′ < m2 of item (ii) of
the Lemma applies. �

5.2.2. Case k1 + k2 = 0.
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Lemma 5.7. Let e1 and e2 be such that e1 + e2 = 0 and fix p ∈ R
2 non-zero and h > 0 such

that

ξ =
|p|2
2h

∈ (0,m1 +m2) . (5.29)

Then,

• if Ω1 and Ω2 are rationally independent then for every ξ ∈ (0,m1 + m2) there exist
infinitely many SE(2) equivalence classes of orbits of the Hamiltonian system (2.1)
with zero interaction on the level set

{

(q1, q2,p1,p2) ∈ R
8 : H = h , L = ℓ ,P = p

}

satisfying (5.15) with no early collisions.
• If |Ω1/Ω2| is rational, say N1/N2 in lowest terms, and ξ ∈ (0,m1 + m2) there are at

least two SE(2) equivalence classes of orbits of the Hamiltonian system (2.1) with zero
interaction on the level set

{

(q1, q2,p1,p2) ∈ R
8 : H = h , L = ℓ ,P = p

}

satisfying (5.15) with no early collisions. If ξ ∈ (0,min{m1,m2}) there are at least
2(N1 +N2 − 1) of them.

Proof. Without loss of generality, we fix the values of the masses m1 > 0 and m2 > 0 and
charges e1 < 0 and e2 > 0 so that k1 > 0 and k2 < 0. Since e1 + e2 = 0 we have k1 + k2 = 0, so
throughout this proof we set k2 = −k1.

We fix a nonzero value p = (px, py) ∈ R
2 for the level set {P = p} (we have seen already

that if k1 + k2 = 0 and P = 0 then the system is integrable). Without loss of generality we
apply a rotation to make p vertical, i.e,

p = (px, py) , px = 0 , py > 0 . (5.30)

Hence, from (5.13) and (5.30), we get that the vector

R2 − R1 =
1

k1
Jp , (5.31)

is horizontal, oriented to the right, and has norm

r =
|p|
k1

. (5.32)

Then the situation is as in Fig. 2 again.
Let us first treat the case where at t = 0 the two charges are at the intersection point of the

two circles above the horizontal axis.
From the sine-rule we obtain ρ1 and ρ2 as given in (5.20) with r given by (5.32) and φ1 and

φ2 belong to the set S defined in (5.21). From (5.12) and (5.20) we obtain H as given in (5.23).
We define the function

Ξ =
k2

1r
2

2H
=

k1 sin2(φ1 + φ2)

Ω1 sin2 φ2 − Ω2 sin2 φ1
=

m1m2 sin2(φ1 + φ2)

m1 sin2 φ1 +m2 sin2 φ2
(5.33)

and note that Ξ again has range (0,m1 + m2) and takes values m1, m2, m
′ = 0 on φ1 = 0,

φ2 = 0, φ1 + φ2 = π respectively. See Fig. 4 for plots of the level sets of Ξ.
From an analysis of Fig. 2 we get that the time τ > 0 in (5.15) for which a collision occurs

must satisfy the conditions (5.27) for some n1, n2 ∈ N.
If the gyrofrequencies Ω1 and Ω2 are rationally independent then, by Lemma 5.5, there are

no collisions for times t ∈ (0, τ). On the other hand, if Ω1 and Ω2 are rationally dependent,
say Ω1/|Ω2| = N1/N2 in lowest terms, then early collisions might occur, i.e, there might exist
0 < t∗ < τ such that q1(t

∗) = q2(t
∗). As before, reducing (n1, n2) by a multiple of (N1, N2)

removes any early collisions. As before, we obtain the relation (5.28), and the case where the
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Figure 4: Contour plots of Ξ in the set S for the case k2 + k1 = 0. From left to right are the
cases m1 < m2 (4a), m1 = m2 (4b) and m1 > m2 (4c). The figures are drawn for k1 = 1,
k2 = −1 and (m1,m2) = (1, 2) (4a), (1, 1) (4b), (1, 1/2) (4c), but all other parameter choices
satisfying the given conditions give qualitatively equivalent pictures.

particles start at the lower intersection in Fig. 2 can be incorporated by allowing (n1, n2) to
range over N .

We fix a level set of Ξ = ξ, where ξ ∈ (0,m1+m2). Collision orbits correspond to intersections
of that level set with the set of lines in S given by (5.28) for (n1, n2) ∈ N . Now we separate
the analysis into two cases.

Claim 1:: If Ω1 and Ω2 are rationally independent there are infinitely many transverse
intersections in S for any given ξ ∈ (0,m1 +m2).

Claim 2:: If Ω1 and Ω2 are rationally dependent, say Ω1/|Ω2| = N1/N2 in lowest terms,
there are transverse intersections for all ξ ∈ (0,m1 + m2). For ξ ∈ (0,min{m1,m2})
there are at least N1 + N2 − 1 transverse intersections. Each intersection gives two
collision orbits.

The proofs of Claims 1 and 2 are analogous (though simpler) to those given in the proof of
the previous Lemma 5.6.

To finish the proof we note that given (φ1, φ2) ∈ S and fixing H = h in (5.23) we determine
r, from which we obtain R1 and R2 (up to a translation) by (5.31). The values of ρ1 and ρ2

are determined by (5.20) once r, φ1 and φ2 are known. �

5.2.3. Analysis of the sets of collision trajectories.

Lemma 5.8. Consider the collision orbits at δ = 0 constructed in Lemmas 5.6 and 5.7.

• If Ω1 and Ω2 are rationally independent there are infinitely many non-degenerate colli-
sion orbits for any given ξ ∈ (0,m1 +m2).

• Suppose |Ω1/Ω2| is rational, say N1/N2 in lowest terms.
– If k1 + k2 6= 0 then

(i) if min{m1,m2} ≥ m′ and N1 > 2 (resp. N2 > 2) for all ξ ∈ (m1,m
∗)

(resp. ξ ∈ (m2,m
∗)) there are at least 4 non-degenerate collision orbits.

Furthermore, if N2 − 2 < N1 or N1 − 2 < N2 for all ξ ∈ (m′′,m′) there are
at least 4.

(ii) if m2 < m′ < m1 (resp. m1 < m′ < m2) and N1 > 2 (resp. N2 > 2) for
all ξ ∈ (m1,m

∗) (resp. ξ ∈ (m2,m
∗)) there are at least 4 non-degenerate

collision orbits.
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(iii) if m′ < min{m1,m2} for all ξ ∈ (m′,min{m1,m2}) there are 2(N1 +N2 − 1)
non-degenerate collision orbits.

– If k1 + k2 = 0 then for all ξ ∈ (0,m1 + m2) there are at least 2 non-degenerate
collision orbits and for ξ ∈ (0,min{m1,m2}) there are at least 2(N1 +N2 − 2).

Proof. In the proofs of Lemma 5.6 and 5.7 we have constructed sets of collision orbits by
removing the symmetries and fixing the conserved quantities of (2.1) and enforcing the collision
conditions (5.15). Collision orbits correspond to intersections of the lines (5.28) with level sets
of the quantity Ξ (defined in (5.25) for the case k1 +k2 6= 0 and (5.33) for the case k1 +k2 = 0).
The intersection points determine (φ1, φ2) ∈ S and, provided that φ1 and φ2 are determined
non-degenerately, we obtain non-degenerate solutions for Ri and ρi, where i ∈ {1, 2}. Hence,
the only thing that remains to be checked is that there are enough non-degenerate intersections,
i.e. non-tangential intersections, of the lines (5.28) with level sets of the quantity Ξ. This was
already obtained in the proofs of Lemmas 5.6 and 5.7. �

Let Γ ⊂ N be a set of labels for the non-degenerate collision orbits constructed in Lemmas
5.6 and 5.7. The set Γ is countably infinite if Ω1 and Ω2 are rationally independent and finite
otherwise. Let n ∈ Γ and denote by qn(t) a collision orbit with given momenta P, L and energy
h, given by

qn(t) =
1

m1/2
(qn

1 (t) − qn
2 (t)) ,

where

qn
1 (t) = Rn

1 + ρn
1JeΩ1t+σnφn

1
, qn

2 (t) = Rn
2 + ρn

2JeΩ2t+π−σnφn
2
,

Rn
i , ρn

i and φn
i for i ∈ {1, 2} are as constructed in Lemmas 5.6 and 5.7 and σn ∈ ± corresponds

to starting at the upper or lower intersection in Fig. 2.

Lemma 5.9. Let n ∈ Γ and qn(t) be a collision orbit with given momenta P, L and energy h.
Then,

• if Ω1 and Ω2 are rationally independent there exist infinitely many non-degenerate colli-
sion orbits that leave 0 with the same P, L and H in neither the same nor the opposite
direction as qn(τn).

• If |Ω1/Ω2| is rational, say N1/N2 in lowest terms, then
– if k1 + k2 6= 0:

(i) if min{m1,m2} ≥ m′ and N1 > 2 (resp. N2 > 2) for ξ ∈ (m1,m
∗) (resp.

ξ ∈ (m2,m
∗))there is a set of chains with entropy log 2. Furthermore, if

N2 − 2 < N1 or N1 − 2 < N2 for ξ ∈ (m′′,m′) there is also a set of chains
with entropy log 2.

(ii) if m2 < m′ < m1 (resp. m1 < m′ < m2) and N1 > 2 (resp. N2 > 2) for
ξ ∈ (m1,m

∗) (resp. ξ ∈ (m2,m
∗)) there is a set of chains with entropy log 2.

(iii) if m′ < min{m1,m2} for ξ ∈ (m′,min{m1,m2}) there is a set of chains with
entropy log(N1 +N2 − 1).

– If k1 + k2 = 0 and N1/N2 6= 1 for all ξ ∈ (0,m1 +m2) there is a chain and for all
ξ ∈ (0,min{m1,m2}) there is a set of chains with entropy at least log(N1 +N2−1).

Proof. Using (5.11), we get

q̇n(t) =
1

m1/2

(

Ω1ρ
n
1eΩ1t+σnφn

1
− Ω2ρ

n
2eΩ2t+π−σnφn

2

)

.

Let θn(t) denote the angle between q̇n(t) and the horizontal axis of R
2. We have the following

expression for the tangent of θn(t):

tan θn(t) =
Ω1ρ

n
1 cos(Ω1t+ σnφn

1 ) − Ω2ρ
n
2 cos(Ω2t+ π − σnφn

2 )

Ω2ρn
2 sin(Ω2t+ π − σnφn

2 ) − Ω1ρn
1 sin(Ω1t+ σnφn

1 )
, (5.34)
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which implies

tan θn(0) = σn Ω1ρ
n
1 cosφn

1 + Ω2ρ
n
2 cosφn

2

Ω2ρn
2 sinφn

2 − Ω1ρn
1 sinφn

1

tan θn(τn) = σn Ω1ρ
n
1 cosφn

1 + Ω2ρ
n
2 cosφn

2

Ω1ρn
1 sinφn

1 − Ω2ρn
2 sinφn

2

, (5.35)

Substituting in (5.35) the expressions for ρn
1 and ρn

2 given in (5.20), we get

tan θn(0) =
σn

Ω2 − Ω1
(Ω1 cotφn

1 + Ω2 cotφn
2 ) = − tan θn(τn) ,

(note that Ω1 > 0 and Ω2 < 0 so the denominator is negative).
If k1 + k2 = 0 then all the collision orbits can be treated in a common frame where P is

vertical, so the change of direction condition is that the next collision orbit m must satisfy

tan θn(τn) 6= tan θm(0) ,

i.e.
σm (Ω1 cotφm

1 + Ω2 cotφm
2 ) 6= −σn (Ω1 cotφn

1 + Ω2 cotφn
2 ) .

If Ω1/Ω2 is irrational there are infinitely many choices for m and all but finitely many satisfy
this condition; thus one can make sets of chains with arbitrarily large entropy. If Ω1/|Ω2| 6= 1 is
rational, sayN1/N2 in lowest terms, then the choice of σm ∈ ± is free so the condition can always
be satisfied; thus for all ξ ∈ (0,m1+m2) one can make a chain and for ξ ∈ (0,min{m1,m2}) one
can make a set of chains with entropy at least log(N1 +N2 − 1). If Ω1/|Ω2| = 1 or equivalently
m1 = m2 then φm

1 = φm
2 and hence Ω1 cotφm

1 + Ω2 cotφm
2 = 0 so the condition can not be

satisfied.
If k1+k2 6= 0 then the analysis for the next collision orbit m in a chain needs to be rotated by

some angle ψ about −JP /(k1 + k2) (which we choose to be at 0), determined to superimpose
the collisions qn

j (τ) and qm
j (0), j ∈ {1, 2}: ψ = − (ψn + ψm), where −ψn is the angle that

(k1q
n
1 (τ) + k2q

n
2 (τ))/(k1 + k2) makes with the positive horizontal axis of R

2 and is given by

cot (ψn) =
σn

k1 + k2
(|k2| cotφn

2 + k1 cotφn
1 )

and ψm is defined in a similar way. Then the direction change condition is

tan(θn(τ) − θm(0)) 6= tan(ψ) .

This is some quadratic inequality in cot(φn
j ) and cot(φm

j ), j ∈ {1, 2}. If Ω1/Ω2 is irrational there
are infinitely many choices for m satisfying this condition; thus one can make sets of chains
with arbitrarily large entropy. If Ω1/|Ω2| is rational, say N1/N2 in lowest terms, then the choice
of σm ∈ ± is free so the condition can be satisfied. �

5.3. Shadowing collision orbits. Let U be a small ball centered at 0. For any a ∈ U , there
is a unique trajectory γ+

a : [0, τ+ (a)] → U of energy E for the canonical Hamiltonian system
with Hamiltonian function (5.2) connecting a to 0. Similarly, for any b ∈ U , there is a unique
trajectory γ−b : [τ− (b) , 0] → U of energy E connecting 0 to b. Denote

S+ (a) =
∫ τ+(a)
0 p.dq =

∫ τ+(a)

0
p(t).

∂H

∂p
(q(t),p(t)) dt

S− (b) =
∫ 0
τ−(b) p.dq =

∫ 0

τ−(b)
p(t).

∂H

∂p
(q(t),p(t)) dt

Then S± are continuous functions on U and C3 on U\{0}.
Denote by

u+ (a) = γ̇+
a

(

τ+ (a)
)

, u− (b) = γ̇−b
(

τ− (b)
)

,
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the tangent vectors to γ+
a , γ

−
b at the point 0. Let Σ = ∂U . Fix small ξ > 0 and let

X =
{

(a, b) ∈ Σ2 :
∥

∥u+ (a) − u− (b)
∥

∥ ≥ ξ
}

.

Equivalently, a pair of points (a, b) ∈ Σ belongs to X if the solution of the system with
Hamiltonian function (5.2) with energy E connecting a to b does not pass too close to the
centre 0. Let

Y =
{

(a, b) ∈ X :
∥

∥u+ (a) + u− (b)
∥

∥ ≥ ξ
}

. (5.36)

For any k ∈ K, let αk,βk ∈ Σ be the two intersection points of γk with Σ. Then γk(t) =
γ−αk

(t− τ− (αk)) for 0 ≤ t ≤ −τ− (αk), γk(t) = γ+
βk

(t+ τk − τ+ (βk)) for τk−τ+ (βk) ≤ t ≤ τk.

Without loss of generality we assume that the points αk and βk are not conjugate on the fixed
energy level along γk for all k ∈ K.

Let Ak ⊂ Σ be a small neighbourhood of αk, Bk ⊂ Σ a small neighbourhood of βk and Wk

a small neighbourhood of γk ([0, τk]). We may assume that Wk ∩ Σ = Ak ∪ Bk with Ak and
Bk disjoint sets, making Wk smaller if necessary. If the neighbourhoods Ak, Bk and Wk are
small enough, by the non-conjugacy of αk and βk along γk and the implicit function theorem,
for any u ∈ Ak and v ∈ Bk, there exists a unique solution σ = σδ

u,v : [0, τ ] → Wk, τ = τ δ
u,v,

of energy E for the system with Hamiltonian (5.1), such that σ(0) = u and σ(τ) = v, which is
close to γk (t− τ− (αk)) for 0 ≤ t ≤ τ . This solution is a C3 function of u,v. Let (σ(t), ψ(t))
denote the path in phase space corresponding to the trajectory σ(t) and define the action of
the trajectory σδ

u,v as

f δ (u,v) =

∫ τ

0
ψ(t).

∂Hδ

∂p
(σ(t), ψ(t)) dt .

Then f δ is a C3 function on Ak ×Bk.

Lemma 5.10. The function gk (u,v) = f0 (u,v) + S− (u) + S+ (v) on Ak × Bk has a non-
degenerate critical point at zk = (αk,βk)

Lemma 5.10 follows from nondegeneracy of γk. In fact, gk (u,v) is the action of the piecewise
smooth trajectory of the Hamiltonian system determined by (5.2) obtained by gluing together
the trajectories γ−u , σ0

u,v and γ+
v with appropriate shifts of time parametrization.

Let G ⊂ K2 be the set (5.5). Taking the neighbourhoods Ak, Bk small enough, it can be
assumed that for all (k, l) ∈ G, Bk ×Al ⊂ Y where Y is defined in (5.36).

The next result is a precise formulation of Theorem 5.1. Assume that the neighbourhoods
Wk are sufficiently small.

Theorem 5.11. There exists δ0 > 0 such that for any δ ∈ (0, δ0] and any chain (γki
)i∈Z

of
collision orbits there exists, up to a time shift, a unique trajectory γ : R → (∪k∈KWk) \{0} of
energy E for the Hamiltonian system determined by (5.1) and a sequence

... < ai < bi < ai+1 < bi+1 < ....

such that for all i ∈ Z:

• γ ([ai, bi]) ⊂Wki
, γ(ai) ∈ Aki

, γ(bi) ∈ Bki
;

• γ ([bi, ai+1]) ⊂ U .

The asymptotic behaviour of this trajectory as δ → 0 is as follows:

• bi − ai → τki
− τ− (αki

) − τ+ (βki
) as δ → 0;

• γ(t) is O (δ)-close to γki
([τ− (αki

) , τ − τ+ (βki
)]) for ai ≤ t ≤ bi;

• γ(t) = γδ
bi,ai+1

(t− bi) for all t ∈ [bi, ai+1] .

The constant δ0 depends only on the set {γk}k∈K of collision orbits and is independent of
the sequence (ki ∈ K). Thus γ(t) is O(δ)-close to a chain of collision orbits.
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The proof of Theorem 5.11, up to some minor changes in context, is done in [9]. The strategy
is continuation from the case δ = 0. Choose coordinates u,v in Ak ×Bk. Lemma 5.10 implies
that if the neighbourhoods Ak and Bk are small enough, there exists C > 0 such that

∥

∥

∥
(gk

′′

(s))−1
∥

∥

∥
≤ C , (5.37)

where s = (u,v) ∈ Ak ×Bk and ‖.‖ is the max norm in Ak ×Bk. Theorem 5.11 is then proved
with the help of the Implicit Function Theorem and (5.37).

5.4. Regularization of collisions. Without loss of generality one can replaceW byW−E and
assume E = 0. We make f (0) = 1/4 by rescaling δ. Let x = (x1, x2) ∈ R

2 and y = (y1, y2) ∈ R
2

and consider the canonical transformation g from R
4 {x,y} to R

4 {q,p}, given by

qx = x1
2 − x2

2 qy = 2x1x2

px =
x1y1 − x2y2

2 (x1
2 + x2

2)
py =

x2y1 + x1y2

2 (x1
2 + x2

2)
. (5.38)

Lemma 5.12 (Levi-Civita regularization). There exists a C4 Hamiltonian on R
4 {(x,y)} given

by

H (x,y) =
1

2
|y − B (x)|2 − λ

2
|x|2 +O4 (x,y) , (5.39)

where B (x) = 2W3(0) (−b.x, b.Jx) and λ = 4 |b|2 (W3(0))2 − 8W (0,0), such that for x 6= 0
the canonical transformation g given in (5.38) takes trajectories of the canonical Hamiltonian
system H on the energy level H = δ to the trajectories of the canonical Hamiltonian system
with Hamiltonian Hδ on the energy level Hδ = 0.

Proof. Using (5.38), we obtain the following estimates

g∗W1 (x) = W1(0) +O2 (x)

g∗Wi (xJy) = Wi

(

1

2
xJy

)

= Wi(0) + y.O1(x) , i ∈ {2, 3} (5.40)

g∗ [a.q + b.p] (x,y) =
1

2 |x|2
b. (x1y1 − x2y2, x2y1 + x1y2) +O2 (x) .

Using (5.38) and (5.40) in (5.1), we compute H̃ = g∗Hδ, which is given by

H̃ =
1

8 |x|2
(

|y|2 + 4b. (x1y1 − x2y2, x2y1 + x1y2)W3(0)
)

+W (0,0) − δ
f (h(x))

|x|2
+O2 (x) + y.O1(x) , (5.41)

where h : R
2 → R

2 is the squaring map given by

h(x) =
(

x1
2 − x2

2, 2x1x2

)

.

Introducing the vector potential B (x), given by

B (x) = 2W3(0) (−b.x, b.Jx)

we get the equalities

|y|2 + 4b. (x1y1 − x2y2, x2y1 + x1y2)W3(0) = |y − B (x)|2 − |B (x)|2

= |y − B (x)|2 − 4(W3(0))2 |b|2 |x|2 .(5.42)
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Multiply (5.41) by |x|2 /f (h(x)) and use (5.42) and f (h(x)) = f(0) + O2 (x) to obtain a
Hamiltonian function defined on R

4, given by

H =
|x|2

f (h(x))
H̃ + δ =

1

2
|y − B (x)|2 − λ

2
|x|2 +O4 (x,y) ,

where λ = 4 |b|2 (W3(0))2 − 8W (0,0), as given in the statement.
By construction of H, we have that the energy levels {H = δ} and {Hδ = 0} coincide, which

finishes the proof. �

Standard formulations of Lemma 5.12 and proofs can be found in [17, 18, 19].
The transformation g defined by (5.38) does not preserve the time parametrization of the

solutions, but it preserves the actions
∫

γ
〈y,dx〉 =

∫

g(γ)
〈p,dq〉 .

The Hamiltonian system (5.39), has an equilibrium point at the origin, with eigenvalues ±
√
λ,

and hence it is hyperbolic if and only if λ > 0. For now on, we assume that λ > 0. In this case
the hyperbolic equilibrium 0 has 2-dimensional stable and unstable manifolds W±

loc [20]. Since

W±
loc are Lagrangian manifolds and project diffeomorphically to R

2{x}, they are defined by C4

generating functions s± on a small ball U with centre 0 ∈ R
2. We have that

W±
loc =

{

(x,y) : y = ∓∇s± (x) , x ∈ U
}

. (5.43)

The functions s± have a non-degenerate minimum 0 at the point 0.
By the definition of W±

loc, for any point a ∈ U there exists a unique trajectory ω+
a : [0,+∞) →

U such that limt→∞ ω+
a (t) = 0 and ω+

a (0) = a. Similarly, there exists a unique trajectory
ω−

a : (−∞, 0] → U such that limt→−∞ ω−
a (t) = 0 and ω−

a (0) = a. By (5.43) the actions of these
trajectories equal

∫

ω±
a

〈y,dx〉 = s± (a) .

For the trajectories ω±
a (t), let z±a (t) ∈W±

loc be the corresponding orbits in the phase space.
From Shilnikov’s Lemma [21], or the strong λ-lemma [22] we obtain the next lemma. See

[9, 23, 24] for comments on its proof.

Lemma 5.13. Let T > 0 be sufficiently large. Then for any points a, b ∈ U and τ ≥ T :

• there exists a unique trajectory

z(t) = (x(t),y(t)) = f (a, b, τ, t) , (τ, t) ∈ DT = {(τ, t) : τ ≥ T , 0 ≤ t ≤ τ} ,

such that x(0) = a and x(τ) = b.
• the map f is C2 on U2 ×DT and

f (a, b, τ, t) = z+
a (t) + z−b (t− τ) + e−

√
λτφ (a, b, τ, t) , (5.44)

where φ is uniformly C2 bounded on U2 ×DT .
• the action

S (a, b, τ) =

∫ τ

0
y.dx

of the trajectory z(t) is C2 on U2 × [T,∞) and

S (a, b, τ) = s+ (a) + s− (b) + e−
√

λτR (a, b, τ) + τh (a, b, τ) , (5.45)

where R is uniformly C2 bounded as τ → ∞ and h (a, b, τ) is the energy of z.
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The next result gives a useful representation for the energy function h (a, b, τ) used in (5.45)
and similar statements can be found in [9, 23, 24].

Let v± (a) denote the tangent vectors at 0 to the asymptotic trajectories ω±
a .

Lemma 5.14. The energy h (a, b, τ) of the trajectory z(t) is a C2 function on U2 × [T,+∞)
and has the form

h (a, b, τ) = e−
√

λτ (h0 (a, b) + h1 (a, b, τ)) ,

where

h0 (a, b) = 2v+ (a) .v− (b) , v± (a) = lim
t→±∞

e±
√

λtω̇±
a (t) , (5.46)

and ‖h1‖C2(U2×[τ,+∞)) → 0 as τ → +∞.

Proof. There exist local coordinates (u,v) ∈ R
4 in a neighbourhood of the equilibrium 0 such

that W−
loc = {v = 0}, W+

loc = {u = 0}, and

H (u,v) =
√
λu.v (1 +O(u,v)) . (5.47)

The symplectic transformation (x,y) 7→ (u,v) is given by

x =
u −

√
λv√

2λ
+O3 (u,v) , y =

u +
√
λv√

2
+ B

(

u −
√
λv√

2λ

)

+O3 (u,v) , (5.48)

where B (x) is as given in Lemma 5.12. The Hamiltonian vector field on the unstable manifold
W−

loc takes the form

u̇ =
√
λu +O2 (u) ,

where the right hand side is of class C3. This equation can be transformed [25] to a linear

equation ξ̇ =
√
λξ by a C2 change of variables ξ = f−(u). Hence the phase flow on W−

loc takes
the form

g−t (u, 0) =
(

f−1
−

(

e−
√

λtf−(u)
)

, 0
)

= e−
√

λt (f−(u) +G(u, t), 0) , (5.49)

where ‖G‖C2(V ×[T,+∞)) → 0 uniformly on W−
loc as t→ +∞ and V is such that the preimage of

U2 under (5.48) is contained in V 2 and V 2 ⊂ BR(0) ⊂ R
4, for some finite R > 0.

A similar representation holds for the flow on the stable manifold W+
loc,

gt (0,v) = e−
√

λt (0, f+(v) + E(v, t)) , (5.50)

where ‖E‖C2(V ×[T,+∞)) → 0 uniformly on W+
loc as t→ +∞. Furthermore, note that

(f−(u), 0) = lim
t→+∞

e
√

λtg−t (u, 0) , (0, f+(v)) lim
t→+∞

e
√

λtgt (0,v) . (5.51)

Put t = τ/2 in (5.44). By (5.49) and (5.50), we get

z(τ/2) = e−
√

λτ/2 (f−(u), f+(v)) + e−
√

λτ/2F (u,v, τ) , (5.52)

where u = u(τ) and v = v(0), and ‖F‖C2(V 2×[T,+∞)) → 0 as τ → ∞. Since H is a conserved

quantity, substituting (5.52) into (5.47), we get the following estimate for the energy

h (a, b, τ) = H (z(τ/2)) =
√
λe−

√
λτ (f−(u).f+(v) + h1 (u,v, τ)) , (5.53)

where ‖h1‖C2(V 2×[T,+∞)) → 0 as t → +∞. Passing to the variables x,y and using (5.51), we
get

lim
t→+∞

e
√

λtω̇+
a (t) =

√

λ

2
f+(v) = v+(a) , lim

t→−∞
e−

√
λtω̇−

b (t) =

√

1

2
f−(u) = v−(b) . (5.54)

Putting together (5.53) and (5.54) we get the required result. �
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Take ν > 0 and let B =
{

(a, b) ∈ U2 : h0 (a, b) > ν
}

. Then, for (a, b) ∈ B, the function
h0 (a, b) is bounded away from zero. Thus h (a, b, τ) is monotone in τ for sufficiently large τ .
For small δ > 0, solving the equation h (a, b, τ) = δ for τ yields a C2 function τ = τδ (a, b).
This, combined with the implicit function theorem and Lemmas 5.13 and 5.14 gives the following
result (see [9, 23, 24] for more details).

Proposition 5.15. There exists δ0 > 0 such that for all δ ∈ (0, δ0] the following statements
hold.

• For any (a, b) ∈ B, there exists a unique trajectory zδ
a,b =

(

xδ
a,b,y

δ
a,b

)

: [0, τ ] → U ×R
2

of energy δ connecting the points a and b.
• the time τ = τδ (a, b) is a C2 function on B and

τδ (a, b) = − log δ√
λ

+ µ (a, b, δ) ,

where the function µ is uniformly C2 bounded on B as δ → 0.
• We have

zδ
a,b(t) = z+

a (t) + z−
b (t) + δζ (a, b, δ) , (5.55)

where the function ζ is uniformly C2 bounded as δ → 0.
• The action fδ (a, b) = S (a, b, τδ (a, b, δ)) of the trajectory zδ

a,b is a C2 function on B
and

fδ (a, b) = s+ (a) + s− (b) + δr (a, b, δ) − δ log δ√
λ

,

where r is uniformly C2 bounded on B as δ → 0.

From (5.46) and (5.55), we obtain

min
0≤t≤τ

∣

∣

∣
xδ

a,b(t)
∣

∣

∣

2
=

2δ

λ

(
∣

∣v+ (a)
∣

∣

∣

∣v− (b)
∣

∣− v+ (a) .v− (b)
)

+O2(δ) , (5.56)

and hence,
∣

∣

∣
xδ

a,b(t)
∣

∣

∣

2
avoids 0 provided v+ (a) 6= v− (b).

6. Conclusions

We have proved that the Hamiltonian system (2.1) can always be reduced to one with two
degrees of freedom. Moreover, we have proven that, for interaction between the two charged
particles determined by a Coulomb potential, with opposite sign charges (except for the case
Ω1 + Ω2 = 0), this system can not be reduced further, because it contains a suspension of a
nontrivial subshift of finite type. On the other hand it is integrable for the special case of same
sign charges when the particles have equal gyrofrequencies (equal ratio of charge to mass) and
on some special submanifolds. Furthermore, we explicitly computed the reduced Hamiltonian
systems and corresponding reconstruction maps for the reduced dynamics, enabling us to lift
the dynamics from the reduced spaces and hence obtain a description for the dynamics on the
initial phase space. In particular we determined that the motion is bounded if the charges do
not sum to zero but if they sum to zero there is an average drift velocity which depends on the
energy and momenta.

It would be interesting to estabilish what happens when Ω1 + Ω2 = 0 and whether there is
chaos for unequal gyrofrequencies of the same sign.

An interesting future work would be to prove an analogous result of nonintegrability for the
system (2.1) but with a logarithmic potential. This would have applications to the interaction
of two vortices with masses, as was remarked in [8], where a proof in the limiting regime where
the masses tend to zero was given with the help of some numerical computations.

The three-dimensional problem is also very interesting, for which we are currently preparing
a paper.
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