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Abstract

We consider two questions related to planar simple random walk. Our first result

confirms an observation made by Mandelbrot about the number of large holes made

by planar simple random walk S. We show that if Nδ is the number of components

of
� \ S[0, 2n] of area greater than n1−δ , then for all δ less than or equal to some

δ0 > 0,

log2(nδ)

nδ
Nδ

P→ 2π, as n → ∞.

In the second part of the thesis, we establish some of the basic estimates needed

to extend the main result of [23], where it is shown that the scaling limit of loop-

erased random walk from an interior point of a domain to the boundary is the radial

Schramm-Löwner Evolution with parameter 2 (SLE2), to the chordal case. The

expected result is that the scaling limit of loop-erased random walk (LERW) excursion

in the upper half-plane � is chordal SLE2. The natural time parameter for chordal

SLE is the half-plane capacity, hcap, as introduced in [17]. We define the discrete

half-plane capacity, denoted by dhcap, an analogous quantity for discrete subsets of

the discrete upper half-plane H, as well as a natural correspondence between discrete

sets A ⊂ H and continuous sets Ã ⊂ � . We show that for a large class of such sets

dhcap(A) is close to hcap(Ã). We estimate very precisely a discrete Green’s function

in H\A and express it in terms of various parameters of the set A. Applying this to

LERW excursion and using the relationship between hcap and dhcap should provide

information on the driving process of the LERW path, whose scaling limit is expected

to be Brownian motion with variance 2. In the event that the scaling limit of LERW

excursion is indeed chordal SLE2, this work should give us the necessary background

to study another question: how does SLE relate to general Laplacian random walks,
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a family of random walks of which LERW is a special case?

In both problems we work with coupling methods for random walk and Brownian

motion, namely Skorokhod embedding and the so-called KMT approximation. Other

tools used are bounds on derivatives of conformal transformations, the Beurling pro-

jection theorem, and ideas involving Brownian disconnection exponents.
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the ocean: Fred, Jérôme, Vincent, Cathy, Julien, Didier, Christophe, Gilles, Jérôme,
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Introduction

Simple random walk, which we will denote by S throughout this thesis, and standard

Brownian motion, denoted by B, are two of the most common stochastic processes

and they appear naturally in a variety of areas, such as physics, biology, or finance.

The first is a discrete process, whereas the second is continuous. It has been known

for a long time that Brownian motion is the scaling limit not only of simple random

walk, the most elementary random walk, but also of a much larger class of random

walks. Brownian motion is the limit of random walk very much in the same sense as

the normal distribution is the limit of normalized sums of random variables. Many

properties are shared by Brownian motion and random walk and knowledge about

one has often helped understand the other better. There is still a multitude of open

questions related to these processes. Moreover, it has recently been observed that

Brownian motion is related in a particularly strong way to a whole range of other

discrete stochastic models arising in the field of statistical mechanics, when placed

into Löwner’s ordinary differential equation

∂

∂t
gt(z) = gt(z)

eiUt + gt(z)

eiUt − gt(z)
, g0(z) = z,

defined for z in U, the open unit disk centered at the origin, and some real function

Ut.

The one-parameter family of processes obtained when letting Ut = Bκt, where

κ ≥ 0 was introduced by Oded Schramm in [29] and is now commonly called the

radial Schramm-Löwner Evolution with parameter κ (SLEκ).

One obtains a similar process in the upper half-plane, called chordal SLE, by

solving the equation

∂

∂t
gt(z) =

2

gt(z) − Bκt
, g0(z) = z,
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defined on {z ∈ �
: Im(z) > 0}.

Depending on the value of κ, this process has been found to be related to a variety

of discrete models in probability, such as the loop-erased random walk, the uniform

spanning tree, and the critical percolation cluster interface. Furthermore, connections

with the self-avoiding walk, the Ising model, domino tilings, the Potts model, are still

at the conjecture level.

In this thesis, we address two questions. The first is on planar simple random

walk. We prove that an observation by Mandelbrot on the behavior of the number of

large holes made by planar simple random walk is correct. This problem is discussed

in Chapter 2. The second problem is related to SLE. In Chapter 4, we define

a capacity for discrete subsets of the upper half-plane {(x, y) ∈ � 2 : y > 0} and

prove some important properties of this object. We also provide some estimates for a

particular Green’s function. Applying this work to loop-erased random walk (LERW)

excursion in the upper half-plane should allow us to prove that the scaling limit of

LERW excursion in the upper-half plane is chordal SLE2 (it has already been shown

in [23] that radial SLE2 is the scaling limit of LERW from the interior of a domain to

its boundary), and provide the tools needed to investigate the relationship between

the one-parameter family of Laplacian random walks (as introduced in [25]) and the

one-parameter family of SLE curves.

A few of the techniques we use are common to the two problems. We therefore

treat them in separate chapters.

In Chapter 1, we present two well-known coupling methods between random walk

and Brownian motion, namely Skorokhod embedding and the KMT approximation,

which we use in the two problems mentioned above.

Appendix A contains a series of standard estimates for random walk and Brownian

motion. These are all well-known.
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In Appendix B, we provide a few interesting estimates for random walk, which

we could not find anywhere in the literature.

Finally, Chapter 3 gives the background on SLE needed to understand the rele-

vance of our work in Chapter 4.
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Chapter 0

Definitions and Notation

This thesis will be concerned with two problems in which standard Brownian motion

and simple random walk play a central role. Many objects will appear in all the parts

of the thesis. To keep the text as compact as possible and to make the reader’s work

a little bit easier, we give the essential definitions of the thesis in this chapter.

First, we give definitions which do not involve probability:

� = {..,−2,−1, 0, 1, 2, ..} will denote the set of integers and we choose the definition

�
= {1, 2, ..} for the natural numbers. � and � will stand for the set of rational

numbers and real numbers, respectively. In general, if A is a subset of � , then we let

A+ = A ∩ [0,∞), A− = A ∩ (−∞, 0], and A∗ = A \ {0}. For instance, � ∗
+ = (0,∞).

If x, y ∈ � d, d(x, y) denotes the Euclidean distance between x and y. For any

space Ω and any measurable set A ⊂ Ω, the complement of A is Ac = Ω \ A. If

Ω =
�

, |A| will denote the area of A and diam(A) = supx,y∈A d(x, y) the diameter

of A. Ā will stand for the closure of A. The distance from a point x to a set A

is d(x, A) = infy∈A d(x, y). For a countable set A, #(A) is the cardinality of A.

If A is a subset of � 2, we let ∂A = {z ∈ � 2 : d(z, A) = 1} be the boundary of

A, ∂int(A) = {z ∈ � 2 : d(z, Ac) = 1} the inner boundary of A, and write Ā for
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A ∪ ∂A = {z ∈ � 2 : d(z, A) ≤ 1}. Note that we use the notation ∂A and Ā for

continuous and discrete sets alike. It will be clear from context which definition is

being used.

We denote the real and the imaginary part of a point z ∈ �
by Re(z) and Im(z),

respectively.

Disks will be particularly important in many of the estimates we need. For x ∈ �

and d ∈ � +, we let

D(x, d) := {y ∈ �
: |y − x| ≤ d}, D̃(x, d) = {z ∈ � 2 : |z − x| ≤ d}.

If x = 0, we will just write D(d) and D̃(d). If moreover d = 1, we write D for D(1),

the closed unit disk centered at the origin. We will write U = {z ∈ �
: |z| < 1} for

the open unit disk centered at the origin.

Similarly, we define the continuous and discrete circles

C(x, d) = ∂D(x, d), C̃(x, d) = ∂intD̃(x, d),

and write C(d) and C̃(d) if x = 0.

For any z ∈ �
, we define Sq(z) to be the closed region bounded by the square

centered at z, whose sides are parallel to the axes and of length 1.

K, C1, C2 will denote arbitrary positive constants and will be independent of all

other quantities involved in a given equation, unless stated otherwise. Their value

will be allowed to vary from a line to the next.

Many of the results in this thesis are about the asymptotic behavior of various

quantities. We describe the symbols we will need to denote different forms of asymp-

totic behavior. We write h(x) ∼ g(x) if

lim
x→∞

h(x)

g(x)
= 1

5



and h(x) � g(x) if there exist constants C1, C2, x0 such that for all x ≥ x0,

C1g(x) ≤ h(x) ≤ C2g(x).

h(x) = O (g(x)) means that there exist C1, x0 such that for all x ≥ x0,

h(x) ≤ C1g(x).

At times, the constant C1 will depend on parameters that are present in the functions

h(x) and g(x). When we state this explicitly, we will refer to C1 as “the constant of

the O”. Finally, h(x) = o(g(x)) if

lim
x→∞

h(x)

g(x)
= 0.

All these definitions are concerned with the behavior of functions as x → ∞.

They can be made for other limits, such as lim
x→0

, as well, and it will be clear from

context which one is being considered.

We will now define objects involving probability: The letter B is reserved for

standard Brownian motion and so is S for simple random walk. The dimension will

always be one or two and it will be clear from context which it is. It is assumed

that the reader is familiar with these objects. Except in Chapter 1, where we work in

dimensions 1 and 2, whenever we write “Brownian motion”, we will mean planar stan-

dard Brownian motion and “random walk” will implicitly refer to two-dimensional

simple random walk.

If Ω is a probability space and {Xn}n≥1 and X are random variables, we say

that Xn converges to X in probability if for every ε > 0, P {|Xn − X| > ε} → 0 as

n → ∞. In that case, we write

Xn
P→ X.

6



If P

{

ω ∈ Ω : Xn(ω)
n→∞→ X(ω)

}

= 1, we say that Xn converges to X almost surely

and write

Xn
a.s.→ X.

We will be working with various stochastic processes in this thesis, but will use

only the letter � to refer to their probability measure. Again, it will always be clear

from context to which process(es) � refers. For a point z in � d (d ∈ {1, 2}), � z

will denote the probability measure associated to a process started at z and E
z will

denote the expectation associated to a process started at z.

In general, stopping times for random walk will be denoted by lower-case Greek

letters and stopping times for Brownian motion by upper-case Greek letters. We will

be particularly interested in hitting times of a set. For a set A ⊂ �
(which may be

discrete), we let

τA = inf{n ≥ 1 : Sn ∈ A} and TA = inf{t ≥ 0 : Bt ∈ A}.

The exit times from the disk of radius r ∈ � ∗
+, centered at the origin, are the

following:

ξr = inf{k ≥ 0 : |Sk| ≥ r}, Ξr = inf{t ≥ 0 : |Bt| ≥ r}.

We will also need to consider the first time a certain distance is reached by the

Brownian motion or the random walk:

ξ̂r = inf{k ≥ 0 : |Sk − S0| ≥ r}, Ξ̂r = inf{t ≥ 0 : |Bt − B0| ≥ r}.

Note that ξ̂r = ξr if S0 = 0 and Ξ̂r = Ξr if B0 = 0.

Important ideas from complex analysis will be used in the forthcoming chapters

and we will give the necessary background later. However, we just give two definitions

for reference here. A function h : � k → � is called Ck if all its kth partial derivatives

7



exist. If D, D′ are domains, we will call a bijective conformal map f : D → D′

a conformal transformation. If such a map exists, we say that D and D′ are

conformally equivalent.
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Chapter 1

Coupling Methods

Since the 1960’s, much has been written about ways to couple random walk with

Brownian motion and the subject is now quite well understood. Usually the goal is

to put the two processes on a same probability space in such a way that with large

probability they remain close to each other at all times of a given time interval. For

an extensive discussion of this problem, see [5]. Two such couplings of somewhat

different nature will be needed in this thesis and we discuss them in this chapter.

The first is based on the Skorokhod embedding scheme. The second is much sharper

and is the so-called KMT approximation.

1.1 Skorokhod embedding

We state here Skorokhod’s theorem on how to embed general random walk in Brow-

nian motion but will not need it directly since we will make an explicit construction

of the coupling. Note that in this section, random walk and Brownian motion are

one-dimensional.

Theorem 1.1.1 (Skorokhod Embedding). Suppose that (Xi)i≥1 are independent,

identically distributed real-valued random variable with mean 0 and variance 1. Then

9



there exist a probability space containing a Brownian motion {Bt : t ≥ 0}, the

random variables (Xi)i≥1, a sequence of stopping times 0 = T0 ≤ T1 ≤ T2 ≤ ..., such

that the increments Tn − Tn−1 are independent, identically distributed, E [Tn] = n,

and the sequence {B(Tn)}n≥1 has the same distribution as the random walk {Sn}n≥1

associated with {Xi}i≥1.

For more details, see for instance [7]. Note that although this theorem is a beauti-

ful result, it does not say anything about how close the random walk and the Brownian

motion actually are if we look at them path by path. For theorems addressing this

question, we again refer the reader to [5].

We want to make the random walk Sn a continuous process and define for all

t ≥ 0,

St = S[t] + (t − [t])(S[t]+1 − S[t]),

where [t] denotes the integer part of t. In what follows, the subscripts k, n will refer

to positive integers, whereas s, t will be positive real numbers.

For simple random walk, it is easy to see that by defining T0 = 0 and for i ≥

1, Ti = inf{t ≥ Ti−1 : |Bt − B(Ti−1)| = 1}, the conditions of Theorem 1.1.1 are

satisfied. From now on we denote the simple random walk {B(Tn)}n≥1 by Sn and

keep in mind that {St}t≥0 and {Bt}t≥0 are not independent.

This section’s main result is the following theorem:

Theorem 1.1.2. There exists a coupling of standard Brownian motion B and simple

random walk S such that ∀ g(n) ≥ 1 satisfying g(n) = O
(

n1/4
)

, there exist constants

b, K > 0 such that

P

{

sup
0≤t≤n

|Bt − St| ≥ n1/4g(n)}
}

≤ Kne−bg(n).

10



Proof. For notational purposes, we let h(n) = g(n)
√

n and for k ≥ 1,

Ik = [(k − 1)[h(n)], k[h(n)]] .

For n ≥ 4, we have the covering [0, n] ⊂
[n/g(n)]+3
⋃

k=1

Ik. Also, if 0 ≤ t − s ≤ h(n), the

interval [s, t] covers at most 3 of the Ik’s. We use this and Lemma A.1.5 to see that

there exist constants C1, a > 0 such that

� { sup
0≤k≤n

|Bk − Sk| ≥
1

2
n1/4g(n)}

≤ P

{

max
1≤k≤n

|Tk − k| ≥ h(n)

}

+ P











sup
s≤n

|t−s|≤h(n)

|Bt − Bs| ≥
1

2
n1/4g(n)











≤ C1ne−ag(n) + P











sup
1≤k≤[

√
n/g(n)]+3

t∈Ik

|Bt − B(k−1)[h(n)]| ≥
1

8
n1/4g(n)











≤ C1ne−ag(n) + 2

√
n

g(n)
P

{

sup
0≤t≤[h(n)]

|Bt| ≥
1

8
n1/4g(n)

}

≤ C1ne−ag(n) + C ′
1

√
n

g(n)3/2
e−a′g(n) ≤ K1ne−b1g(n),

where we use Lemma A.1.1 in the last step and K1 = max{C1, C
′
1}, b1 = min{a, a′}.

Now it suffices to observe that

P{ sup
0≤t≤n

|Bt − St| ≥ n1/4g(n)}

≤ P

{

sup
0≤k≤n

|Bk − Sk| ≥
1

2
n1/4g(n)

}

+ nP

{

sup
0≤t≤1

|Bt − St| ≥ n1/4g(n); |B0 − S0| ≤
1

2
n1/4g(n)

}

≤ K1ne−b1g(n) + K2ne−b2n1/2 ≤ Kne−bg(n),

11



where K = max{K1, K2}, b = min{b1, b2}.

Remark 1. The theorem implies that for any φ such that φ(n) → ∞ as n → ∞,

sup
0≤t≤n

|Bt − St|
n1/4 log nφ(n)

P→ 0.

This is close to being the best we can hope for when using Skorokhod’s method. In

[11], Kiefer shows that the best possible result for simple random walk with Sko-

rokhod’s method is

|Sn − Bn|
(n log log n)1/4(log n)1/2

a.s.
= O (1) .

1.2 Extending the result to the plane

The construction we made in the previous section does not work in dimensions other

than 1. However, there is a nice way of getting around this problem, which is as

follows:

Let B1
t , B

2
t be independent one-dimensional Brownian motions. Then

Bt = (B1
t , B

2
t )

is a planar Brownian motion. For i ≥ 0, j = 1, 2, let T j
i be the stopping time for Bj

t

as defined in the previous section and for i ≥ 0, define Sj
N = Bj(T j

n). Then S1, S2 are

independent one-dimensional random walks. We let Li = (L1
i , L

2
i ) be independent

random vectors, independent of B1, B2, with distribution

P {Li = (1, 0)} = P {Li = (0, 1)} =
1

2
.

If we define T j
n =

n
∑

i=1

Lj
i , it is easy to check that Sn := (S1

T 1
n
, S2

T 2
n
) is a planar simple

random walk. The statement and the proof of the main result are essentially the same

12



as in one dimension. The only difference is that now, the time-parameter is different

for the two processes. A one-line heuristic argument is that Brownian motion moves

a little bit faster since it is not restricted to moving along the lines of the lattice, but

can take “diagonal shortcuts”.

Theorem 1.2.1. There exists a coupling of standard Brownian motion B and simple

random walk S in the plane such that ∀ g(n) ≥ 1 satisfying g(n) = O
(

n1/4
)

, there

exist constants b, K > 0 such that

P

{

sup
0≤t≤n

|Bt − S2t| ≥ n1/4g(n)}
}

≤ Kne−bg(n).

Proof.

P

{

max
1≤k≤n

|Bk − S2k| ≥ n1/4g(n)}
}

≤ 2P

{

max
1≤k≤n

|B1
k − S1

T 1
2k
| ≥ 1√

2
n1/4g(n)}

}

.

Since T2k is a sum of 2k random variables of mean 1/2 and finite variance, the

exact same argument as in Theorem 1.1.2 can be used to show this result.

Remark 2. Obviously, the extension we just did works in higher dimensions as well.

Since we are working in the plane, we could also have used the method which we

discuss in the next section.

1.3 The KMT approximation

In [12], Komlós, Major, and Tusnády provide a coupling between random walk and

Brownian motion, in which the typical distance between the two paths is significantly

smaller from that obtained by the Skorokhod embedding. The coupling is constructed

in a “non-Markovian” way and more caution is needed when computing hitting times

for the coupling. The statement we present here is in fact a particular case of their

result.

13



Theorem 1.3.1 (KMT Approximation). There exist a probability space contain-

ing a Brownian motion B and a simple random walk S, constants K, λ, C > 0 such

that for all x > 0 and every n,

P

{

max
1≤k≤n

|Sk − Bk| > C log n + x

}

≤ K exp{−λx}.

An immediate consequence is that there exists K > 0 such that for every λ > 0

we can find a C = C(λ) > 0 such that ∀n ≥ 1,

P

{

max
1≤k≤n

|Sk − Bk| > C log n

}

≤ Kn−λ. (1.1)

We want the paths to be close not only at integer times, but at all real times up

to n.

Corollary 1.3.2. There exist a probability space containing a Brownian motion and

a simple random walk and a constant K ′ > 0 such that for every λ > 0 we can find

a C ′ = C ′(λ) > 0 such that for every n ≥ 1,

P

{

sup
0≤t≤n

|St − Bt| > C ′ log n

}

≤ K ′n−λ.

Proof. We let C ′ = 2C, where C is as in (1.1).

P{ sup
0≤t≤n

|St − Bt| > 2C log n}

≤ P

{

max
1≤k≤n

|Sk − Bk| > C log n

}

+ nP

{

sup
0≤t≤1

|St − Bt| ≥ 2C log n; |S0 − B0| ≤ C log n

}

≤ Kn−λ + nP

{

sup
0≤t≤1

|Bt| ≥
C

2
log n

}

≤ K ′n−λ.

14
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Figure 1.1: Two independent one-dimensional simple random walks on the diagonal
lattice (dotted lines) give a simple random walk in � 2.

Again, we need to extend the result to two dimensions. The coupling is so fine

that extending the result as we did with the Skorokhod embedding does not work.

We will use a very simple trick which works only in two dimensions. Fortunately, this

is all we need. The idea is to note that if we take two independent random walks,

one on the horizontal axis and one on the vertical axis and add up the components

at each step, we get a simple random walk in the plane on a “diagonal lattice”.

More precisely, for j ≥ 1, k = 1, 2, let Xk
j be independent random vectors with

distribution

P

{

X1
j = ± 1√

2
eiπ/4

}

= P

{

X2
j = ± 1√

2
ei3π/4

}

=
1

2
.

Then if we let Sk
n =

n
∑

j=1

Xk
j , S1

n and S2
n are independent simple random walks on

1√
2
eiπ/4 · � = {k · 1√

2
eiπ/4 : k ∈ � } and 1√

2
ei3π/4 · � , respectively. In particular, we can

couple each one with a Brownian motion with speed 1/2 in such a way that

P{ sup
0≤t≤n

|Sj
t − Bj

t/2| > C ′ log n} ≤ K ′n−λ.

Then Sn = (S1
n, S2

n) is a planar simple random walk and, using the rotational in-

variance of planar Brownian motion, Bt = (B1
t , B

2
t ) is a planar standard Brownian

15



motion. Moreover,

P{ sup
0≤t≤n

|S2t − Bt| >
√

2C ′ log n}

≤ P

{

sup
0≤t≤n

|S1
2t − B1

t |2 + |S2
2t − B2

t |2 ≥ 2(C ′)2 log2 n

}

≤ P

{

sup
0≤t≤n

|S1
2t − B1

t |2 ≥ (C ′)2 log2 n

}

+ P

{

sup
0≤t≤n

|S2
2t − B2

t |2 ≥ (C ′)2 log2 n

}

≤ 2K ′n−λ.

This gives:

Corollary 1.3.3. There exist a probability space containing a planar standard Brow-

nian motion and a two-dimensional simple random walk and a constant K ′′ > 0 such

that for every λ > 0 we can find a C ′′ = C ′′(λ) > 0 such that for every n ≥ 1,

P

{

sup
0≤t≤n

|S2t − Bt| > C ′′ log n

}

≤ K ′′n−λ.

1.4 Reparametrizing the random walk

To conclude this chapter, we reparametrize the random walks defined by the Sko-

rokhod embedding and the KMT approximation in such a way that |Bt −St| is small

(instead of |Bt − S2t| in the original coupling). We do this mainly for aesthetic rea-

sons. This time-change will not affect any of the forthcoming results, as it does not

affect hitting distributions which will be the object of our interest. From now on,

whenever we write St, it will be understood that we are looking at planar

simple random walk with twice the usual speed; Bt will be planar standard

Brownian motion. We rewrite the two main results of this chapter in the form in

which we will use them in the next chapters.
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Theorem 1.4.1. [Skorokhod Approximation] There exists a probability space con-

taining a Brownian motion B and a random walk S such that ∀ g(n) ≥ 1 satisfying

g(n) = O
(

n1/4
)

, there exist constants b, K > 0 such that

P

{

sup
0≤t≤n

|Bt − St| ≥ n1/4g(n)}
}

≤ Kne−bg(n).

Theorem 1.4.2. [KMT Approximation] There exist a probability space containing

a Brownian motion B and a random walk S, a constant K, such that for every λ > 0

there is a C = C(λ) > 0 such that for every n ≥ 1,

P

{

sup
0≤t≤n

|St − Bt| > C log n

}

≤ Kn−λ.
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Chapter 2

The Distribution of Large Random Walk

Holes

2.1 Introduction

In [26], Benôıt B. Mandelbrot, suggests the interesting behavior of an exponent re-

lated to planar simple random walk. Let the “holes” or “gaps” made by a continuous

planar stochastic process X over a time interval [a, b] be the connected components

of
� \X[a, b]. Mandelbrot observed the following behavior for planar simple random

walk loops (random walks of even length with same starting and ending point): Run

planar simple random walk for a fixed large time n. For A ≤ 1, let

N(A) = number of holes of area ≥ An.

Then there exists an A0, possibly depending on n, such that

• For A ≥ A0,

N � A−1.

• For A ≤ A0, there is a broad range of hole sizes for which

N � A− 5
6 ,
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log A

log N

slope = − 5
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N(A) = #{ holes of area ≥ nA}

slope = −1

Figure 2.1: Two regimes

where N(A) � f(A) means that there exist C1, C2 > 0 such that C1f(A) ≤ N(A) ≤

C2f(A).

There is no reason to believe that the exponent should be different for simple

random walk, where we do not require that the starting and ending point be the same,

so we will consider that process instead. Two papers treating a similar problem were

written at the end of the 80’s. They are central to our approach. In [27], Mountford

proved the following result:

If N[a,b] is the number of components of
� \B[0, 1] whose areas lie in the interval

[a, b], then for all c > 1,

u log2(cu/π)N[u,cu)
P→ 2π

(

1 − 1

c

)

as u ↓ 0.

Mountford’s paper is important for us as it contains some of the ideas which we

use in our approach to the problem. However, we will only use directly the results

of another paper ([24]), written by Le Gall, which is an extension and improvement
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Figure 2.2: Planar simple random walk of 10000 steps

of Mountford’s result. We will write more on Le Gall’s estimates in a forthcoming

section.

This chapter’s main result is the following:

Theorem 2.1.1. If S is simple random walk and

Ñ(δ) = #{connected components of
� \ S[0, n] of area greater than n1−δ},

then for all 0 < δ ≤ δ0 = 1
200

,

log2(nδ)

nδ
Ñ(δ)

P→ 2π, as n → ∞.

Remark 3. Recall that we reparametrized S in Chapter 1, so that it takes two steps

every unit of time.

As a general rule, in this chapter, a tilde will refer to a quantity related to random

walk.

Here are the key ideas of the argument (formal definitions of all the quantities

involved are made in the next section):
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1. Couple random walk and Brownian motion via Skorokhod embedding and use

Le Gall’s result to find information about the large random walk holes.

2. Decompose [n1−δ ,∞) into a union of smaller intervals Ij = [n1−δcj, n1−δcj+1),

where j ≥ 1 and c = 1 + ε > 1, and show that on each one, for every ε > 0

small enough,

P

{

|Ñj − Nj| > KεNj

}

→ 0 fast enough, as n → ∞.

Here,

Nj = #{ connected components of
� \ B[0, n] with area in Ij},

Ñj = #{ connected components of
� \ S[0, n] with area in Ij},

and K is some positive constant.

3. Reduce the problem to a question about ∆(z) :=
∣

∣|C(z)| − |C̃(z)|
∣

∣ for each

z ∈ � 2, where C(z) is the connected component of
� \ B[0, n] containing z,

C̃(z) is the connected component of
� \ S[0, n] containing z. The idea is to

show that on “good configurations” and for large components, ∆(z) is small

compared to the size of the components.

4. Eliminate the “bad configurations” by showing that their probabilities go to 0

as n → ∞. This involves

• Handling the case where z is close to ∂C(z) or ∂C̃(z). We do this with the

help of ideas relating the two-sided disconnection exponent for Brownian

motion and random walk to the fractal dimension of the Brownian frontier.

• Look at other “bad cases” which can occur even if z is far from ∂C(z)

and ∂C̃(z): C(z) closing very late before time n or C(z) being a very thin
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component, and the same for C̃(z). The ideas involved for these cases

involve the one-sided disconnection exponent for Brownian motion and

random walk, and Beurling estimates.

In Section 2, we give all the definitions needed for this chapter. In Section 3, we

discuss Le Gall’s results and give a list of the consequences which will be essential

for us. The fourth section looks at how “thick” the boundary of a Brownian motion

or random walk component is. The idea is based on the method of [15], which

exhibits a relationship between the two-sided disconnection exponent of Brownian

motion to the Hausdorff dimension of its frontier. Section 5 contains a sequence of

preparatory lemmas which compare the areas of the Brownian motion and random

walk component containing a given lattice point. In the last section, we use the

results of all the previous sections to prove Proposition 2.6.1 from which the main

result of the chapter, Theorem 2.1.1, follows directly.

2.2 Definitions

In what follows, all multiplicative constants will be denoted by K. It will be under-

stood that they may be different from one line to the next. Also, all inequalities will

be limiting inequalities in the sense that they are valid for n large enough.

Most of the definitions we make in this section will only come into play in Section

2.5, but to keep the sequence of lemmas in that section as compact as possible we

write the required definitions here together with those needed in Section 2.3.

We know from Chapter 1 that there exists a coupling of standard Brownian motion

B and (re-parametrized) simple random walk S such that for every g(n) ≥ 1 satisfying

g(n) = O
(

n1/4
)

, there exist constants b, K > 0 such that

P

{

sup
0≤t≤n

|Bt − St| ≥ n1/4g(n)

}

≤ Kne−bg(n). (2.1)
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From here on, we will be working with this coupling. We define

P =

{

sup
0≤t≤n

|Bt − St| ≤ n1/4 log2 n

}

. (2.2)

(2.1) implies that we can find an appropriate coupling of Brownian motion and ran-

dom walk and constants b, K > 0, so that

P(Pc) ≤ Kn1−b log n. (2.3)

Note that this means that P(Pc) decays faster than any power function. For any

z ∈ �
and any t ≥ 0, we let

Ct(z) = the connected component of
� \ B[0, t] containing z (2.4)

and

C̃t(z) = the connected component of
� \ S[0, t] containing z. (2.5)

If z ∈ B[0, t] we let Ct(z) = ∅ and if z ∈ S[0, t], C̃t(z) = ∅. If t = n, we just write

C(z) and C̃(z).

For a curve γ : [a, b] → �
and a point z /∈ γ([a, b]), we define argz(γ(t)) to be the

continuous argument of γ around z, with the convention that argz(γ(0)) = 0. Note

that argz(·) is defined on the parametric interval [a, b], not on the image of γ. For

a proof of the fact that a continuous choice of the argument exists, see for instance

[31].

It is a well-known property of Brownian motion that for a given z ∈ �
other than

the starting point, and any t > 0, P {z ∈ B[0, t]} = 0, so that for z ∈ � \ (0, 0),

P {Ct(z) = ∅} = 0 and P {argz(Bt) is well-defined} = 1.

In particular, P {B[0, n] ∩ ( � 2 \ {(0, 0)}) = ∅} = 1. In order to avoid overloading the

equations in the next sections, we assume from now on that every z ∈ � 2 \ {(0, 0)}

satisfies z 6∈ B[0, n].
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The quantities we define now arise naturally in the treatment of the problem. We

will need to consider the first time at which points lie in a finite component and also

what happens between a time at which they “almost” lie in a finite component and

the time at which they actually do.

We define the closing times for z by Brownian motion and random walk:

Tz = inf{t ≥ 0 : Ct(z) < ∞} and T̃z = inf{t ≥ 0 : C̃t(z) < ∞},

as well as the closing points for z:

xz = B(Tz) and x̃z = S(T̃z).

Another characterization of Tz is

Tz = inf{t ≥ 0 : ∃ 0 ≤ s < t with Bs = Bt, |argz(Bs) − argz(Bt)| 6= 0},

and similarly for T̃z. Note that Tz and T̃z are stopping times.

The last call for z by Brownian motion is

T l
z = T l

z,n = inf{t ≥ 0 : ∃ 0 ≤ s ≤ t : |argz(Bs) − argz(Bt)| ≥ 3π/2; d(Bs, Bt) ≤

3n1/4 log2(n)},

and

T̃ l
z = T̃ l

z,n = inf{t ≥ 0 : ∃ 0 ≤ r ≤ t : |argz(Sr) − argz(St)| ≥ 3π/2; d(Sr, St) ≤

3n1/4 log2(n)}

is the last call for z by random walk. The last call points are just

xl
z = B(T l

z) and x̃l
z = S(T̃ l

z).

Note that

T l
z < Tz and T̃ l

z < T̃z.
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We define

N[a,b) = N[a,b)(n) = #{ connected components of
� \ B[0, n] with area in [a, b)},

Ñ[a,b) = #{ connected components of
� \ S[0, n] with area in [a, b)}.

Throughout this chapter, δ will always refer to a real number ∈ (0, 1
200

]. We let

c = 1 + ε, (2.6)

where ε > 0 is small. Eventually, we will let ε → 0. Most of the quantities with

which we will work below depend on n, δ, and ε. To simplify the notation, we will

not keep the indexes which refer to them, but the reader should be aware of their

implicit presence. Let

I = [n1−δ,∞), N = NI , Ñ = ÑI ,

and define for all j ≥ −1,

IR
j = [n1−δcj+1(1 + ε2)−1, n1−δcj+1),

for all j ≥ 0,

Ij = [n1−δcj, n1−δcj+1), IL
j = [n1−δcj, n1−δcj(1 + ε2)),

I−
j = Ij \ (IL

j ∪ IR
j ), I+

j = Ij ∪ (IR
j−1 ∪ IL

j+1).

The number of components in the corresponding intervals will be

Nj = NIj
, Ñj = ÑIj

, NL
j = NIL

j
, NR

j = NIR
j
, N±

j = NI±j
.

We let

Z±
j = the set of all components of

� \ B[0, n] with area in I±
j ,

Z̃j = the set of all components of
� \ S[0, n] with area in Ij,
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Zj = the set of all components of
� \ B[0, n] with area in Ij,

and define the random variables

∆+
j = |Z̃j| − |Z+

j |, ∆−
j = |Z−

j | − |Z̃j|.

In the analysis of the problem, we will need to assume that the Brownian paths

do not go too far and it is therefore natural to introduce

N = { sup
0≤t≤n

|Bt| ≤
√

n log n}.

In Appendix A, we show that P(N c) decays faster than any power function.

We let β = 1
25

and define for y, z ∈ �
,

Bz(y) = {d(y, ∂C(z)) ≥ n1/3−β}, B̃z(y) = {d(y, ∂C̃(z)) ≥ n1/3−β},

B−
z (y) = {d(y, ∂C(z)) ≥ 1

2
n1/3−β}, B̃−

z (y) = {d(y, ∂C̃(z)) ≥ 1

2
n1/3−β}. (2.7)

Remark 4. The 1/3 exponent is 1−2/3, where 2/3 comes from the quantities related

to the boundary of the components. See Section 2.4. β is chosen in such a way that,

among other things, we have n1/3−β · n2/3+δ = o(n).

B(z) will be short for Bz(z) and similarly for the other definitions of (2.7). The

following events will also appear naturally in the analysis of the problem and we

define them here:

E1(z) = {|C(z)| < ∞}, E2(z) = {|C̃(z)| < ∞}, E(z) = E1(z) ∩ E2(z),

L1(z) = {n1−δ ≤ |C(z)|}, L2(z) = {n1−δ ≤ |C̃(z)|}, L(z) = L1(z) ∩ L2(z).

To keep the notation as simple as possible in the next sections, we will use the

abbreviation

G = G(z) = N ∩ P ∩ B(z) ∩ E(z) ∩ L(z).
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G stands for “good” and is an intersection of events on which the result we wish to

show will be more likely to hold.

Finally, we define the difference in area of the Brownian motion and random walk

component containing a given point z ∈ � 2:

∆(z) =
∣

∣

∣
|C(z)| − |C̃(z)|

∣

∣

∣
. (2.8)

2.3 Consequences of Le Gall’s result

In [24], Le Gall computes the expectation and an upper bound for the variance of

|Au|, where

Au = {y ∈ �
: π(λu)2 ≤ |C1(y)| ≤ πu2}

λ < 1, and C1(z) is defined as in (2.4). In particular, he shows that the variance is

of smaller order of magnitude than the second moment. His two estimates which are

relevant to us are the following:

1.

E [|Au|] =
π| log λ|
| log u|2

(

1 + O
(

log | log u|
| log λ|| logu|1/2

))

, (2.9)

where O (·) is for u → 0, but the corresponding constant may depend on λ.

2. There exists a constant K > 0 such that ∀ u ∈ (0, 1/4),

V ar[|Au|] ≤ K| log u|−11/2. (2.10)

As an intermediate step towards the estimates we need, we rewrite these equations

for a slightly different quantity. Let Âv = {y ∈ �
: vn ≤ |C(y)| ≤ cvn}, where

c = 1 + ε > 1 is the same constant as defined in the previous section. (Recall

that C(y) is short for Cn(y).) Then a change of variables and scaling properties of

Brownian motion allow us to deduce the following from (2.9) and (2.10):
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E

[

|Âv|
]

=
2π log c

log2(cv/π)
n

(

1 + O
(

log log(cv)

log c(log(cv))1/2

))

, (2.11)

where, again, O (·) is for v → 0, but the corresponding constant may depend on c.

V ar
[

|Âv|
]

≤ Kn2| log(cv)|−11/2, (2.12)

for all v with cv ∈ (0, 1/4).

We can now easily translate these facts into the results we need for our problem,

namely results about the number of components of area lying in a certain interval,

rather than the total area covered by these components. This just requires dividing

the total area by the area of one component, as well as choosing the appropriate

values of v. Since the areas are not a determined number, but lie in an interval, this

generates an additional error term.

We let m =
[

δ log n
2 log c

]

. The motivation for this definition will become clear in

Section 2.6. What matters for now is that for every j ≤ m − 1, components of area

in Ij have area less than n1−δ/2, which is smaller than 1
4
n for n large enough, so that

we can use (2.12). Then, for 0 ≤ j ≤ m − 1,

E [Nj] = γj

(

1 − ε(1 + O (ε)) + O
(

log(1
2
| log( cj+1n−δ

π
)|)

| log( cj+1n−δ

π
)|1/2

))

,

V ar[Nj] ≤ Kγ2
j

1

| log( cj+1n−δ

π
)|3/2

,

E
[

N−
j

]

= γ−
j

(

1 + O
(

ε2
)

+ O
(

log log(cj+1n−δ(1 + ε2)−1)

| log(cj+1n−δ(1 + ε2)−1)|1/2

))

,

V ar[N−
j ] ≤ K(γ−

j )2 1

| log( cj+1

πnδ(1+ε2)
)|3/2

,
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E
[

NL
j

]

= γLR
j

(

1 + O
(

log(1
2
| log( cjn−δ

π
)|)

| log( cjn−δ

π
)|1/2

)

+ rε2

)

,

V ar[NL
j ] ≤ K(γLR

j )2 1

| log( cjn−δ

π
)|3/2

,

and for −1 ≤ j ≤ m − 1,

E
[

NR
j

]

= γLR
j

(

1 + O
(

log(1
2
| log( cjn−δ

π
)|)

| log( cjn−δ

π
)|1/2

)

− rε2

)

,

V ar[NR
j ] ≤ K(γLR

j )2 1

| log( cjn−δ

π
)|3/2

,

where

γj =
2π log(c)

cj log2
(

cj+1

πnδ

)nδ, γLR
j =

2π log(1 + ε2)

cj log2
(

cj

πnδ

) nδ, γ−
j =

2π log(c)

cj log2
(

cj+1

πnδ(1+ε2)

)nδ, (2.13)

r ∈ (0, 1), and K and O may depend on ε. O (·) is for n → ∞. These estimates are

useless if cjn−δ does not decay uniformly in j as n → ∞. Fortunately, as mentioned

before, we will only need them for j ≤ m − 1, for which cjn−δ ≤ Kn−δ/2, with some

constant K uniform in j, δ, ε.

The most important consequence of these estimates for us is that for every C1 >

0, δ > 0, and ε > 0, there is a constant K = K(C1, δ, ε) > 0 such that for all

−1 ≤ j ≤
[

δ log n
2 log c

]

,

P {|Nj − γj| ≥ C1γj} ≤ K

(log n)3/2
. (2.14)

We will also need the main result of Le Gall’s paper, which is the following: If

NB = NB(u) is the number of connected components of
� \ B[0, 1] of area greater

than u, then

lim
u→0

u(log u)2NB = 2π, a.s. (2.15)
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Recall that N = N[n1−δ ,∞) and note that different scales are involved in Le Gall’s

results and the problem which we wish to study here: while NB is concerned with

holes made by B[0, 1], N and Ñ are concerned with holes made by B[0, n]. Using

the scaling properties of Brownian motion, the following is a trivial consequence of

(2.15): For every C1 > 0,

P

{

|N
γ

− 1| ≥ C1

}

→ 0 as n → ∞, (2.16)

where

γ =
2πnδ

log2(nδ)
. (2.17)

In particular, for every δ > 0, K1 < 2π, K2 > 2π,

P {N < K1γ} → 0 as n → ∞ and P {N > K2γ} → 0 as n → ∞. (2.18)

Of course, (2.16) and (2.18) still hold if we replace the pair (N, γ) by (Nj, γj),

(NL
j , γLR

j ), (NR
j , γLR

j ), or (N−
j , γ−

j ).

We conclude this section by stating the following fact which will be useful later

and which can be easily deduced from (2.13) if one remembers that c = 1 + ε:

γLR
j = εγ−

j (1 + O (ε)). (2.19)

2.4 Disconnection exponents and the components’ bound-

aries

In [20], [21], and [22], Lawler, Schramm, and Werner computed a whole class of pla-

nar Brownian intersection exponents and disconnection exponents. In this section,

we introduce two of these exponents, the one-sided and two-sided disconnection ex-

ponents and use the exact value of the latter to estimate the expected number of
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lattice squares intersected by the boundary of the “large components” of a planar

Brownian motion. More precisely, we give an upper bound for the expected box

counting dimension (see [9] for a definition) of the boundary of

Cn = Cn(ε) = {z ∈ � \ B[0, n] : |C(z)| ≥ n1−ε}

and

C̃n = C̃n(ε) = {z ∈ � \ S[0, n] : |C̃(z)| ≥ n1−ε}.

Burdzy and Lawler showed in [4] that the intersection exponents for random walk

and Brownian motion are the same. Lawler and Puckette extended this work and

showed in [18] and [19] that the two exponents which we discuss in this section are the

same for Brownian motion and random walk. This allows us to estimate the expected

number of lattice squares intersected by the boundary of the “large components” of

a planar random walk as well.

We use the notation of [15] and let P
x1,x2

be the probability measure associated to

two independent planar Brownian paths B1 and B2 with B1(0) = x1 and B2(0) = x2,

where x1, x2 ∈ �
. Similarly, P

x1
will denote the probability measure associated

to the lone Brownian path B1 started at x1. For i = 1, 2 and n ∈ �
, we define

T i
n(x) = inf{t ≥ 0 : |Bi(t) − x| = n}; if x = 0, we just write T i

n.

We give the analogous definitions for random walk: P
x1,x2

is the probability mea-

sure associated to two independent planar random walks S1 and S2 with S1(0) = x1

and S2(0) = x2, where x1, x2 ∈ � 2. Also, P
x1

is the probability measure associated to

S1 started at x1. It will be clear from context whether P refers to Brownian motion or

random walk. We also let τ i
n(x) = inf{k > 0 : |Si(k)−x| = n}, and write τ i

n(0) = τ i
n,

where, again, i = 1, 2 and n ∈ �
.

For any compact A ⊂ �
, we let Q̄(A) be the unbounded component of

� \ A.
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2.4.1 One-sided disconnection exponent

Let

An = {D(0, 1) ∩ Q̄(B1[0, T 1
n ]) 6= ∅} and � (An) = sup � x(An),

where the sup is over all x with |x| ≤ 1, and

Ãn = {(0, 0) ∩ Q̄(S1[1, τ 1
n]) 6= ∅}.

The following lemma is a consequence of the three papers mentioned at the beginning

of this section and of [18], which gives part (b).

Lemma 2.4.1. There exists a constant K > 0 such that for all n ≥ 1,

(a) � (An) ≤ Kn−1/4, (b) � (Ãn) ≤ Kn−1/4.

2.4.2 Two-sided disconnection exponent and the boundary of Cn

Let

Fn = {D(0, 1) ∩ Q̄(B1[0, n] ∪ B2[0, n]) 6= ∅},

Dn = {D(0, 1) ∩ Q̄(B1[0, T 1
n ] ∪ B2[0, T 2

n ]) 6= ∅},

F̃n = {(0, 0) ∩ Q̄(S1[1, n] ∪ S2[1, n]) 6= ∅},

D̃n = {(0, 0) ∩ Q̄(S1[1, τ 1
n] ∪ S2[1, τ 2

n]) 6= ∅},

where D(0, 1) is the closed disk of radius 1, centered at 0. We will write

� (Fn) = sup � x1,x2

(Fn) and � (Dn) = sup � x1,x2

(Dn),

where the sup is over all |x1| ≤ 1, |x2| ≤ 1. In the same way, we let

� (F̃n) = sup � (F̃n) and � (D̃n) = sup � (D̃n),

where the sup is over all possible pairs of vectors (S1(1), S2(1)).

32



The following Lemma is a consequence of [20], [21], and [22], where the value of

the Brownian disconnection exponent is computed and [19], where the equality of the

Brownian exponent and the random walk exponent is shown.

Lemma 2.4.2. There exists a constant K such that for all n ≥ 1,

(a) � (Fn) ≤ Kn−1/3, (b) � (Dn) ≤ Kn−2/3

(c) � (F̃n) ≤ Kn−1/3, (d) � (D̃n) ≤ Kn−2/3.

We now turn to the question in which we are interested for our specific problem,

which concerns the “size” (fractal dimension) of the boundary of large components.

Lawler first showed in [15] that there is a strong link between the two-sided discon-

nection exponent and the Hausdorff dimension of the Brownian frontier. The proof

of Lemma 2.4.3 below is essentially based on ideas of his paper.

Recall the definition of Cn and C̃n at the beginning of this chapter. The main

lemma of this section gives an upper bound for the expected number of squares of

the dual lattice of � 2 (i.e. squares of side-length 1, centered at the points of � 2, and

whose sides are parallel to the coordinate axes) which are intersected by the boundary

of Cn. Whenever we write “squares” below, we mean the squares of the dual lattice.

We will say that a square S is hit by a set A if A ∩ S 6= ∅.

Lemma 2.4.3. There exists a constant K > 0 such that for every ε > 0, every n ≥ 1,

E
[

#{y ∈ � 2 : Sq(y) ∩ ∂Cn(ε) 6= ∅}
]

≤ K n
2
3
+ ε

2

and

E

[

#{y ∈ � 2 : Sq(y) ∩ ∂C̃n(ε) 6= ∅}
]

≤ K n
2
3
+ ε

2 .

Proof. The general strategy of the proof is essentially to bound the expected number

of time segments [j − 1, j] over which the Brownian path intersects ∂Cn(ε). This will
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suffice thanks to the fact that the expected number of squares hit by B([j − 1, j]) is

finite. For 1 ≤ j ≤ n, let dj be the diameter of B[j − 1, j] and Bj the closed ball of

radius dj, centered at Bj, so that B[j − 1, j] ⊂ Bj. We let ñ = [n1−ε(log n)−3] and

call

AL
j = B[0 ∨ (j − 1 − ñ), j − 1] and AR

j = B[j, (2j − 1) ∧ (j + ñ)]

the left arm and right arm, respectively, of Bj. The left and right arm span time

intervals of same length and that length is j − 1 if j ≤ ñ + 1 and ñ if j ≥ ñ + 1.

With high probability, for every 1 ≤ j ≤ n, both arms of Bj are completely

contained in a disk of radius n(1−ε)/2(log n)−1. The idea which we will use below is

that if B[j−1, j] is to intersect ∂Cn(ε), then on one of these events of high probability,

the arms of Bj cannot disconnect Bj from infinity. Indeed, since the arms span a

time interval of at most ñ, we expect them to cover roughly a distance of at most
√

ñ = n(1−ε)/2

(log n)3/2 . If they disconnect Bj from infinity, then assuming that dj is bounded,

B[j − 1, j] can intersect a component of area at most K n1−ε

(log n)3
. We now write out

this argument formally. The main difficulty is to handle the cases where either dj is

very large or the arms of Bj are unusually long.

We define m = [n/2] + 1. By symmetry, we have

E[#(squares hit by ∂Cn)] ≤ 2

m
∑

j=1

E [#(squares hit by ∂Cn ∩ B[j − 1, j])]. (2.20)

We first look at the terms for j ≤ ñ. It is easy to check that if B[j−1, j] intersects

l squares, then dj ≥
[√

l
10

]

. This is not optimal but enough for our needs. Therefore,

for j ≤ ñ, we have

E[#(squares hit by ∂Cn ∩ B[j − 1, j])]

=
∑

l≥1

P {#(squares hit by ∂Cn ∩ B[j − 1, j]) = l} l
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≤
∑

l≥1

P

{

B[j − 1, j] ∩ ∂Cn 6= ∅; dj ≥
[√

l

10

]}

l

=
∑

l≥1

l
∑

k≥0

P

{

B[j − 1, j] ∩ ∂Cn 6= ∅; dj ∈
[

[

√
l

10
] + k, [

√
l

10
] + k + 1

]}

≤
∑

l≥1

l
∑

k≥0

P

{

Bj ∩ ∂Cn 6= ∅
∣

∣

∣

∣

dj ∈
[

[

√
l

10
] + k, [

√
l

10
] + k + 1

]}

· P

{

dj ≥ [

√
l

10
] + k

}

.

We now separate the last term into the case where the arms are not unusually long

and the case where they are. This gives

≤
∑

l≥1

[

l
∑

k≥0

P

{

Bj ∩ Q̄(AL
j ∪ AR

j ) 6= ∅
∣

∣

∣

∣

dj ∈
[

[

√
l

10
] + k, [

√
l

10
] + k + 1

]}

(2.21)

· P

{

dj ≥ [

√
l

10
] + k

}

]

(2.22)

+ P

{

diam(AL
j ) ≥ n

1−ε
2 log−1 n

}

+ P

{

diam(AR
j ) ≥ n

1−ε
2 log−1 n

}

(2.23)

By looking at the time-reversal of AL
j and Lemma 2.4.2 (a), scaling tells us that

the probability in (2.21) is bounded above by K( j

(
√

l/10+k)2
)−1/3. Since for any a ≥ 0

and b ≥ 1, a + b ≤ 4(a + 1)b, this is smaller than Kj−1/3l1/3k2/3. For the probability

in (2.22), we use Lemma A.1.1 to get an upper bound of K exp{− 1
2
( 1

100
l + k2)}.

The same lemma also implies that the probabilities in (2.23) are bounded above by

Kn−1/2. This gives the following:

E[#(squares hit by ∂Cn ∩ B[j − 1, j])]

≤ Kn−1/2 + Kj−1/3
∑

l≥1

l · l1/3 exp{−l/200}
∑

k≥0

k2/3 exp{−k2/2}

≤ Kj−1/3, (2.24)
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since both sums are finite.

In the same way, if ñ ≤ j ≤ m, then the arms of Bj are very likely to reach

distance at least n(1−ε)/2(log n)−1. Using Lemma 2.4.2 (b), we get

E[#(squares hit by ∂Cn ∩ B[j − 1, j])]

≤ K(n(1−ε)/2(log n)−1)−2/3. (2.25)

Now all that is left to do is use (2.24), (2.25), and (2.20) to conclude that

E[#(squares hit by ∂Cn]

≤ K

[

ñ
∑

j=1

j−1/3 +

m
∑

j=ñ

(n(1−ε)/2(log n)−1)−2/3

]

≤ K
[

ñ2/3 + n · (n(1−ε)/2(log n)−1)−2/3
]

≤ K
[

n
2
3
(1−ε) + n

2
3
+ ε

3 (log n)2/3
]

≤ Kn
2
3
+ ε

2 .

This gives the lemma.

The exact same ideas combined with Lemma 2.4.2 (c) and (d) give

Lemma 2.4.4. There exists a constant K > 0 such that for every ε > 0, every n ≥ 1,

E
[

#{y ∈ � 2 : Sq(y) ∩ ∂Cn(ε) 6= ∅}
]

≤ K n
2
3
+ ε

2

and

E

[

#{y ∈ � 2 : Sq(y) ∩ ∂C̃n(ε) 6= ∅}
]

≤ K n
2
3
+ ε

2 .

2.5 Preliminary lemmas

The work of this section leads to Proposition 2.6.1, of which Theorem 2.1.1 is an

almost direct consequence. The general strategy of the proof of the proposition is to

eliminate all the “bad cases” (events on which {|Ñ − N | > εN} is likely to hold) by
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PSfrag replacements z

n
1/3−β

100

B(T f
z )

B(T l
z)

n1/3−β

Figure 2.3: Proof of Lemma 2.5.1: T l
z is the first time at which D(z, n1/3−β) is

“almost” disconnected from ∞.

showing that they have a probability which goes to 0 as n gets large. This is handled

in the sequence of lemmas of this section, as well as in Section 2.4.

The first two lemmas are results which concern either Brownian motion or random

walk, but do not consider the coupling. Lemmas 2.5.3 and 2.5.4 address questions

on the joint behavior of the coupled random walk and Brownian motion.

The first lemma of this section shows that outside of an unlikely set, the closing

time by Brownian motion for a point which is not too close to the Brownian path

comes soon after the last call. Recall that β = 1
25

.

Lemma 2.5.1. There exists a constant K > 0 such that for any z ∈ �
,

(a) P
{

Tz − T l
z > n2/3;B(z)

}

≤ P
{

Tz − T l
z > n2/3;B−(z)

}

≤ Kn
β
2
− 1

24 log n.

(b) P

{

T̃z − T̃ l
z > n2/3; B̃(z)

}

≤ P

{

T̃z − T̃ l
z > n2/3; B̃−(z)

}

≤ Kn
β
2
− 1

24 log n.

Proof. [See Figure 2.3]

(a) We start by pointing out that if x ∈ (D(z, n1/3−β))c and 0 ≤ s ≤ t are such

that B[s, t] ⊂ D(x, n1/3−β

100
), then we have the obvious rough bound

|argz(Bs) − argz(Bt)| ≤
π

8
. (2.26)
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We define

T f
z = inf{t ≥ 0 : |argz(Bt) − argz(BT l

z
)| ≥ 3π/2, d(Bt, BT l

z
) ≤ 3n1/4 log2 n},

xf
z = B(T f

z ), and Φf
z = inf{t ≥ T f

z : Bt ∈ ∂Df
z }, where Df

z = D(xf
z ,

n1/3−β

100
).xf

z can be

thought of as being the point “across from” xl
z on the Brownian path up to time T l

z

(see Figure 2.3).

We first note that on the event B(z), the definition of xl
z implies that the connected

random set Az = B[T f
z , Φf

z ] contains xf
z , intersects ∂Df

z , and satisfies

1. d(xl
z, Az) ≤ 3n1/4 log2(n).

2. For any t ∈ [T f
z , Φf

z ], |argz(Bt) − argz(B(T l
z))| > π.

The second point is true because |argz(B(T f
z )) − argz(B(T l

z))| ≥ 3π/2 and in-

side Df
z , argz(Bt) does not vary by more than π

8
, by (2.26), since on B(z), xf

z ∈

(D(z, n1/3−β))c. In fact, as n increases, |argz(B(T f
z )) − argz(B(T l

z))| becomes arbi-

trarily close to 2kπ for some strictly positive integer k.

If we let Φl
z = inf{t ≥ T l

z : Bt ∈ ∂Df
z }, the fact that T l

z is a stopping time and

that Az is measurable with respect to T l
z allows us to use the strong Markov property

and write

P{Tz − T l
z > n2/3}

≤ P
{

B[T l
z, T

l
z + n2/3] ∩ Az = ∅

}

≤ P
{

B[T l
z, T

l
z + n2/3] ∩ ∂Df

z = ∅
}

+ P
{

B[T l
z, Φ

l
z] ∩ Az = ∅

}

≤ P

{

sup
0≤t≤n2/3

|Bt| ≤ 2n1/3−β

}

+ P
3n1/4 log2(n) {B[0, Ξn1/3−β ] ∩ Σ = ∅} ,

by Beurling’s projection theorem (see Appendix A) and translation invariance of

Brownian motion. Here, Σ is the straight line from (0, 0) to (−n1/3−β

100
, 0) and for

a ≥ 0, Ξa = inf{t ≥ 0 : |Bt| ≥ a}.
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Thus, P
{

Tz − T l
z > n2/3

}

≤ exp{−Cn2β}+Kn
β
2
− 1

24 ≤ Kn
β
2
− 1

24 , by Lemmas A.1.2

and A.3.2.

The proof of (b) is virtually the same, but in this case we use the discrete Beurling

estimate.

It should be intuitively clear that many points are disconnected from infinity in

the time interval [n − na, n], where a ≤ 1, but most of these points will lie in rather

small components. Lemma 2.5.2 shows that in fact it is unlikely that the closing time

for a point which lies in a large component occur very late.

Lemma 2.5.2. There exists a constant K > 0 such that for any z ∈ � 2, 0 < δ ≤ 1
200

,

and 0 ≤ a ≤ 1 − δ,

(a) P {Tz ∈ [n − na, n];L1(z)} ≤ Kn
a+δ−1

8 (log n)1/4.

(b) P

{

T̃z ∈ [n − na, n];L2(z)
}

≤ Kn
a+δ−1

8 (log n)1/4.

Remark 5. The result holds, in fact, for any a ≥ 0, but ceases to be interesting if

a ≥ 1 − δ, since for those values of a, Kn
a+δ−1

8 (log n)1/4 → ∞, as n → ∞.

Proof. [See Figure 2.4]

(a) Recall that L1(z) means that z lies in a Brownian motion component of area

≥ n1−δ. In Section 2.4 we defined, for any compact A ⊂ �
, Q̄(A) to be the unbounded

component of
� \ A. We call Γ the first time at which D(na/2 log n) is disconnected

from ∞. If we let Λ = sup{t ≥ 0 : D(Bn, na/2 log n) ∩ Q̄(B[t, n]) 6= ∅} be the greatest

time at which B[t, n] disconnects D(Bn, n
a/2 log n) from infinity (with the convention

sup ∅ = 0), then if diam(B[Λ, n]) ≤ n(1−δ)/2 and B[n − na, n] ⊂ D(Bn, na/2 log n),

B[n − na, n] cannot intersect the boundary of a component of area ≥ n1−δ . Thus,
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na/2 log n

n(1−δ)/2

B(0) B(n)

z

Figure 2.4: Proof of Lemma 2.5.2: Time-reversed Brownian motion must get from
B(n) to distance n(1−δ)/2 without disconnecting D(B(n), na/2 log n) from infinity.

P{Tz ∈ [n − na, n];L1(z)}

≤ P {B[n − na, n] ∩ ∂C(z) 6= ∅;L1(z)}}

≤ P

{

sup
n−na≤t≤n

|Bt − Bn| ≥ na/2 log n

}

+ P
{

diam(B[Λ, n]) ≥ n(1−δ)/2
}

= P

{

sup
0≤t≤na

|Bt| ≥ na/2 log n

}

+ P {Ξn1−δ < Γ}

≤ Kn− log n/2 + Kn(a+δ−1)/8(log(n))1/4,

by Lemmas A.1.1 and 2.4.1 (a). The equality can be seen by time-reversing Brownian

motion.

Again, the proof of (b) is the same but uses the corresponding results for random

walk, namely Corollary A.1.4 and Lemma 2.4.1 (b).

Lemma 2.5.3 shows that the chance of C(z) being finite and C̃(z) being infinite is

small when z is not too close to the boundary of C(z). The condition that z be away

from the boundary of C(z) is essential, since otherwise, it could easily happen that

the Brownian path passes on one “side” of z and the random walk on the other (see

Figure 2.5). To avoid this, we need z to be at a distance from ∂C(z) which is greater
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z

Figure 2.5: z close to the boundary of C(z)

than the maximal distance between the coupled random walk and Brownian motion,

i.e. n1/4 log2 n. In fact, the condition B(z) = {d(z, ∂C(z)) ≥ n1/3−β} which we use

to restrict ourselves to points away from the boundary gives us more room than we

really need. Recall that (E1(z))c = {|C(z)| = ∞} and (E2(z))c = {|C̃(z)| = ∞}. P

is still the condition associated with the coupling, i.e. that B and S be close to each

other in the sense of (2.2).

Lemma 2.5.3. There exists a constant K > 0 such that for every z ∈ �
, j ≥ 0, and

n ≥ 1,

(a) P {|C(z)| ∈ Ij;B(z); (E2(z))c;P} ≤ Kn
β
2
− 1

24 log n.

(b) P

{

|C̃(z)| ∈ Ij; B̃(z); (E1(z))c;P
}

≤ Kn
β
2
− 1

24 log n.

Proof. [See Figure 2.6]

(a) The key idea of the proof is that when the Brownian motion component closes,

the last call for random walk has already occurred. At that instant, either it is very

late, i.e. a time very close to n, which is unlikely by Lemma 2.5.2 (a), or the random

walk has plenty of time left to disconnect z from infinity and will do it with high

probability by Lemma 2.5.1 (b). We can easily check that B(z) ∩ P ⊂ B̃−(z) and

B(z) ∩ P ⊂ {T̃ l
z ≤ Tz}. The first inclusion is obvious. The second follows from an

argument similar to the one we used at the beginning of the proof of Lemma 2.5.1:
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Figure 2.6: Proof of Lemma 2.5.3: When Brownian motion disconnects z from ∞,
random walk is close to doing so as well.

By definition of Tz, there is a time t ≤ Tz such that Bt = BTz and |argz(Bt) −

argz(BTz)| ≥ 2π. The conditions B(z) and P ensure that |argz(Bt) − argz(St)| ≤ π
8

and |argz(BTz) − argz(STz)| ≤ π
8
, so that |argz(St) − argz(STz)| ≥ 3π

4
. Also, the

condition P guarantees that d(St, Bt) ≤ n1/4 log2 n and d(STz , BTz) ≤ n1/4 log2 n,

which implies d(St, STz) ≤ 2n1/4 log2 n. By the definition of T̃ l
z it is now clear that

T̃ l
z ≤ Tz. Therefore,

P{|C(z)| ∈ Ij; |C̃(z)| = ∞;B(z);P}

≤ P

{

|C(z)| < ∞; |C̃(z)| = ∞;B(z);P; T̃ l
z < n − n2/3

}

+ P
{

Tz ∈ [n − n2/3, n];L1(z)
}

≤ P

{

T̃z − T̃ l
z > n2/3;B(z);P

}

+ P
{

Tz ∈ [n − n2/3, n];L1(z)
}

≤ n
β
2
− 1

24 log n + Kn− 1
6
+ δ

4

≤ Kn
β
2
− 1

24 log n,

by Lemma 2.5.1 (b) and Lemma 2.5.2 (a).

Part (b) is done in the same way, but we use the other parts of Lemmas 2.5.1 and

Lemma 2.5.2.
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The last preparatory lemma shows that if y ∈ C(z), but y and z are not too close

to the boundary of C(z), it is unlikely that y 6∈ C̃(z) if C̃(z) < ∞.

Lemma 2.5.4. For any given y, z ∈ �
,

P

{

y ∈ C(z) \ C̃(z);B(z);Bz(y); E(z);P
}

≤ Kn
β
2
− 1

24 (log n).

Proof. For y, z ∈ �
, we introduce stopping times similar to those defined in Section

2.2:

Ty,z = inf{t ≥ 0 : ∃ 0 ≤ s ≤ t with Bs = Bt},

|argy(Bs) − argy(Bt)| 6= |argz(Bs) − argz(Bt)|},

T̃y,z = inf{t ≥ 0 : ∃ 0 ≤ r ≤ t with Sr = St,

|argy(Sr) − argy(St)| 6= |argz(Sr) − argz(St)|},

T l
y,z = inf{t ≥ 0 : ∃ 0 ≤ s ≤ t with d(Bs, Bt) ≤ 3n1/4 log2(n),

|argy(Bs) − argy(Bt)| 6= |argz(Bs) − argz(Bt)|},

T̃ l
y,z = inf{t ≥ 0 : ∃ 0 ≤ r ≤ t with d(Sr, St) ≤ 3n1/4 log2(n),

|argy(Sr) − argy(St)| 6= |argz(Sr) − argz(St)|}.

Note that y and z lie in different components of
� \ B[0, t] if and only if t ≥ Ty,z.

P{y ∈C(z) \ C̃(z);B(z);Bz(y); E(z);P}

≤ P
{

y ∈ C(z);B(z);Bz(y);P; T l
y,z < n − n2/3

}

+ P

{

T̃y,z ∈ [n − n2/3, n]
}

.

Exactly as in Lemma 2.5.3, {B(z);Bz(y);P} ⊂ {B̃−(z); B̃−
z (y)} ⊂ {T l

y,z ≤ T̃y,z},

and so

P

{

y ∈ C(z) \ C̃(z);B(z);Bz(y); E(z)
}

≤ Kn
β
2
− 1

24 log n.
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Remark 6. In the last lemma, it is clear that unless d(y, z) ≥ 2n
1
3
+γ, the probability

is 0.

We are now ready to attack the core of the argument. The next lemma contains

some of the ideas needed for the proof of the main theorem and we provide it here

with its proof.

Lemma 2.5.5. For every C1 > 0, there exists a constant K > 0 such that for any

0 < δ ≤ 1
200

, any z ∈ �
,

P
{

∆(z) ≥ C1n
1−β/8;G

}

≤ Kn−3β/8.

Proof. We will show that

E [∆(z);G;L] ≤ Kn
23
24

+β
2 log3 n. (2.27)

Once we have this, the lemma follows from Chebyshev’s inequality. We note that

∆(z) ≤ #{y ∈ � 2 : Sq(y) ∩ ∂C(z) 6= ∅}

+ #{y ∈ � 2 : Sq(y) ∩ ∂C̃(z) 6= ∅}

+ #{y ∈ � 2 : y ∈ C(z) \ C̃(z)}

+ #{y ∈ � 2 : y ∈ C̃(z) \ C(z)}.

The first two terms on the right side are related to the Hausdorff dimension of the

Brownian frontier. By using Lemma 2.4.3 for those terms, we can show that for every

δ > 0,

E [∆(z);G] ≤ E
[

#{y ∈ � 2 : d(y, ∂C(z)) ≤ n1/3−β};L1(z)
]

+ E

[

#{y ∈ � 2 : d(y, ∂C̃(z)) ≤ n1/3−β};L2(z)
]

+ E





∑

y∈ � 2

� {y ∈ C(z) \ C̃(z);G;Bz(y)} +
� {y ∈ C̃(z) \ C(z);G;Bz(y)}




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≤ Kn1−β+δ +
∑

y∈ � 2

P

{

y ∈ C(z) \ C̃(z);G;Bz(y)
}

+
∑

y∈ � 2

P

{

y ∈ C̃(z) \ C(z);G;Bz(y)
}

.

We estimate
∑

y∈ � 2

P

{

y ∈ C(z) \ C̃(z);G;Bz(y)
}

here. The other term is done in

the exact same way.

∑

y∈ � 2

P

{

y ∈ C(z) \ C̃(z);G;Bz(y)
}

≤
∑

|y|≤√
n log n

y∈ � 2

P

{

y ∈ C(z) \ C̃(z);G;Bz(y)
}

≤ Kn
23
24

+β
2 (log n)3,

by Lemma 2.5.4. Thus, for every δ ∈ (0, 1
200

],

E [∆(z);G] ≤ Kn1−β+δ + Kn
23
24

+β
2 (log n)3 ≤ Kn

23
24

+β
2 (log n)3,

since β − δ ≥ 1
24

− β
2
. Chebyshev’s inequality now gives for any α ≤ β

8
,

P
{

∆(z) ≥ n1−α;G
}

≤ K
n

23
24

+β
2 (log n)3

n1−α

≤ Knα−β
2 ≤ Knβ/8−β/2 = Kn−3/200.

2.6 Main results

Proposition 2.6.1. If a planar simple random walk S and a planar standard Brow-

nian motion B are coupled as in Section 1.4 and

N = #{connected components of
� \ B[0, n] of area larger than n1−δ},
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Ñ = #{connected components of
� \ S[0, n] of area larger than n1−δ},

then for every ε > 0 and every 0 < δ ≤ 1
200

,

P

{

|Ñ − N | > εN
}

→ 0 as n → ∞.

Remark 7. Recall that in Section 1.4, we decided to re-parametrize the random

walk, namely to double its usual velocity, so that Bt is close to St, rather than to S2t.

The random walk of the Proposition is the re-parametrized version.

Proof. As always in this chapter, we will be using the coupling based on Skorokhod’s

method (see Chapter 1). First of all, note that it suffices to show this result for ε

small enough. We set c = 1 + ε, we will show that P

{

|Ñ − N | > 13εN
}

→ 0 as

n → ∞. The following is an important idea for the proof: Most of the holes of area

greater than n1−δ have an area which is close to n1−δ. For instance, as can be seen

from (2.17), there are many more holes of area in the interval [n1−δ , n1− δ
2 ] than in

the interval [n1− δ
2 ,∞).

If we let m = m(n, ε, δ) =
[

δ log n
2 log c

]

, then n1−δcm ≤ n1− δ
2 ≤ n1−δcm+1 and so,

P

{

|Ñ − N | > 13εN
}

≤ P

{

|Ñ[n1−δ ,n1−δcm) − N[n1−δ ,n1−δcm)| > 10εN
}

+ P

{

|Ñ
[n1− δ

2 ,∞)
− N

[n1− δ
2 ,∞)

| > εN
}

+ P

{

Ñm > εN
}

+ P {Nm > εN} ,

where as before, Ñm = ÑIm and Nm = NIm. We can show almost immediately that

some of the terms on the right side go to 0. For the second term, the idea is that

if there are to be many such large holes, either the Brownian motion or the random

walk must cover a great distance. By (2.18), we can assume that N ≥ 2nδ

log2(nδ)
. By

observing that if N
[n1− δ

2 ,∞)
> ε 2nδ

log2(nδ)
then the area swept by the Brownian motion
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Figure 2.7: Comparing areas over smaller intervals

is greater than 2ε n1+δ/2

log2(nδ)
, and that the same holds for random walk, we can conclude

that

P{|Ñ
[n1− δ

2 ,∞)
− N

[n1− δ
2 ,∞)

| > 2ε
nδ

log2(nδ)
}

≤ P

{

sup
0≤t≤n

|Bt| ≥ 2ε
n(1+δ)/2

log2(nδ)

}

+ P

{

sup
0≤t≤n

|St| ≥ 2ε
n(1+δ)/2

log2(nδ)

}

→ 0 as n → ∞.

In the same way, we can show that for every ε > 0,

lim
n→∞

P

{

Ñm > εN
}

= lim
n→∞

P {Nm > εN} = 0,

so that it now suffices to show that

lim
n→∞

P

{

|Ñ[n1−δ ,n1−δcm) − N[n1−δ ,n1−δcm)| > 10εN
}

= 0.

First, using the notation of Section 2.2,

P{|Ñ [n1−δ ,n1−δcm) − N[n1−δ ,n1−δcm)| > 10εN}

≤ P

{

m−1
∑

j=0

|Ñj − Nj| > 10ε

m−1
∑

j=0

Nj

}

≤
m−1
∑

j=0

P

{

|Ñj − Nj| > 10εNj

}

.

The definition of m shows that it now suffices to prove that for every ε > 0, 0 < δ ≤
1

200
), 0 ≤ j ≤ m − 1,

P

{

|Ñj − Nj| > 10εNj

}

= o
(

(log n)−1
)

, (2.28)

where o may depend on ε and δ but is uniformly bounded for all 0 ≤ j ≤ m − 1.

Recall that we defined

Z̃j = the set of all components of
� \ S[0, n] with area in Ij,

47



Zj = the set of all components of
� \ B[0, n] with area in Ij.

Unfortunately, we cannot use arguments related to area differences as developed in

Lemma 2.5.5 in a direct way to estimate (2.28). The problem is that the fact that

|Ñj−Nj| > 10εNj does not imply anything useful about

∣

∣

∣

∣

|Zj|−|Z̃j|
∣

∣

∣

∣

and so estimates

about the latter cannot be used to show (2.28). It will become clear in (2.30) why

this is the case. To make things work, we need the interval in which lie the areas

of random walk holes to be strictly included in the interval in which lie the areas of

Brownian motion holes (or vice-versa). The key idea for creating such a situation is

to observe that

P{|Ñj − Nj| > 10εNj}

≤ P

{

Ñj ≤ (1 − 2ε)N−
j

}

+ P

{

Ñj ≥ (1 + 2ε)N+
j

}

+ P
{

NL
j ≥ 4εN−

j

}

+ P
{

NR
j ≥ 4εN−

j

}

+ P
{

NL
j+1 ≥ 4εN−

j

}

+ P
{

NR
j−1 ≥ 4εN+

j

}

. (2.29)

In words, if Ñj is much greater than Nj, then either it is somewhat greater than

N+
j , or there are a lot of Brownian motion holes with area in I+

j \ Ij. Things work

nicely because the Lebesgue measure of I+
j \ Ij is of much smaller order than the

Lebesgue measure of Ij and the same is true of the number of holes of areas in the

corresponding sets, by the work done in Section 2.3.

By (2.14), P
{

Nj ≤ 1
2
γj

}

+ P
{

N−
j ≥ 1

2
γ−

j

}

= O
(

(log n)−3/2
)

, uniformly for 0 ≤

j ≤ m − 1. Then

� {NL
j ≥ 4εN−

j }

≤ P

{

NL
j ≥ 4εN−

j ; NL
j ≤ 3

2
γLR

j ; N−
j ≥ 1

2
γ−

j

}

+ P

{

NL
j ≥ 3

2
γLR

j

}

+ P

{

N−
j ≤ 1

2
γ−

j

}
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≤ � {3

2
γLR

j ≥ 2εγ−
j

}

+ P

{

NL
j ≥ 3

2
γLR

j

}

+ P

{

N−
j ≤ 1

2
γ−

j

}

.

We know from (2.19) that if ε is small enough, 3
2
γLR

j ≤ 2εγ−
j , so that we may discard

the first term. The second and the third are O
(

(log n)−3/2
)

.

The last three terms of (2.29) can be treated in the same way.

Recall that we gave the following definitions in Section 2.2:

∆+
j = |Z̃j| − |Z+

j |, ∆−
j = |Z−

j | − |Z̃j|.

For the first term on the right hand side of (2.29), note that

|Z−
j | ≥ N−

j cjn1−δ and |Z̃j| ≤ Ñjc
j+1n1−δ,

so that if Ñj ≤ (1 − 2ε)N−
j , then

∆−
j ≥ N−

j n1−δcj
[

1 + ε2 − (1 − 2ε)c
]

≥ εN−
j n1−δcj ≥ εn1−δ ,

since we can assume that N−
j > 0 by (2.14).

For any measurable sets A, B ⊂ �
,the inequality |A|− |B| ≤ |A\B| always holds

and implies that

P

{

Ñj ≤ (1 − 2ε)N−
j

}

≤ P

{

|Z−
j \ Z̃j| ≥ εn1−δ

}

.

But

Z−
j \ Z̃j ⊂

⋃

Sq(z),

where the union is over

{z ∈ � 2 : d(z, ∂Z−
j ) ≤ n1/3−β}∪{z ∈ � 2 : C(z) ∈ I−

j ; C̃(z) 6∈ Ij; d(z, ∂Z−
j ) ≥ n1/3−β}.
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At this point, let us assume that P and N hold. We can do this by (2.3) and

Lemma A.1.1. We have the following inequality, where the sums are always over

elements of � 2:

E

[

|Z−
j \ Z̃j|;P;N

]

≤ E





∑

|z|≤√
n log n

� {d(z, ∂Z−
j ) ≤ n1/3−β}





+
∑

|z|≤√
n log n

P

{

C(z) ∈ I−
j ; C̃(z) 6∈ Ij;P;B(z)

}

≤ Kn1−β+δ +
∑

|z|≤√
n log n

P
{

∆(z) ≥ ε2n1−δ ;G
}

(2.30)

+
∑

|z|≤√
n log n

P

{

|C(z)| ∈ I−
j ; C̃(z) = ∞;P;B(z)

}

≤ Kn1−β+δ + Kn log2 n(n−3β/8 + n
β
2
− 1

24 log n)

≤ Kn1−3β/8 log2 n,

by lemmas 2.4.3, 2.5.3, and 2.5.5, and where K may depend on ε. Therefore,

P

{

|Z−
j \ Z̃j| ≥ εn1−δ ;P;N

}

≤ K
n1−3β/8 log2 n

εn1−δ
≤ K

ε
nδ−3β/8 ≤ K

ε
n−1/100.

For every ε > 0, this goes to 0 as n → ∞. The second term of (2.29) is done in the

same way, which concludes the proof of the proposition.

Given this proposition, it is now straightforward to show Theorem 2.1.1:

P{|Ñ − 2πγ| > εγ}

≤ P

{

|Ñ − N | >
ε

2
γ
}

+ P

{

|N − 2πγ| >
ε

2
γ
}

≤ P

{

|Ñ − N | >
ε

4
N
}

+ P {γ < N/2} + P

{

|N − 2πγ| >
ε

2
γ
}

.
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By Proposition 2.6.1, (2.18), and (2.16), we know that for every ε > 0, every δ ∈

(0, 1
200

], each of the 3 terms goes to 0 as n goes to infinity. This proves the theorem.
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Chapter 3

The Schramm-Löwner Evolution

3.1 Introduction

A long list of models arising in statistical mechanics have been studied for many

years by probabilists and physicists alike, some of them with more success than

others. Among them we cite percolation, self-avoiding random walk, loop-erased

random walk, uniform spanning trees, and the Ising model. By analogy with the case

of random walk and Brownian motion, disposing of a scaling limit for these objects

would be of great help in their study.

In 1999 (see [29]), Oded Schramm made a breakthrough in the field by proving

that if the scaling limit of loop-erased random walk (LERW) from 0 to the unit circle

∂U is conformally invariant, as many people believed is the case, then it must have

the same law as the path gt(e
iW2t) where gt(z) is the solution of the following ordinary

differential equation in the open unit disk U:

∂

∂t
gt(z) = gt(z)

eiW2t + gt(z)

eiW2t − gt(z)
, g0(z) = z,

where Wt is a standard one-dimensional Brownian motion and gt(z) is defined for

z ∈ ∂U as the continuous extension of gt in U. For general κ ≥ 0, he called the
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solution of

∂

∂t
gt(z) = gt(z)

eiWκt + gt(z)

eiWκt − gt(z)
, g0(z) = z

the Stochastic Löwner Evolution with parameter κ (SLEκ), but the three letter

acronym has now been accepted to be short for “Schramm-Löwner Evolution”

as well.

It turned out that Schramm’s idea did far more than just provide a scaling-limit

candidate for loop-erased walk and we refer the reader to [32] or [16] for a list of

results proved with the help of SLE. In the next sections, we define two variants of

SLE and some associated quantities and give a few important results related to this

process.

3.2 Half-plane capacity

Consider the upper half-plane � = {z ∈ �
: Im(z) > 0}. For a set A ⊂ � we will

write � A = � \A. A hull is a bounded subset A ⊂ � such that A = � ∩ Ā and � A

is a simply connected subset of
�

. The following result can be found in [17]:

Proposition 3.2.1. For any hull A there exists a unique conformal transformation

gA : � A → � such that

lim
z→∞

(gA(z) − z) = 0.

For a hull A we define the half-plane capacity of A, denoted hcap(A), by the

equation

hcap(A) = lim
z→∞

z(gA(z) − z).

It follows from the proof of the above proposition that for any hull A, hcap(A) is

finite and that we have the expansion

gA(z) = z +
hcap(A)

z
+ O

(

1

|z|2
)
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for z → ∞.

If A is a hull, r ∈ � ∗
+, x ∈ � , we then have

grA(z) = rgA(z/r), gA+x(z) = gA(z − x) + x,

which gives the following scaling and translation properties for hcap:

hcap(rA) = r2hcap(A), hcap(A + x) = hcap(A).

Part (a) of the following Proposition, which can be found in [17] as well, gives

a probabilistic characterization of the half-plane capacity which will be particularly

useful in the next chapter. There, we define another capacity for discrete subsets

of � , in a context where the map gA is not well defined. We state part (b) of the

proposition too, as we will need it in the next chapter.

Proposition 3.2.2. If A is a hull, Bt is a Brownian motion, and Z = ZA = inf{t ≥

0 : Bt ∈ ∂ � A} is the first time the Brownian motion reaches ∂ � A, then for all

z ∈ � A,

(a) hcap(A) = lim
y→∞

yE
iy [Im(BZ)] .

(b) Im(z) = Im(gA(z)) + E
z [Im(BZ)] .

In fact, the limit on the right-hand side of (a) exists for all bounded subsets of � ,

not only hulls. We can therefore use (a) to define the half-plane capacity of general

bounded sets A ⊂ � .

If A is a hull, define h = h(A) = sup{Im(z) : z ∈ A} to be the height of A and

R = R(A) = sup{|z| : z ∈ A} to be the radius of A. As the next lemma shows, we

can find bounds for hcap(A) in terms of h and R:

Lemma 3.2.3. There exist constants C1 and C2 such that for every bounded set

A ⊂ � ,

C1h
2 ≤ hcap(A) ≤ C2hR.
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Proof. We will use Proposition 3.2.2 (a) and find a lower and upper bound for

E
iy [Im(BZ)], uniform for all hulls A.

The upper bound is straightforward. Let R = R(A) and D(R) = {Reiθ : 0 ≤ θ ≤

π} be the half-circle of radius R.Then, trivially, yE
iy [Im(BZ)] ≤ hyP

iy
{

TD(R) < TR

}

,

so that hcap(A) ≤ C2hR.

For the lower bound, we choose the leftmost point w ∈ A with Im(w) = h and

define the segment L = {x+ ih : |x−Re(w)| ≤ h
10
}. By looking at the hitting density

of {x + ih : x ∈ � }, it is easy to see that there is a K > 0 such that for all y large

enough,

yP
iy {TL < T 	 } ≥ Kh. (3.1)

Recall that we defined Ξ̂a = inf{t ≥ 0 : |Bt − B0| = a}. We have

P
w
{

B[Ξ̂h/10, Ξ̂h/2] disconnects D(z, h/10) from ∞
}

≤ P
z {Im(BZ) ≥ h/2} .

The probability on the left is independent of z and one can easily check that it is

strictly positive. Therefore, supz∈L P
z {Im(BZ) ≥ h/2} ≥ K2 > 0, which, together

with (3.1) gives the lower bound.

The next Lemma tells us how far off we are from the value of hcap, when we don’t

take the limit in the characterization of dhcap given in Lemma 3.2.2 (b). This error

depends on both R and h.

Lemma 3.2.4. Let A be a hull. Then

hcap(A) = yE
iy [Im(BZ)] + O

(

hR2

y

)

.

Proof. Recall that we defined D(R) = {Reiθ : 0 ≤ θ ≤ π}. If T = inf{t ≥ 0 : Bt ∈

� ∪ D(R)} and p(iy, ·) is the density of BT with B0 = iy, we have p(iy, Reiθ) =
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2
π

R
y

sin θ(1 + O
(

R
y

)

). Thus, using the strong Markov property and Lemma 3.2.3 for

the last inequality, we have

|hcap(A) − yE
iy [Im(BZ)] | = | lim

z→∞
zE

iz [Im(BZ)] − yE
iy [Im(BZ)] |

≤
∫ π

0

|yp(iy, Reiθ) − lim
z→∞

zp(iz, Reiθ)|EReiθ

[Im(BZ)]

≤
∫ π

0

2R

πy
(1 + O

(

R

y

)

− 1)EReiθ

[Im(BZ)]

≤ hcap(A) · O
(

R

y

)

≤ K
hR2

y
.

We also state the following proposition which will be needed later. See [17] for a

proof.

Proposition 3.2.5. There exists a constant K such that for every hull A and every

|z| ≥ 2R(A)

|z − gA(z) + hcap(A)z−1| ≤ K
R

|z|2 hcap(A).

3.3 Chordal SLE

Chordal SLEκ is the random collection of conformal maps gt obtained by solving

the initial value problem

∂

∂t
gt(z) =

2

gt(z) − Bκt
, g0(z) = z (z ∈ � ), (3.2)

where Bt is a standard one-dimensional Brownian motion started at the origin, and

κ ≥ 0.

We denote by Ht the domain of gt and let Kt = � \Ht. Another way of thinking

of Kt is the following: For any z ∈ � , the solution of (3.2) is well-defined up to a
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time Tz = sup{t ≥ 0 : gt(z) is well-defined}, which may be infinite. Then it can be

verified that Kt = {z : Tz ≤ t}. The following result by Rohde and Schramm (see

[28]) is important in understanding the nature of Kt:

Proposition 3.3.1. For every κ ≥ 0, with probability one, there exists a curve

γ : [0,∞) → �
such that Ht is the unbounded component of � \ γ[0, t].

The SLEκ path is the random curve γ of the proposition. In particular, we have

gt(γ(t)) = Bκt in the sense that limz→γ(t) gt(z) = Bκt.

Even though Bκt has essentially the same behavior for all κ > 0, the same is not

true of SLE as shown in the following proposition:

Proposition 3.3.2. Let γ be an SLEκ path. Then the following holds:

• If κ ≤ 4, then with probability one, γ is a simple curve with γ(0,∞) ∈ � .

• If 4 < κ < 8, then with probability one,

⋃

t>0

K̄t = ¯� , but γ(0,∞) 6= � .

Moreover, d(0, Ht) → ∞ as t → ∞.

• If κ ≥ 8, then γ is a space-filling curve, i.e., γ[0,∞) = ¯� .

Another important feature of γ which can be easily verified is that gt : Ht → �

has the expansion

gt(z) = z +
2t

z
+ O

(

|z|−2
)

.

In particular, hcap(γ[0, t]) = 2t.
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3.4 Radial SLE

Radial SLEκ is the random collection of conformal maps gt obtained by solving the

initial value problem

∂

∂t
gt(z) = gt(z)

eiBκt + gt(z)

eiBκt − gt(z)
, g0(z) = z (z ∈ U), (3.3)

where Bt is a standard one-dimensional Brownian motion started at the origin, and

κ ≥ 0.

We will not use radial SLE in this thesis and do not push its description any

further here. For a detailed introduction to the process, the reader may consult [17].

However, we do point out the main difference between chordal and radial SLE.

These two processes do not only differ by the fact that they evolve in different do-

mains. The essential difference is that chordal SLE is a process going from a bound-

ary point, 0, to another, ∞, whereas radial SLE grows from a boundary point, 1,

to an interior point, 0. For domains other than � and U, chordal and radial SLE is

just defined to be the conformal image of SLE in � and U, respectively.

3.5 Loop-erased random walk and SLE2

As mentioned earlier, SLE is a relatively new process which has made it possible to

solve numerous conjectures which had been around for some time. We do not discuss

them here, but the reader can find a complete discussion of the current state of the

art in [17].

However, we give here the result from [23] which will be of interest to us, which

shows the convergence of loop-erased random walk in a domain to radial SLE.

Consider a domain D⊂
6=

� 2 and a point a ∈ D. Loop-erased random walk

(LERW) in D from a to ∂D is defined as follows. Let S be a simple random walk
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started at a and stopped at its first hitting time T of ∂D. Let β0 = a; for n ≥ 0, if

βn ∈ ∂D, then n = l. Otherwise, βn+1 = S(k), where k = 1 + max{m ≤ T : S(m) =

βn}. Then β = (β0, .., βl) is the loop-erasure of S.

Let D⊂
6=

�
be a simply connected domain containing the origin. For δ > 0, let µδ

be the law of the loop-erasure of simple random walk on the grid δ � 2, started at 0

and stopped when it hits ∂D. Let ν be the law of the image of the radial SLE2 path

under a conformal map from the unit disk U to D, fixing 0.

On the space of parametrized paths in
�

, consider the metric

ρ(β, γ) = inf sup
t∈[0,1]

|β̂(t) − γ̂(t)|,

where the infimum is over all choices of parameterizations β̂ and γ̂ of β and γ.

Theorem 3.5.1 (LERW Scaling Limit). The measures µδ converge weakly to ν

as δ → 0 with respect to the metric ρ on the space of curves.
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Chapter 4

The Discrete Half-Plane Capacity and

Simple Random Walk Excursion

4.1 Introduction

The goal of this chapter is to establish the estimates needed to show that the scaling

limit of loop-erased random walk (LERW) excursion in the upper half-plane, denoted

by Ŝ, is chordal SLE2. There exist a number of quantities related to a stochastic

process and which depend on the realization of the process. An example of such a

quantity is the place where the process leaves a given domain. In some cases, one can

recover some of the information about the process from these quantities which we will

call “observables”. In this chapter, we will define a “discrete half-plane capacity”,

denoted by dhcap, for subsets of the discrete upper half-plane H = � ∩ � 2. This

object is the natural analogue, in the discrete setting, of hcap, which we defined in

Chapter 3. dhcap will play the role of the time parameter for the LERW excursion.

Under this parametrization, we will eventually examine the evolution of the image

of the “tip” of LERW excursion under the map gt taking � \ S̃t to � and satisfying

the expansion at infinity
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gt(z) = z +
2t

z
+ O

(

|z|−2
)

.

The afore-mentioned observable should give us information about this evolution. The

goal will then be to show that the scaling limit of this evolution is Brownian motion

with speed 2. The method is very much the same as in [17]. However, the observable

and the estimates needed to compute it are different.

In Section 4.2, we define the discrete half-plane capacity of a discrete set, in a

way very similar to that of Chapter 3 and show that the limit which serves as its

definition actually exists. We show in Section 4.3 how this quantity is naturally

related to random walk excursion.

In Section 4.4, we give a correspondence between discrete sets in H and continuous

sets in � and show how the discrete half-plane capacity and the half-plane capacity

are related for such corresponding sets.

Section 4.5 provides a list of standard results from complex analysis, which we

will need for the technical computation we do in Section 4.6.

In Section 4.7, we compute an observable for random walk excursion, which is the

expected number of visits to −n + i by the excursion. Given the close relationship

between random walk excursion and LERW excursion, we hope to eventually use this

observable to find information about the scaling limit of LERW excursion.

4.2 The discrete half-plane capacity

We start by fixing the notation and giving a few definitions. We will use the complex

notation z = x + iy (x, y ∈ � ) for points in � 2. For simplicity, the set {x + i · 0 :

x ∈ � } ⊂ � 2 will be denoted by � . H = {x + iy ∈ � 2 : y > 0} will denote

the discrete upper half-plane. For a finite set A ⊂ H, we let HA = H \ A and
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ζA = inf{n ≥ 1 : S(n) ∈ ∂HA}. Recall that we defined in Chapter 3 the following

quantities for continuous hulls: h = h(A) = sup{Im(z) : z ∈ A}, the height of A and

R = RA = sup{|z| : z ∈ A}, the radius of A. We simply extend these definitions to

discrete hulls and it will be clear from context which type of object we are dealing

with. For any set D ⊂ HA, the hitting time of D is τD = inf{n ≥ 0 : Sn ∈ D}. Also,

if x, y ∈ E ⊂ � 2, we define the discrete Green’s function in E by

GE(x, y) = E
x

[

∑

k≥0

� {Sk = y; k < τ∂E}
]

. (4.1)

For r ∈ �
, we let

lr = {z ∈ � 2 : Im(z) = r} and σr = inf{n ≥ 1 : S(n) ∈ lr}.

We will say that a set D ⊂ � 2 is connected if for any x, y ∈ D, there exists a path

(γ0 = x, γ1, ..., γk = y) with γi ∈ � 2, 0 ≤ i ≤ k and |γi − γi−1| = 1, 1 ≤ i ≤ k.

The discrete half-plane capacity of a finite set A ⊂ H , denoted by dhcap(A)

is defined by

dhcap(A) = lim
y→∞

y E
iy [Im(S(ζA))].

We will show in Lemma 4.2.3 that this limit exists. Although the definition of dhcap

holds for any finite subset A of H, we will be mostly interested in a particular type

of subsets of H, which is the discrete analogue of the hulls defined in Section 3.2. A

discrete hull A ⊂ H is a finite subset of H such that HA is simply connected in � 2,

i.e. � 2 \ HA is connected. A discrete hull does not need to be connected. However,

if it is disconnected, the boundary of each of its components must intersect � .

We start by showing that the discrete half-plane capacity exists. The proof will

rely on the hitting distribution of � by random walk started in the upper half-plane.

In the continuous case, this distribution is well known to be the Cauchy distribution.

62



More precisely, the hitting density of the real line by Brownian motion started at iy

is

f(x) =
1

π

y

y2 + x2
. (4.2)

In Lemma 4.2.1, we show that for random walk, up to an error term, we get a discrete

version of the Cauchy distribution as well.

To prove the existence of dhcap(·), we also need an estimate on the probability

of hitting A before leaving H, when starting at various points in H. We do this in

Lemma 4.2.2.

Lemma 4.2.1. For k ∈ � , y ∈ � +,

P
iy {S(σ0) = k} =

1

π

y

y2 + k2
+ O

(

1

y2 + k2

)

,

i.e., there is a constant C < ∞ such that for all such k, y,

∣

∣

∣

∣

P
iy {S(σ0) = k} − 1

π

y

y2 + k2

∣

∣

∣

∣

≤ C

y2 + k2
.

Proof. We find in [30] (p.155) that

P
iy {S(σ0) = k} =

1

4
[a ((y + 1)i − k) − a ((y − 1)i − k)] .

But we know (see e.g. [14]) that

a(x) =
2

π
ln |x| + K + O

(

|x|−2
)

for some (known) constant K. Hence,

P
iy {S(σ0) = k} =

1

4π
ln

(y + 1)2 + k2

(y − 1)2 + k2
+ O

(

1

y2 + k2

)

.
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Using Taylor’s series, we can conclude by seeing that

ln
(y + 1)2 + k2

(y − 1)2 + k2
=

4y

y2 + k2
+ O

(

y2

(y2 + k2)2

)

.

Recall that h = h(A) = sup{Im(z) : z ∈ A} and R = RA = sup{|z| : z ∈ A}.

Lemma 4.2.2. There is a constant C > 0 such that for any finite set A ∈ H and

any |k| > R,

P
k+ih {S(ζA) ∈ A} ≤ C1

R2

k2
. (4.3)

However, if we only consider |k| ≥ 4R, we have the sharper bound

P
k+ih {S(ζA) ∈ A} ≤ C1

hR

k2
, (4.4)

where again C1 is uniform for all finite sets A ∈ H and all |k| ≥ 4R.

Proof. We will assume that k > R. The other case is done in the exact same way.

Let v1 = v1(A) = {(x, y) ∈ � 2 : x = R, y ∈ {1, .., k − 1}}. Then, in order to reach A

without leaving H, the random walk must reach lk or v1 first:

P
k+ih {S(ζA) ∈ A} = P

k+ih {S(ζA) ∈ A; σk < τv1 ∧ σ0}

+ P
k+ih {S(ζA) ∈ A; τv1 < σ0 ∧ σk} . (4.5)

The event considered in the first term on the right-hand side of the equality can be

decomposed into two parts: first S must get to height k without hitting A or leaving

H; from there it must hit A before leaving H. The strong Markov property and the

gambler’s ruin estimate give
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P
k+ih{S(ζA) ∈ A; σk < τv1 ∧ σ0}

=
∑

l∈ �
P

k+ih {σk < τv1 ∧ σ0; S(σk) = l + ik} · P
l+ik {S(ζA) ∈ A}

≤ max
l∈ � P

l+ik {S(ζA) ∈ A}P
k+ih {σk < σ0}

=
h

k
max
l∈ � P

l+ik {S(ζA) ∈ A}.

Now we can use Lemma 4.2.1 to find an upper bound for max
l∈ � P

l+ik {S(ζA) ∈ A}.

P
l+ik{S(σ0) ∈ [−R, R]}

≥
∑

w∈A

[Pl+ik {S(σ0) ∈ [−R, R]|ζA < σ0; S(ζA) = w}

· P
l+ik {ζA < σ0; S(ζA) = w}]

=
∑

w∈A

P
w {S(σ0) ∈ [−R, R]}P

l+ik {ζA < σ0; S(ζA) = w}

≥ C
∑

w∈A

P
l+ik {ζA < σ0; S(ζA) = w}

= CP
l+ik {S(ζA) ∈ A} ,

where C = inf
A

min
w∈A

P
w {S(σ0) ∈ [−R, R]} > 0. The fact that C > 0 can be seen

from Lemma 4.2.1 and the first equality follows from the strong Markov property. It

follows that

P
l+ik {S(ζA) ∈ A} ≤ 1

C
P

l+ik {S(σ0) ∈ [−R, R]} =
1

C

R−l
∑

m=−R−l

P
ik {S(σ0) = m}

=
1

πC

R−l
∑

m=−R−l

k

k2 + m2
+ O

(

1

k2 + m2

)

≤ C ′2R + 1

k
,

uniformly in l. Thus the first probability on the right-hand side of the equality in

(4.5) is bounded above by C hR
k2 , where C is independent of A and k.
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We now assume that k ≥ 4R and define

v2 =

{

(x, y) ∈ � 2 : x =

[

k

2

]

, y ∈ {1, .., k − 1}
}

,

as well as the sets

D = {(x, y) ∈ � 2 : R < x, 0 < y < k},

D1 = {(x, y) ∈ � 2 : R < x < [k
2
], 0 < y < k},

D2 = {(x, y) ∈ � 2 : [k
2
] < x, 0 < y < k}.

Note that D = D1 ∪ D2 ∪ v2. The following decomposition is trivial:

P
k+ih {S(ζA) ∈ A; τv1 < σ0 ∧ σk}

=

k
∑

l=1

P
k+ih {S(τv1 ∧ σ0 ∧ σk) = R + il}P

R+il {S(ζA) ∈ A}.

We already know from the computation above that P
R+il {S(ζA) ∈ A} = O

(

R
l

)

.

If we let ρ to be the last time before τv1 ∧ σ0 ∧ σk at which S is in v2, then

P
k+ih{S(τv1 ∧ σ0 ∧ σk) = R + il}

=
k
∑

m=1
n=1

� k+ih{τv1 < σ0 ∧ σk; S(τv2) =[
k

2
] +im; S(ρ) =[

k

2
] +in; S(τv1) =R+il}

=
k
∑

m=1
n=1

∑

ω1∈A(m)

∑

ω2∈B(m,n)

∑

ω3∈C(n)

P {ω1}P {ω2}P {ω3},

where

A(m) = {paths from k + ih to [k/2] + im, inside D2 except for the endpoint},

B(m, n) = {paths starting at [k/2] + im, in D, ending at [k/2] + in},
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C(n) = {paths starting at [
k

2
] + in, ending at R + il,

in D1, except for the starting and endpoint}.

Since
∑

ω2∈B(m,n)

P {ω2} ≤ 1, the last expression is bounded above by

k
∑

m=1

∑

ω1∈A(m)

P {ω1}
k
∑

n=1

∑

ω3∈C(n)

P {ω3} = P
k+ih {τv2 < σ0 ∧ σk}

∑

ω∈D

P
R+il {ω},

where D = {ω = [ω0, .., ωn] : {ω1, .., ωn−1} ⊂ D1, ωn ∈ v2}.

The equality

k
∑

n=1

∑

ω3∈C(n)

P {ω3} =
∑

ω∈D

P
R+il {ω} can be seen by reversing paths. We

can use Lemma B.2.4 to see that

∑

ω∈D

P
R+il {ω} ≤ C1

l

([k/2] − R)2
≤ C1

l

k2
,

since k ≥ 4R. Also, Lemma B.2.5 implies that

P
k+ih {τv2 < σ0 ∧ σk} ≤ Ch

k
,

so that we have, for k ≥ 4R,

P
k+ih {S(ζA) ∈ A; τv1 < σ0 ∧ σk} ≤ C1

k
∑

l=1

R

l

h

k

l

k2
= C1

hR

k2
.

This gives 4.4. However, it is clear that there exists a constant C2 > 0 such that

sup
A,|k|>R

P
k+ih {S(ζA) ∈ A} ≥ C2,

so that the best uniform bound we can get for k > R is C1
R2

k2 with some positive

constant C1.
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We are now ready to show that the discrete half-plane capacity exists.

Lemma 4.2.3. The limit

dhcap(A) := lim
y→∞

y E
iy [Im(S(ζA))]

exists and satisfies

dhcap(A) = y E
iy [Im(S(ζA))] + O

(

hR2

y

)

. (4.6)

Moreover, for any r ≥ h the following equality holds:

dhcap(A) =
1

π

∑

k∈ �
E

k+ir [Im(S(ζA))]. (4.7)

Proof. We will show the stronger fact that for every w ∈ A, the limit

qw = qw(A) := lim
y→∞

y P
iy {S(ζA) = w}

exists. This immediately implies that

lim
y→∞

y E
iy [Im(S(ζA))] =

∑

w∈A

qwIm(w).

By Lemma 4.2.1, for y > h,

yP
iy {S(σh) = k + ih} =

1

π

y(y − h)

(y − h)2 + k2

(

1 + O
(

1

y − h

))

. (4.8)

Let Ck,w = Ck,w(A) := P
k+ih {S(ζA) = w} . If y > h, the strong Markov property

gives

y P
iy {S(ζA) = w} = yP

iy {S(σh) = k + ih}Ck,w.

Hence, by (4.8),

yP
iy {S(ζA) = w} =

∑

k∈ �
Ck,w

π

y(y − h)

(y − h)2 + k2

(

1 + O
(

1

y − h

))

.
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Therefore,

lim
y→∞

y P
iy {S(ζA) = w} =

1

π

∑

k∈ �
Ck,w.

By Lemma 4.2.2, for all A and |k| > R, Ck,w ≤ C R2

k2 , and so
∑

k∈ �
Ck,w converges. This

proves the existence of dhcap.

Since by Lemma 4.2.1, for all k ∈ � and all r ∈ �
, y P

iy {S(σr) = k + ir} ∼ 1/π

as y → ∞, we also get for all r ≥ h:

dhcap(A) = lim
y→∞

yE
iy [Im(S(ζA))] = lim

y→∞
y
∑

w∈A

P
iy {S(ζA) = w} Im(w)

= lim
y→∞

y
∑

w∈A

∑

k∈ �
P

iy {S(σr) = k + ir}P
k+ir {S(ζA) = w} Im(w)

= lim
y→∞

y
∑

k∈ �
P

iy {S(σr) = k + ir}E
k+ir [Im(S(ζA))]

=
1

π

∑

k∈ �
E

k+ir [Im(S(ζA))].

This gives (4.7). To get (4.6), we note that for y ≥ h,

dhcap(A) − yE
iy [Im(S(ζA))]

= lim
z→∞

zE
iz [Im(S(ζA))] − yE

iy [Im(S(ζA))]

=
∑

k,w

(

lim
z→∞

z � iz{S(σh)=k+ih} − y � iy{S(σh)=k+ih}
)

� k+ih{S(ζA)=w}Im(w)

=
∑

k,w

1

π

(

1 − y(y − h)

(y − h)2 + k2

(

1 + O
(

1

y − h

)))

Ck,wIm(w)

=
1

π

∑

k,w

(

h2 + k2 − yh

(y − h)2 + k2
+ O

(

y

(y − h)2 + k2

))

Ck,wIm(w).

The trivial bound Im(w) ≤ h for w ∈ A show that the last term is bounded above by
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h

π

∑

k

(

h2 + k2 − yh

(y − h)2 + k2
+ O

(

y

(y − h)2 + k2

))

P
k+ih {S(ζA) ∈ A},

which by Lemma 4.2.2 is smaller than

KhR2

(

∑

k∈ � ∗

1

k2

(

h2 + k2 − yh

(y − h)2 + k2
+ O

(

y

(y − h)2 + k2

))

+ O
(

1

y

)

)

≤ K
hR2

y
.

4.3 dhcap and random walk excursion

Now that the existence of dhcap has been established, we introduce the notion of

random walk excursion in H and derive a few estimates for excursions. These will

allow us to show that when adding a point v to a bounded set A ⊂ H, the increase

in dhcap can be expressed in terms of the imaginary part of v and quantities related

to the random walk excursion started at v, relatively to A.

S̃ will denote a random walk excursion in H, defined informally as random walk

conditioned not to leave H. Formally, if z, z′ ∈ H, the transition probability from z

to z′ is

P

{

S̃(n) = z′ | S̃(n − 1) = z
}

= lim
r→∞

P {S(n) = z′ |S(n − 1) = z; σr < σ0}.

It is straightforward to show that if y ≥ 1, the transition probabilities for an excursion

are as follows:

p̃(x + iy, x + 1 + iy) = p̃(x + iy, x − 1 + iy) = 1/4,

p̃(x + iy, x + i(y + 1)) =
y + 1

4y
, p̃(x + iy, x + (y − 1)i) =

y − 1

4y
.
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For x ∈ � , p̃(x, x + i) = 1. In other words, an excursion may start in � but enters H

immediately and from then on never leaves H.

More generally, if z0, z1, . . . , zn is any nearest-neighbor path with z0, z1, . . . , zn ∈

H, then

P
z0

{

S̃(1) = z1, . . . , S̃(n) = zn

}

= (
1

4
)n Im(zn)

Im(z0)
. (4.9)

Note that this is equivalent to

P
z0

{

S̃(1) = z1, . . . , S̃(n) = zn

}

=
Im(zn)

Im(z0)
P

z0 {S(1) = z1, . . . , S(n) = zn} . (4.10)

This simple equality will be very useful since it will allow us to reduce all computations

for S̃ to computations for S, a more familiar object.

Like for simple random walk, we define the hitting times σ̃r, ζ̃A and τ̃A for an

excursion by

τ̃A = inf{n ≥ 0 : S̃(n) ∈ A}, ζ̃A = inf{n ≥ 1 : S̃(n) ∈ A},

σ̃r = inf{n ≥ 1 : S̃(n) ∈ lr},

where lr is as defined in Section 4.2.

The gambler’s ruin formula for excursions is as follows:

If 0 < a < b < c, and x ∈ � ,

P
x+ib {σ̃a < σ̃c} =

a

b
· c − b

c − a
.

The second fraction on the right is the simple random walk probability and the extra

factor a/b comes from (4.9).

For any z ∈ H and A ⊂ H, we define the hitting probability of A by S̃ and S:

φ̃A(z, w) = P
z
{

S̃(ζ̃A) = w; ζ̃A < ∞
}

, φA(z, w) = P
z {S(ζA) = w} ,
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and

φ̃A(z) = P
z
{

ζ̃A < ∞
}

=
∑

w∈A

φ̃A(z, w).

Note that (4.10) gives

φ̃A(z) =
∑

w∈A

Im(w)

Im(z)
φA(z, w). (4.11)

In particular,

lim
y→∞

y2φ̃A(iy) = lim
y→∞

yE
iy [Im(S(ζA))] = dhcap(A).

Also, using (4.7) and (4.11), we can show easily that if r ≥ h, then

r
∑

k∈ �
φ̃A(k + ir) = π dhcap(A). (4.12)

When working with the probabilities defined above, it will be useful to consider

separately the portion of their path from the last time they are at height r before

getting to A to the time they hit A (in other words doing what is known as a last-exit

decomposition).

For z ∈ HA, w ∈ ∂HA, let

χA(z, w) = P
z {S(ζA) = w; Im(Sj) < Im(z), 1 ≤ j ≤ ζA} ,

χ̃A(z, w) = P
z
{

S̃(τ̃A) = w; Im(S̃j) < Im(z), 1 ≤ j ≤ τ̃A

}

and

χ̃A(z) =
∑

w∈A

χ̃A(z, w).

Note that by (4.10),

χ̃A(z, w) =
Im(w)

Im(z)
χA(z, w). (4.13)
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Lemma 4.3.1.

lim
r→∞

r2
∑

k∈ �
χ̃A(k + ir) =

π

4
dhcap(A).

Proof. From the definition of χ̃A(z) and (4.13), we see that it suffices to show that

lim
r→∞

r
∑

k∈ �

∑

w∈A

χA(k + ir, w) Im(w) =
π

4
dhcap(A).

Using the last-exit decomposition mentioned above, we see that for each w ∈

∂HA ∩ A and every r > h,

P
k+ir {S(ζA) = w} =

∑

j∈ �
GHA

(k + ir, j + ir) χA(j + ir, w).

Summing over k, we get

∑

k∈ �
P

k+ir {S(ζA) = w} =
∑

j∈ �
χA(j + ir, w)

∑

k∈ �
GHA

(k + ir, j + ir).

But by comparison with the cases A = ∅ and A = {z : 1 ≤ Im(z) ≤ h}, we see that

4(r − h) ≤
∑

k∈ �
GHA

(k + ir, j + ir) ≤ 4r.

Indeed, we have GHA
(k + ir, j + ir) = P

k+ir {ζA < τj+ir}−1. For A = ∅,

∑

k

GHA
(k + ir, j + ir) = E

ir [# of visits to lr before ζA]

= P
ir {ζA < σr}−1 = 4r,

by the gambler’s ruin estimate, and we get the other bound in the same way. Hence,

as r → ∞,

∑

k∈ �

∑

w∈A

P
k+ir {S(ζA) = w} Im(w) ∼ 4r

∑

j∈ �

∑

w∈A

χA(j + ir, w)Im(w).

But (4.7) shows that the left hand side equals π dhcap(A).
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If w ∈ H, we define the escape probability by S̃ from A at w by

EsA(w) = 1 − φ̃A(w) = P
w
{

S̃[1,∞) ∩ A = ∅
}

.

Then,

EsA(w) = lim
r→∞

P
w
{

S̃[1, σ̃r] ∩ A = ∅
}

= lim
r→∞

[r/Im(w)]Pw {S[1, σr] ∩ (A ∪ � ) = ∅}

= lim
r→∞

[r/Im(w)]2
∑

k∈ �
χ̃A(k + ir, w), (4.14)

where the last equality can be seen by reversing paths. Note that with this definition,

Lemma 4.3.1 and (4.14) give a new characterization of dhcap:

dhcap(A) =
4

π
lim
r→∞

r2
∑

w∈A

∑

k∈ �
χ̃A(k + ir, w) =

4

π

∑

w∈A

EsA(w) [Im(w)]2.

If v ∈ HA, then again by a last-exit decomposition argument,

EsA∪{v}(v) =
EsA(v)

GHA
(v, v)

. (4.15)

Note that (4.10) implies that GHA
(v, v) can be interpreted either as the expected

number of visits to v of a simple random walk starting at v before leaving HA or as

the expected number of visits to v of an excursion started at v before visiting A.

The computations done in the last few pages now yield the following expression

of dhcap(A ∪ {v}) − dhcap(A) in terms of quantities for S̃ depending on A and v

only.

Lemma 4.3.2. For a given set A and a point v ∈ HA,

π

4
(dhcap(A ∪ {v}) − dhcap(A)) =

Im(v)2(EsA(v))2

GHA
(v, v)

.
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Proof. For v ∈ HA and z ∈ HA∪{v} with Im(z) > Im(v), we have

χ̃A∪{v}(z) − χ̃A(z) = χ̃A∪{v}(z, v) EsA(v).

Hence,

π

4
[dhcap(A ∪ {v}) − dhcap(A)] = lim

r→∞
r2
∑

k∈ �
χ̃A∪{v}(k + ir, v) EsA(v)

= [Im(v)]2 EsA∪{v}(v) EsA(v)

=
Im(v)2(EsA(v))2

GHA
(v, v)

.

where we used Lemma 4.3.1, (4.14), and (4.15) for the first, second, and third equality,

respectively.

4.4 How close are hcap and dhcap?

In this section, we will define a way to associate continuous sets to discrete sets in

such a way that these sets are “as similar as possible”. The way in which we create

this association will depend slightly on the underlying space, which will be either � 2

or H.

The continuous version Ẽ of a set E ⊂ � 2 is defined as follows: For each z ∈ E,

let Sz be the closed set in
�

bounded by the square centered at z with sides parallel

to the axes. Then Ẽ =
⋃

z∈E Sz.

We would like the continuous version of a discrete hull A ∈ H to be a continuous

hull in � . Therefore, we must slightly modify our approach.

For any discrete hull A as defined in Section 4.2, we let Sz be the closed set in

�
bounded by the square centered at z with sides parallel to the axes if Im(z) > 1.

However, if Im(z) = 1,Sz is the closed rectangle with corners Re(z)−1/2, Re(z)+1/2,
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Re(z) − 1/2 + 3i/2, Re(z) + 1/2 + 3i/2. Then we call Ã =
⋃

z∈A Sz the continuous

version of A and it is easy to check that Ã is a hull.

Since from here on and for the remainder of this chapter, the sets A and Ã will

go hand in hand, we will simplify the notation and write � A for � \ Ã, unless stated

otherwise.

Recall the definitions related to Brownian motion and continuous sets, which are

the analogues to some definitions of Section 3.2 for discrete objects. If D is any

subset of � and A is a hull in � ,

TD = inf{t ≥ 0 : Bt ∈ D}, ZA = T∂ 
 A
= inf{t ≥ 0 : Bt ∈ ∂ � A}.

For m a positive real, let Am be the set of all simply connected subsets A of H with

R ≤ m.

Recall that in Chapter 1, we introduced the KMT approximation, a coupling in

which Brownian motion and random walk are close to each other up to a given time

n, with high probability. We will show below that if we define appropriate hitting

times for our random walk and Brownian motion, the bound on the distance between

the two processes given by the KMT approximation still holds up to the latter of the

two hitting times.

Let A ∈ Am, ζ = ζA be the first time S is in ∂HA, and Z = ZA the first time B

is in ∂ � A.

Lemma 4.4.1. There exist a probability space containing a simple random walk S

and a standard Brownian motion B with B0 = S0 and a constant K such that for

every λ > 0 there exists a constant C1 = C1(λ) < ∞ such that

P
im

{

sup
0≤t≤ζ∨Z

|Bt − St| ≥ C log m

}

≤ Km−λ.
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Proof. We know from Theorem 1.4.2 that for some K2 > 0 and for all λ > 0 there is

a C2 = C2(λ) such that for all m ≥ 1,

P
im

{

sup
0≤t≤m

|Bt − St| ≥ C2 log m

}

≤ K2m
−λ.

We let C = C(λ) = C2 · (4λ + 3) and, for d ∈ � ∗
+, let ξd and Ξd be as defined in

Chapter 0. The probability in the lemma is bounded above by

P
im
{

Z > m4λ+3
}

+ P
im
{

ζ > m4λ+3
}

+ P
im

{

sup
0≤t≤ζ∨Z

|Bt − St| ≥ C2(4λ + 3) log m; ζ ∨ Z ≤ m4λ+3

}

≤ P
im

{

Z > m4λ+3; sup
0≤t≤Z

|Bt − B0| ≤ m2λ+1

}

+ P
im {Z > Ξm2λ+1}

+ P
im

{

ζ > m4λ+3; sup
0≤t≤ζ

|St − S0| ≤ m2λ+1

}

+ P
im {ζ > ξm2λ+1}

+ P
im

{

sup
0≤t≤m4λ+3

|Bt − St| ≥ C2(4λ + 3) log m

}

≤ P
im
{

Ξm2λ+1 > m4λ+3
}

+ P
im {Z > Ξm2λ+1}

+ P
im
{

ξm2λ+1 > m4λ+3
}

+ P
im {ζ > ξm2λ+1}

+ P
im

{

sup
0≤t≤m4λ+3

|Bt − St| ≥ C2 log m4λ+3

}

.

By Lemmas A.1.2 and A.1.6, the first and third terms are bounded above by

exp{−Km} for some positive constant K. The second and fourth terms are bounded

above by K1m
−λ by Beurling’s continuous and discrete estimates (see Section A.3).

Finally, Theorem 1.4.2 tells us that the last term is bounded above by K2(m
4λ+3)−λ.
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Since K, K1, K2 are independent of r or λ, we can choose a K, independent of r and

λ, such that the Lemma holds.

Lemma 4.4.2. There is a constant K such that if A ∈ Am, then

|dhcap(A) − hcap(Ã)| ≤ Km3/2 log m.

Remark 8. Recall that we showed in Chapter 3 that there is a constant C1 > 0 such

that hcap(Ã) ≥ C1 h(A)2. Hence, for sets A such that h(A) ≥ R(A) (i.e., sets which

grow as much in the vertical direction as in the horizontal direction), hcap(Ã) is of

order R2. For such sets the result of the lemma is nontrivial.

Proof. In what follows, we assume that m is an integer. The proof for real m only

requires minor modifications.

Lemma 4.4.1 guarantees that we can define B and S on the same probability

space and choose a constant C1 so that

P
z

{

sup
0≤t≤ζ∨Z

|Bt − St| ≥ C1 log m

}

≤ C1 m−10. (4.16)

We assume for the rest of the proof that B and S are coupled in this way.

Recall that h = h(A) = sup{Im(z) : z ∈ A}, ζA = inf{n ≥ 1 : Sn ∈ ∂HA}, ZA =

inf{t ≥ 0 : Bt ∈ ∂ � A}, and let z = im2. We know from Lemmas 3.2.4 and 4.2.3 that

hcap(Ã) = m2
E

z [Im(BZ)] + O
(

hR/m2
)

,

dhcap(A) = m2
E

z [Im(Sζ)] + O
(

hR2/m2
)

.

Hence it suffices to show that

E
z [|Im(BZ) − Im(Sζ)|] ≤ K m−1/2 log m.
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Note that since A ∈ Am, we obviously have |Im(BZ)− Im(Sζ)| ≤ m, so that trivially,

E
z [|Im(BZ) − Im(Sζ)|] = E

z [|Im(BZ) − Im(Sζ)| ∧ m] . (4.17)

This observation may seem irrelevant for now, but will be essential later.

We define the set

V = {z ∈ H : |Re(z)| ≥ 3m

2
; 0 < Im(z) ≤ 2C1 log m},

where C1 is the constant of the coupling, and the stopping times

β = inf{j ≥ 0 : d(Sj, A∪ � ) ≤ 2C1 log m; |Sj| ≤ 3m}, γ = inf{j ≥ 0 : S(j) ∈ V }.

We also define the following events which will appear naturally below in the sense

that we will evaluate E
z [|Im(BZ) − Im(Sζ)|] over these events and their complements

separately.

E1 =

{

sup
0≤t≤ζ∨Z

|Bt − St| ≥ C1 log m

}

, E2 = {Z < ζ},

E3 = {|Re(BZ)| ≥ 2m}, E4 = {β < ζ}.

Note that E1 is the event considered in (4.16), so that by the observation of (4.17),

we have

E
z [|Im(BZ) − Im(Sζ)| ; E1] ≤ m P(E1) ≤ C1 m−9. (4.18)

We will show that there exists a constant K, independent of m, such that

E
z [|Im(BZ) − Im(Sζ)| ; E2 ∩ Ec

1] ≤ K m−1/2 log m, (4.19)

where Ec
1 denotes the complement of E1. A similar argument (reversing the roles of

random walk and Brownian motion), which we omit, shows that

E
z [|Im(BZ) − Im(Sζ)| ; Ec

2 ∩ Ec
1] ≤ K m−1/2 log m. (4.20)
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This then implies that E
z [|Im(BZ) − Im(Sζ)| ; Ec

1] ≤ K m−1/2 log m, which, together

with (4.18) gives the lemma.

To show (4.19), we look at the expectation separately over the events E3 and Ec
3.

For the first case, we observe that E3 ⊂ {Im(BZ) = 0} and E2 ∩ E3 ∩ Ec
1 ⊂ {γ <

Z < ζ}, and so

E
z [|Im(BZ) − Im(Sζ)|; E2 ∩ E3 ∩ Ec

1] ≤ E
z [Im(Sζ); E2 ∩ E3 ∩ Ec

1]

≤ E
z [Im(Sζ); γ < ζ] .

Note that this is a quantity for random walk only. Fix w ∈ A and recall that

for a ∈ �
, σa = inf{n ≥ 1 : Im(Sn) = a}. Since γ ≥ σ[2C1 log m], the strong Markov

property gives

P
z{Sζ = w; γ < ζ}

≤ P
z
{

Sζ = w; γ = σ[2C1 log m] < ζ
}

+ P
z
{

Sζ = w; σ[2C1 log m] < γ < ζ
}

≤
∑

|k|≥3m/2

P
z
{

S(σ[2C1 log m]) = k + i[2C1 log m]
}

P
k+i[2C1 log m] {S(ζ) = w}

+ P
z
{

|Re(S(σ[2C1 log m]))| ≤ 3m/2
}

· sup
x∈V

P
x {S(ζ) = w}

≤
∑

|k|≥3m/2

P
z
{

S(σ[2C1 log m]) = k + [2C1 log m]i
}

P
[2C1 log m]i

{

ξ̂|k|−m/2 < σ0

}

+ P
z
{

|Re(S(σ[2C1 log m]))| ≤ 3m/2
}

· sup
x∈V

P
x {S(ζ) = w} ,

where for a ∈ � ∗
+, ξ̂a = inf{n ≥ 0 : |Sn − S0| ≥ a}. We can find some constant K

and |k| ≥ 3m
2

such that

P
[2C1 log m]i

{

ξ̂|k|−m/2 < σ0

}

≤ K
log m

|k| − m/2
≤ K

log m

|k| . (4.21)
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This can be shown by inscribing a rectangle in the half-circle and proceeding as in

the proof of Lemma B.2.4. Similarly,

sup
x∈V

P
x {S(ζ) = w} ≤ K

log m

m
.

This, together with

P
z
{

Re(S(σ[2c1 log m])) ≤ 3m/2
}

≤ K

m
,

which follows from Lemma 4.2.1, allows us to see that

P
z{Sζ = w; γ < ζ}

≤
∑

|k|≥3m/2

(

1

π

m2 − [2C1 log m]

(m2 − [2C1 log m])2 + k2
+ O

(

1

m4 + k2

))

K log m

|k| + K
log m

m2

≤ K log m
∑

|k|≥3m/2

(

m2

m4 + k2
+ O

(

1

m4 + k2

))

1

|k| + K
log m

m2

For the first inequality, we used Lemma 4.2.1. The sum can be estimated by com-

puting

∫ ∞

3m/2

m2

x(m4 + x2)
dx ≤ m2

[

∫ m2

3m/2

dx

m4x
+

∫ ∞

m2

dx

x3

]

≤ K
log m

m2
.

Therefore,

P
z {Sζ = w; γ < ζ} ≤ C

(log m)2

m2
,

and since every w ∈ A satisfies Im(w) ≤ m,

E
z [Sζ ; γ < ζ] ≤ C

(log m)2

m
.

We still have to compute

E
z [|Im(BZ) − Im(Sζ)| ; E2 ∩ Ec

3 ∩ Ec
1] .
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We use the fact that E2 ∩ Ec
3 ∩ Ec

1 ⊂ {β ≤ Z ≤ ζ}. (β ≤ Z because of Ec
3 ∩ Ec

1

and Z ≤ ζ because of E2.)

E
z [|Im(BZ − Sζ)| ∧ m; E2 ∩ Ec

3 ∩ Ec
1]

≤ E
z [|Im(BZ − SZ)| + (|Im(SZ − Sζ)| ∧ m); E2 ∩ Ec

3 ∩ Ec
1]

≤ C1 log m + E
z [|Im(SZ − Sζ)| ∧ m; β ≤ Z ≤ ζ]

≤ C1 log m + E
z

[

2 sup
β≤t≤ζ

|Im(St − Sβ)| ∧ m; β ≤ ζ

]

.

Observe that this is where we need the remark made in (4.17), since, although

|Im(SZ) − Im(Sζ)| ≤ 2r, sup
β≤t≤ζ

|Im(St − Sβ)| may be arbitrarily large.

It now suffices to show that

E
z

[

sup
β≤t≤ζ

|Im(St − Sβ)| ∧ m ; β ≤ ζ

]

< c m−1/2 log m. (4.22)

Note again that this is a quantity for random walk only. If we recall the definition of

B, we see that it follows from the discrete Beurling estimate (see Section A.3) that

there is a positive constant C2 such that for every α > 0,

P
z

{

sup
β≤j≤ζ

|Sj − Sβ| ≥ α log m

}

≤ C2 α−1/2.

We now use the strong Markov property to see that

P
z{β ≤ ζ; sup

β≤t≤ζ
|St − Sβ| ≥ α log m}

=
∑

w∈∂Uc

P
z {β ≤ ζ; Sβ = w}P

w

{

sup
0≤t≤ζ

|St − Sβ| ≥ α log m

}

≤ C2α
−1/2

P
z {β ≤ ζ} = α−1/2O

(

1

m

)

,

where

U c = {w : d(w, A ∪ � ) > 2C1 log m or |w| > 3m; }
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is the complement of U and the O
(

1
r

)

term can be seen from Lemma 4.2.1. Therefore,

a change of variables and straightforward observations give

E
z[ sup

β≤t≤ζ
|Im(St − Sβ)| ; β ≤ ζ]

≤
∫ ∞

α log m=0

P
z

{

β ≤ ζ; sup
β≤t≤ζ

|Im(St − Sβ)| ∧ m ≥ α log m

}

≤
∫ m

α log m=0

P
z

{

β ≤ ζ; sup
β≤t≤ζ

|Im(St − Sβ)| ≥ α log m

}

≤
∫ m

α log m=0

P
z

{

β ≤ ζ; sup
β≤t≤ζ

|St − Sβ| ≥ α log m

}

= log m

∫ m/ log m

0

P
z

{

β ≤ ζ; sup
β≤t≤ζ

|St − Sβ| ≥ α log m

}

dα

≤ K
log m

m

∫ m/ log m

0

α−1/2 dα = K
log m

m

(

m

log m

)1/2

= K

(

log m

m

)1/2

.

This gives (4.22), which implies (4.19). (4.20) can be done in the exact same way.

The lemma then follows directly from (4.18), (4.19), and (4.20).

4.5 Standard results for conformal maps

At the center of our estimates in the next section will be bounds related to the

derivative of conformal maps. We state the results in this section without their

proofs, as they are rather standard. They can be found in [6] or [17].

Let S to be the set of analytic one-to-one maps f defined on U, the open unit

disk centered at the origin, with f(0) = 0 and f ′(0) = 1.

Theorem 4.5.1. [Koebe One-quarter Theorem] If f ∈ S and 0 < r < 1, then

D(0, r/4) ⊂ f(rU).
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Corollary 4.5.2. Suppose f : U → D′ is a conformal transformation with f(z) = z′.

Then

d′

4d
≤ |f ′(z)| ≤ 4d′

d
,

where d = d(z, U), d′ = d(z′, D′).

Theorem 4.5.3. [Distortion Theorem] If f ∈ S and z ∈ U,

1 − |z|
(1 + |z|)3

≤ |f ′(z)| ≤ 1 + |z|
(1 − |z|)3

.

Theorem 4.5.4. [Growth Theorem] If f ∈ S and z ∈ U,

|z|
(1 + |z|)2

≤ |f(z)| ≤ |z|
(1 − |z|) .

Corollary 4.5.5. If f : D → D′ is a conformal transformation, z, w ∈ D, with

f(z) = z′, then for all r ∈ (0, 1), all w satisfying |w − z| ≤ rd(z, ∂D),

|f(w) − z′| ≤ 4d(z′, ∂D′)

1 − r2
|w − z|.

4.6 Getting away from the boundary

We now turn to a toilsome computation which will be essential in our main estimate

of this chapter, i.e. the computation up to error terms of

P
w {S(ζA) = −n} (4.23)

where A is a discrete hull, HA = H \ A, w ∈ ∂HA ∩ A, and ζA is as always inf{n ≥

1 : Sn ∈ ∂HA}.

In this section, A will always denote a discrete hull with R(A) ≤ nβ, where β < 1.

The continuous version of A, denoted by Ã, is as defined in section 4.4, and we write
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� A for � \ Ã. gA will be the conformal map taking � A to � , satisfying

gA(z) = z +
hcap(Ã)

z
+ O

(

|z|−2
)

. (4.24)

Recall that ZA = inf{t ≥ 0 : Bt ∈ ∂ � A}. In what follows, we will show that the image

under gA of a random walk in HA does not move too much laterally before covering

a certain vertical distance. More precisely, the horizontal displacement of gA(Sn) is

of the same order of magnitude as its vertical displacement, with high probability.

We should note that showing this fact for random walk itself, rather than its image,

is trivial and nothing more than solving the Dirichlet problem. Unfortunately, the

question we consider here is not as straightforward.

We start with a general result about domains in � 2 and their continuous version.

Let D ⊂ � 2 be a bounded set and D̃ its continuous version, as defined at the beginning

of the previous section. Let T = inf{t ≥ 0 : Bt ∈ ∂D̃} be the first time Brownian

motion leaves D̃ and τ = inf{n ≥ 0 : Sn ∈ ∂D} the first time random walk leaves D.

If V ⊂ ∂D, we define Ṽ to be the union of all the boundary edges of D̃ which intersect

an edge between neighboring points a ∈ V and b ∈ D. For any such boundary edge

e ∈ Ṽ , we say that a is the corresponding boundary point. Note that an edge has

exactly one corresponding point a ∈ V , but a boundary point a ∈ V can correspond

to more than one edge of Ṽ . The following result, which we do not prove here can

be found in [13]:

Proposition 4.6.1. For every ε > 0, there exists a δ > 0 such that if D is a

finite connected subset of � 2, V ⊂ ∂A and x ∈ A with P
x
{

BT ∈ Ṽ
}

≥ ε, then

P
x {Sτ ∈ V } ≥ δ.

For points z ∈ � A, we introduce the notation

iA(z) = Im(gA(z)) and rA(z) = Re(gA(z)). (4.25)
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The purpose of the next lemma is to find bounds on |gA(x)− gA(y)| for points x, y ∈

� A which are close to each other, but x is away from ∂ � A. In particular, if we assume

that d(x, ∂ � A) ≥ K > 0, we can show that the bound depends only on iA(s).

Lemma 4.6.2. Let A be a discrete hull and w, w′ ∈ HA with |w − w′| = 1. There

exist constants L1, L2, L3 such that

(a)|gA(w) − gA(w′)| ≤ L1iA(w),

(b) for any z ∈ Sq(w), |gA(z) − gA(w)| ≤ L2iA(w),

(c) for any z, z′ ∈ Sq(w′), |gA(z) − gA(w)| ≤ L3|gA(z′) − gA(w)|.

Remark 9. In particular, the lemma implies that if w, w′ ∈ HA with |w − w′| = 1

and z ∈ Sq(w),

iA(z) ≤ (1 + L1)iA(w) and iA(w′) ≤ (1 + L1)iA(w) (4.26)

Proof. Take a sequence of four open disks {Di}i=1,..,4 of radius 1/3, such that D1 is

centered at w, for i = 2, 3, 4, Di is centered at a point inside Di−1, and w′ ∈ D4. By

applying the Growth and Distortion Theorems from Section 3.2 to each of these disks,

we see that there exists a universal constant K such that |gA(w)−gA(w′)| ≤ K|g′
A(w)|.

Since d(w, ∂ � A) ≥ 1
2
, Corollary 4.5.2 gives (a).

To show (b), we use the same argument, but in the case where d(z, ∂ � A), we also

need Schwarz reflection to extend the result to the boundary of Sq(w).

Finally, (c) can be shown by letting noting that on one hand, by part (a), the

Growth Theorem, the Distortion Theorem, and Corollary 4.5.2,

|gA(z) − gA(w)| ≤ |gA(w′) − gA(w)| + |gA(z) − gA(w′)|

≤ L1iA(w) + K1|g′
A(w′)| ≤ L1iA(w) + K2|g′

A(w)|

≤ L1iA(w) + K3iA(w) = K4iA(w).

86



On the other hand, since z′ is not in the disk of radius 1/3 about w, the Koebe

One-quarter Theorem and Corollary 4.5.2 give

|gA(z′) − gA(w)| ≥ K5|g′
A(w)| ≥ K6iA(w).

Choosing L3 = K4

K5
concludes the lemma.

If A is a hull, w ∈ HA, and c1, c2 are two positive constants with c1 ≥ 1, we let

R = RA(w, c1, c2) = {q ∈ � : Im(q) ≤ c1iA(w) and |Re(q) − rA(w)| ≤ c2iA(w)}

be the rectangle sitting in the upper half-plane, around gA(w), of height c1iA(w),

width 2c2iA(w), and define

η = ηA(w, c1, c2) = min{j ≥ 0 : Sj 6∈ g−1
A (RA(w, c1, c2))}.

Lemma 4.6.3. There exist constants c1, c2, ĉ, ε > 0 such that if A is a discrete hull

and w ∈ HA, then

(a) P
w {S(η(w, c1, c2)) 6∈ HA} ≥ ε.

(b) P
w {iA(S(η(w, c1, c2))) ≥ c1iA(w); |rA(S(η(w, c1, c2))) − rA(w)| ≤ c2iA(w)} ≥ ε.

(c) P
w {|rA(S(η(w, c1, c2))) − rA(w)| ≤ ĉiA(w) |S(η(w, c1, c2)) ∈ HA} = 1.

Proof. Fix A, w ∈ HA, 1 < C1 < C2, and define

J = {z ∈ HA : gA(z) ∈ R(w, C1, C2)}, J+ = {z ∈ HA : d(z, J) ≤ 1}, ∂J = J+ \ J.

Let J̃ be the continuous version of J+ in � 2. Clearly, if z ∈ ∂J, |gA(z)− gA(w)| ≥

(C1 − 1)iA(w). Lemma 4.6.2 (c) now implies that if z̃ ∈ ∂J̃ , |gA(z̃) − gA(w)| ≥
(C1−1)

L3
iA(w).

It is clear that there is a δ1 > 0 (independent of w and A) such that
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δ1 = P
gA(w)

{

Bt leaves R(w,
(C1 − 1)

2L3
,
(C1 − 1)

2L3
) at �

}

≤ P
gA(w)

{

B(T∂gA(J̃)) ∈ �
}

= P
w {B(T∂J̃) ∈ ∂ � A} .

By Proposition 4.6.1, there is an ε1 > 0 such that P
w {S(τ∂J+) ∈ ∂HA} ≥ ε1. Since

by Lemma 4.6.2 (a), every z ∈ ∂J satisfies |gA(z) − gA(w)| ≤ (C2 + L1)iA(w), this

proves that there exist c1 and c2 such that

P
w {S(η(w, c1, c2)) 6∈ HA} ≥ ε1.

This proves (a). Note that this construction works for any constants C2 > C1 > 1,

but that ε1 may depend on them.

Now take C ′
1 > 0 and C ′

2 ≥ (L2 + L + K)C ′
1, where K is defined below, let

R′ = R(w, C ′
1, C

′
2), define L, R, and T to be respectively the left, right, and top side

of R′, and define I = {z ∈ HA : gA(z) ∈ R′}. If z ∈ ∂intI and we let ez be the set of

edges leading from z to a point z′ ∈ ∂I with d(z, z′) = 1, two things can occur. Either

the image of at least one of the edges of ez intersects R′ at L ∪ R, or none of them

does. We call the set of points z ∈ ∂intI which satisfy the first condition E1 and the

set of those that satisfy the second condition E2. We let L = max{L1, L2, L3}, where

L1, L2, L3 are as in Lemma 4.6.2. If z ∈ E1, |rA(z)−C ′
2iA(w)| ≤ L2iA(z) ≤ L2C ′

1iA(w),

by Lemma 4.6.2 (a) and (c). Also, by using the same lemma one more time, we see

that if Ẽ1 =
⋃{z̃ ∈ Sq(z) ∩ ∂Ĩ}, where the union is over all z ∈ E1, then for z̃ ∈ Ẽ1,

|rA(z̃) − C ′
2iA(w)| ≤ L2C ′

1iA(w) + LC ′
1iA(w) = (L2 + L)C ′

1iA(w). In particular,

|rA(z̃)| ≥ (C ′
2 − (L2 + L)C ′

1)iA(w). Also, with the definition Ẽ2 = Ĩ \ Ẽ1, we can

easily see that any z̃ ∈ Ẽ2 satisfies iA(z̃) ≤ LC ′
1iA(w). Also, there exists a constant
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K such that if C ′
2 ≥ KC ′

1, Ẽ2 is nonempty. Now it is clear that there exists a δ2 > 0

such that

δ2 ≤ P
gA(w)

{

Bt leaves gA(Ĩ) at gA(Ẽ2)
}

= P
w
{

Bt leaves Ĩ at Ẽ2

}

.

If z ∈ E2, one can show by contradiction that iA(z) ≥ C′
1

L2 iA(w). Proposition 4.6.1,

now implies that (b) holds with c1 =
C′

1

L2 , c2 = C ′
2 − (L2 + L)C ′

1, and ε = ε2.

It is easy to see that we can choose c1, c2, and ε so that both (a) and (b) hold. (c)

just follows from Lemma 4.6.2 (a).

We define a new rectangle whose main difference with the rectangle R above is

that the side lengths do not need to scale with iA(w) anymore,

QA(w, a, b) = {q ∈ � : Im(q) ≤ a, |Re(q) − rA(w)| ≤ b}

and the exiting time of its inverse image under g−1
A in HA,

θA(w, a, b) = min{j ≥ 0 : Sj 6∈ g−1
A (Q(w, a, b))}.

In what follows, the constants c1 and c2 are those from Lemma 4.6.3. Note that

c1 ≥ 2.

Corollary 4.6.4. There exist constants c3, c4 > 0 such that for any a > 0, any

discrete hull A, and any w with iA(w) < a
c1

,

P
w {iA(S(θA(w, a, c3a))) ≥ a; |rA(S(θA(w, a, c3a))) − rA(w)| ≤ c3a} ≥

(

iA(w)

a

)c4

.
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Proof. We define a sequence of points. Let z0 = gA(w). For i ≥ 1, let wi =

S(η(zi−1, c1, c2)) and zi = gA(wi). In what follows we work with the assumption that

at each point wi the event described in Lemma 4.6.3 (b) occurs. Then Im(zk0) ≥ a,

where k0 =
[

log(a/iA(w))
log c1

]

. However, it could happen that Im(zk) ≥ a for some k ≤ k0.

For a given realization, suppose k1 is the smallest integer for which Im(zk1) ≥ a. We

will now find a bound on |Re(zk1) − rA(w)|, independent on the realization.

For i ≥ 1, let vi = Im(zi) − Im(zi−1) and hi = |Re(zi) − Re(zi−1)|. Then, if the

event described in Lemma 4.6.3 (b) occurs, vi ≥ (ci −1)iA(wi−1) and hi ≤ c2iA(wi−1).

Therefore, hi ≤ c2
c1−1

vi. This means that the total horizontal displacement between

two points zi and zj is bounded above by c2
c1−1

times the total vertical displacement

between those points. Since Im(zk1) ≤ a by definition of k1, |Re(zk1) − rA(w)| ≤
c2

c1−1
(a − iA(w)) ≤ c2

c1−1
a. Now since Im(zk1) ≤ a, |Re(zk1) − Re(zk1−1)| ≤ c2

c1−1
a.

Therefore, |Re(zk1) − rA(w)| ≤ 2 c2
c1−1

a.

The sequence of points in our construction has length at most k0. Therefore, by

Lemma 4.6.3,

P
w

{

iA(S(θA(w, a, 2
c2

c1 − 1
a))) ≥ a; |rA(S(θA(w, a, 2

c2

c1 − 1
a))) − rA(w)| ≤ 2c2

c1 − 1
a

}

≥ εk0 ≥
(

a
iA(w)

)log ε/ log c1
,

from which the corollary follows if we choose c3 = 2 c2
c1−1

and c4 = − log ε
log c1

.

Proposition 4.6.5. There exists constants c, ε > 0 such that for all a > 0, for any

hull A, and any w ∈ HA with iA(w) < a
c1

,

P
w {iA(S(θ(w, a, ca))) ≥ a |S(θ(w, a, ca)) ∈ HA} ≥ ε.

Proof. For any m ≥ 1, let
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Sm = sup P
w {iA(S(θ(w, a, c3a))) ≥ a |S(θ(w, a, c3a)) ∈ HA} ,

where the sup is over {w : a
cm
1

≤ iA(w) < a
c1
} and c3 is as in Corollary 4.6.4. Then,

since for any c > 0 and a > 0,

P
w {iA(S(θ(w, a, ca))) ≥ a |S(θ(w, a, ca)) ∈ HA} ≥ P

w {iA(S(θ(w, a, ca))) ≥ a} ,

Corollary 4.6.4 implies that for any m ≥ 1 we can find εm > 0 such that

Sm ≥ εm.

Let c1 be as in Lemma 4.6.3 and fix a > 0. Suppose c
−(m+1)
1 a ≤ iA(w) < c−m

1 a

and for such a w consider the rectangle

R = R(w, c1, m) = Q(w, c1iA(w), miA(w)) (4.27)

and the corresponding exiting time

η = η(w, c1, m
2a) = min{j ≥ 0 : Sj 6∈ g−1

A (R)}. (4.28)

Then, if m is an integer greater than c2, Lemma 4.6.3 (b) gives that

P
w
{

iA(S(η)) ≥ c−m
1 a; |rA(S(η)) − rA(w)| ≤ mc−m

1 a
}

≥ ε.

In particular, repeated iterations of Lemma 4.6.3 (a) give

P
w
{

|rA(S(η)) − rA(w)| ≥ c−1
1 a
}

≤ (1 − ε)m2/ĉ = e−βm,

where ĉ is as in Lemma 4.6.3 (c), and therefore β is independent of m or a.This

implies that

P
w{|rA(S(η)) − rA(w)| ≥ mc−m

1 a |S(η)) ∈ HA}

≤ P
w
{

|rA(S(η)) − rA(w)| ≥ mc−m
1 a

}

Pw
{

|rA(S(η)) − rA(w)| ≥ mc−m
1 a

}

+ Pw {iA(S(η)) ≥ c1iA(w)}

≤ ε−1e−βm,
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where, again, ε is as in Lemma 4.6.3. In particular, for m ≥ ĉ,

P
w {|rA(S(η)) − rA(w)| ≤ miA(w) |S(η) ∈ HA} = 1,

and so we get for all w satisfying iA(w) ∈ (c
−(m+1)
1 a, c−m

1 a], with the definition c′ =

∑

j≥1

jc−j
1 , and θ = θ(w, a, (c′ + c3)a),

P
w {iA(S(θ)) ≥ a |S(θ) ∈ HA} ≥

m
∏

j=m0

(1 − ε−1e−βm) · Sm0 ,

where m0 is the smallest integer greater than sup{c2, ĉ}.

Since
∏∞

j=1(1 − ε−1e−βm) > 0 and Sm0 > 0, this gives the proposition.

Corollary 4.6.6. There exist constants d, β > 0 such that for any a > 0, any hull

A, any r > 0, and any x ∈ A,

P
w {iA(S(θ(w, a, ra))) ≥ a|S(θ(w, a, ra)) ∈ HA} ≥ 1 − de−βr.

In particular, there is a constant d′ such that

P
w {rA(S(θ(w, a, ra))) ≥ ra} ≤ d′e−βr

P
w {iA(S(θ(w, a, ra))) ≥ a} .

Proof. We just iterate Proposition 4.6.5 as often as is needed.

4.7 A hitting probability

We now have most of the tools needed to compute

P
w {S(ζA) = −n} .
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A continues to denote a discrete hull. We fix γ < 1 and define the continuous and

discrete halo associated with A: h̃γ = {z ∈ � A : iA(z) < nγ} and hγ = h̃γ ∩H. The

halo’s boundary is b̃γ = ∂h̃γ in the continuous case and bγ = ∂hγ in the discrete case.

τγ will be short for τbγ = inf{n ≥ 1 : Sn ∈ bγ}.

Recall the definition of the discrete Green’s function in a domain E ⊂ � 2 for

x, y ∈ E:

GE(x, y) = E
x

[

∑

k≥0

� {Sk = y; k < τ∂E}
]

.

Since for the remainder of this section we will mostly be working in the domain HA,

we will simplify the notation and write GA for GHA
.

If E ⊂ �
is conformally equivalent to the open unit disk U, z, w ∈ E, z 6= w, and

f : E → U is a conformal transformation with f(z) = 0, then we define the Green’s

function in E to be

gE(z, w) = − log |f(w)|.

Note that since f is unique up to a rotation, this is well-defined.

Like for the discrete case, we will write gA(z, w) for g 
 A
(z, w) until the end of this

section. A word of caution is needed here since we use the same symbol -gA- for the

continuous Green’s function in � A and the map defined in (4.24). However, it will

always be clear from context what is meant. If A = ∅, we will just write G(z, w) and

g(z, w) for the discrete and continuous Green’s functions in the upper half-plane.

We now prove a few ancillary lemmas. The first three give information about the

thickness of a halo, the image of its boundary, and the escape probability from A by

random walk excursion started at its boundary.

Recall that for a ∈ � +, D(a) is the disk of radius a centered at the origin and

C(a) = ∂D(a) is the circle making up its boundary. For the purpose of the following
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lemma, we define the upper half-disk and upper half-circle

Du(a) = D(a) ∩ � , Cu(a) = C(a) ∩ � . (4.29)

Lemma 4.7.1. For all β, γ < 1, there exist constants N > 0, K1 > 0, K2 > 0, such

that for all n ≥ N , for every continuous hull Ã with R(Ã) ≤ nβ, and for all z ∈ bγ,

d(z, Ã ∪ � ) ≥ K1n
2γ−max{γ,β}. (4.30)

In particular,

Im(z) ≥ K1n
2γ−max{γ,β}.

Moreover, if β < γ < 1,

d(z, Ã ∪ � ) ≤ K2n
γ . (4.31)

Proof. (4.31) follows immediately from Proposition 4.5.5, so we can concentrate on

(4.30).

We start with the case β ≥ γ. If n is large enough and |z| ≥ n3/2, the fact that

Im(z) ≥ iA(z) = nγ , (4.32)

which follows from Proposition 3.2.2 (b), gives the result.

For |z| ≤ n3/2, we will proceed by contradiction. First suppose that ∀N >

0, we can find n ≥ N , a hull Ã with R(Ã) ≤ nβ and a point z ∈ g−1
A (bγ) such

that d(z, Ã ∪ � ) ≤ 1
64C2

B
n2γ−β, where CB is the constant in the continuous Beurling

Estimate (Theorem A.3.2). We can assume that CB ≥ 1. Then, the fact that

|a2 − b2| ≤ |a − b| · |a + b| implies that

d(z2, Ã2 ∪ � +) ≤ 1

64C2
B

n2γ−β · 2nβ =
n2γ

32C2
B

.
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Here, Ã2 denotes {z2 : z ∈ Ã}. Thus, conformal invariance of Brownian motion and

the continuous Beurling Estimate give

P
z {Ξn2 < ZA} ≤ P

z2
{

Ξ̂n4/2 < TÃ2∪ 	
}

≤ CB

( 1
32C2

B
n2γ

n4/2

)1/2

=
1

4
nγ−2

On the other hand, it follows from Proposition 3.2.5 that there is a constant K

such that for all w ∈ Cu(n
2), |w − gA(w) − hcap(Ã)

n2 | ≤ K R(Ã)hcap(Ã)
n4 . In particular,

∃N > 0 such that ∀ n ≥ N , for every hull Ã with R(Ã) ≤ nβ and all w ∈ Cu(n
2),

|gA(w)− w| ≤ 2n2(β−1). Therefore there exists N > 0 such that for all n ≥ N , for all

Ã with R(Ã) ≤ nβ,

Du(n
2/2) ⊂ gA(Du(n

2)) ⊂ Du(2n
2).

This implies that

P
gA(z)

{

TgA(C(n2)) < σ0

}

≥ P
gA(z) {ξ2n2 < σ0}

≥ P
gA(z) {σ2n2 < σ0} =

1

2
nγ−2,

by Gambler’s ruin and since iA(z) = nγ.

Since P
z {ξn2 < TA∪ 	 } = P

gA(z)
{

TgA(C(n2)) < σ0

}

, this gives a contradiction.

If β < γ, the lemma is straightforward, since (4.32) implies that we can find an

N so that for all n ≥ N , d(z, A ∪ � ) ≥ 1
2
nγ .

Lemma 4.7.2. For every 0 < β < γ, there exists a constant K such that for all

z ∈ bγ and every discrete hull A with radius R(A) ≤ nβ,

0 ≤ iA(z) − nγ ≤ Kn2β−γ .
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Proof. Note that by lemma 4.7.1, there exist constants K1, K2 > 0 such that Im(z) ∈

[K1n
γ , K2n

γ ].

The first inequality is obvious since if z ∈ bγ , then z ∈ hc
γ , so that iA(z) ≥ nγ .

We know from Proposition 3.2.2 (b) that Im(z) = iA(z)+E
z [Im(B(ZA))]. Clearly,

if we recall the definition of Du in (4.29), use the conformal invariance of Brownian

motion, and since R(A) ≤ nβ, then,

E
z [Im(B(ZA))] ≤ nβ

P
z {B(ZA) ∈ A}

≤ nβ
P

z
{

B(ZDu(nβ)) ∈ Du(n
β)
}

= nβ
P

g
Du(nβ)

(z) {
B(T 	 ) ∈ [−2nβ, 2nβ]

}

≤ K ′n2β−γ .

Lemma 4.7.1 implies that Im(z) ≥ K1n
γ and one can check easily by considering

the explicit map gDu(nβ) that this implies Im(gDu(nβ)(z)) ≥ K2n
γ for some constant

K2 > 0. From this and the hitting distribution of � for Brownian motion (see (4.2)),

we get the last inequality. K ′ is independent of A, n, and z. Therefore,

0 ≤ Im(z) − iA(z) ≤ K ′n2β−γ.

Since z ∈ bγ , there exists z′ ∈ hγ with |z − z′| = 1 and clearly, since Im(z) ≥

K1n
γ , Im(z′) ≥ K1n

γ − 1 ≥ K3n
γ. In the same way as above, we then get

0 ≤ Im(z′) − iA(z′) ≤ K ′′n2β−γ .

Therefore,

|iA(z) − iA(z′)| ≤ |iA(z) − Im(z)| + |Im(z) − Im(z′)| + |Im(z′) − iA(z′)|

≤ K ′n2β−γ + 1 + K ′′n2β−γ ≤ Kn2β−γ

Since iA(z′) ≤ nγ, this implies that iA(z) ≤ nγ + Kn2β−γ .
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Recall that we defined for z ∈ H and A ⊂ H a discrete hull,

EsA(z) = P
z
{

S̃[1,∞) ∩ A = ∅
}

.

Recall also that we defined for r ∈ �
, lr = {z ∈ � 2 : Im(z) = r} and σr = inf{n ≥

1 : Sn ∈ lr}. For the next lemma, we will simplify the notation and write, for α ≥ 0,

lα = {z ∈ � 2 : Im(z) = [nα]} and σα = inf{n ≥ 1 : Sn ∈ lα}.

The corresponding quantities for Brownian motion are

Lα = {z ∈ �
: Im(z) = [nα]} and Σα = inf{t ≥ 0 : Im(Bt) ∈ Lα}.

If random walk excursion started at w ∈ A escapes from A, it does so in two

steps. First it gets to bγ without hitting A. Then it goes to infinity without hitting

A. We give a precise estimate on the probability of the second step here.

Lemma 4.7.3. For z ∈ hc
γ ,

EsA(z) =
iA(z)

Im(z)
(1 + O

(

n2β−2
)

).

Proof. We start by computing P
z {Σ1 < ZA} and will then show that this is very

close to P
z {σ1 < ζA}.

By conformal invariance of Brownian motion, Lemma 4.7.2 with the value γ = 1

and the gambler’s Ruin estimate (see Section A.2),

P
z {Σ1 < ZA} = P

gA(z)
{

TgA(L1) < T 	
}

=
iA(z)

n
(1 + O

(

n2β−2
)

).

We use the KMT approximation to couple a random walk with a Brownian motion

so that before they reach height n or 0, they are within c log n of each other, up to a

probability of less than n−10.
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We introduce the stopping times

M = inf{t ≥ 0 : d(Bt, A ∪ � ) ≤ c log n}, N = inf{t ≥ 0 : Im(Bt) = n − c log n},

where the constant c is that of the coupling, and the corresponding stopping times

µ, ν for random walk.

P
z {(σ1 < ζA; Σ1 > ZA) ∪ (σ1 > ζA; Σ1 < ZA)}

≤ P
z {N < ZA < Σ1} + P

z {M < Σ1 < ZA}

+P
z {ν < ζA < σ1} + P

z {µ < σ1 < ζA} + Kn−10.

By the strong Markov property and the gambler’s ruin estimate, the first and third

probabilities are bounded above by

n − (n − c log n)

n − Knγ
≤ K

log n

n
.

If d(z, A ∪ � ) ≤ c log n and if we let λ = 1+β
2

, the gambler’s ruin and Beurling

estimates give

P
z {Σ1 < ZA} ≤ P

z {Σλ < ZA}P
S(Σλ) {Σ1 < Σβ}

≤ K

(

log n

n

)1/2
nλ − nβ

n − nβ
≤ Kn− 1

2 .

The exact same argument works for random walk too. This shows that

P
z {σ1 < ζA} = P

z {Σ1 < ZA} + O
(

n−1/2
)

and so

P
z {σ1 < ζA} =

iA(z)

n
(1 + O

(

n2β−2
)

).

From this we easily find, for R ≥ n,

P
z {σR < ζA} =

iA(z)

R
(1 + O

(

n2β−2
)

).
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Using (4.10) we can translate this equation for simple random walk into an equation

for simple random walk excursion:

P
z
{

σ̃R < ζ̃A

}

=
iA(z)

R

R

Im(z)
(1 + O

(

n2β−2
)

) =
iA(z)

Im(z)
(1 + O

(

n2β−2
)

).

Our last preparatory lemma is just a continuous Green’s function computation.

Recall that for z, w ∈ � , we chose the notation g(z, w) for the Green’s function in � .

Lemma 4.7.4. Suppose x, y ∈ � satisfy |x − y| ≥ n
2
. Then,

g(x + inγ, y + inγ) = 2
n2γ

(y − x)2

(

1 + O
(

n2γ−2
))

.

Proof. One can easily verify that

g(x + inγ , y + inγ) = g(inγ , y − x + inγ).

Since we know that f(z) = z−i
z+i

maps the upper half-plane � onto the unit disk U, we

can reduce the question to one about the Green’s function in the disk, gU, for which

the solution is well known (see for instance [3]).

g(inγ, y − x + inγ) = gU

(

nγ − 1

nγ + 1
,
(y − x) + i(nγ − 1)

(y − x) + i(nγ + 1)

)

= log

∣

∣

∣

∣

uv − 1

u − v

∣

∣

∣

∣

,

where u = nγ−1
nγ+1

= 1 − 2 i
nγ+1

, v = (y−x)+i(nγ−1)
(y−x)+i(nγ+1)

= 1 − 2 i
(y−x)+i(nγ+1)

.To evaluate this,

we need precise estimates for |uv − 1| and |u − v|.

uv − 1 = − 2

nγ + 1
− 2

nγ + 1

(y − x)2 + (nγ+1)2
+

8

(y − x)2

+ (−2
y − x

(y − x)2 + (nγ + 1)2
+

8

(nγ + 1)(y − x)
)i

= − 2

nγ + 1

(

1 +
(nγ + 1)2

(y − x)2 + (nγ + 1)2
− 4(nγ + 1)

(y − x)2

)

− 2
y − x

(y − x)2 + (nγ + 1)2

(

1 − 4
(y − x)2 + (nγ + 1)2

(y − x)2(nγ + 1)

)

i.
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Also,

u − v =
2

nγ + 1

(

1 − (nγ + 1)2

(y − x)2 + (nγ + 1)2

)

− 2
y − x

(y − x)2 + (nγ + 1)2
.

This gives

|uv − 1|2 = 4
(nγ+1)2

(

1 + 2(nγ+1)2

(y−x)2+(nγ+1)2
+ (y−x)2(nγ+1)2

((y−x)2+(nγ+1)2)2
+ O (nγ−2)

)

and

|u − v|2 = 4
(nγ+1)2

(

1 − 2(nγ+1)2

(y−x)2+(nγ+1)2
+ (y−x)2(nγ+1)2

((y−x)2+(nγ+1)2)
+ O (n4γ−4)

)

,

which, with the help of Taylor’s expansion for log(1 + x), gives

g(x + inγ, y + inγ) = 2
n2γ

(y − x)2

(

1 + O
(

n2γ−2
))

.

Since the continuous Green’s function has the nice property of conformal invari-

ance which the discrete Green’s function does not possess, we will find good use in a

result from [13] which says that the discrete Green’s function is close to the continu-

ous Green’s function when both points are away from the boundary. This will allow

us to reduce a discrete Green’s function in HA to a continuous Green’s function in

� , which we just handled in Lemma 4.7.4. The result from [13] is the following:

Proposition 4.7.5. Suppose a set E ⊂ � 2 satisfies min
z∈∂E

|z| ∈ [n, 2n]. Then for x ∈ E,

GE(0, x) =
2

π
gE(0, x) + O

(

|x|− 3
2

)

+ O
(

n− 1
3 log(n)

)

.

Note that this result does not include the sets HA, since their continuous version

is constructed in a slightly different way. However, the result still holds in that case.
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If we assume for u, v ∈ HA that |u − v| ≥ n
2

and u, v ∈ bγ , we get from this,

Lemma 4.7.1, and conformal invariance of the Green’s function that

GA(u, v) =
2

π
gA(u, v) + O

(

n− γ
3 log n

)

=
2

π
g(gA(u), gA(v)) + O

(

n− γ
3 log n

)

, (4.33)

Proposition 4.7.6. If 0 < β < γ < 1, A is a hull with radius R(A) ≤ nβ, w ∈ ∂A∩H,

and X = rA(w), then

P
w {S(ζA) = −n} =

1

π
EsA(w)Im(w)

1

|X + n|2 (1 + O (φ(n))),

where φ(n) = n2β−2γ + nγ−1 log2 n + n
6−7γ

3 .

Proof. A last-exit decomposition gives

P
w {S(ζA) = −n} =

∑

u,v∈bγ

P
w
{

Sτγ = u; τγ < ζA

}

P
−n
{

Sτγ = v; τγ < ζA

}

GA(u, v)

+ P
w {SζA

= −n; ζA < τγ} .

Also, if we let ξ = inf{n ≥ 1 : |Sn| ≥ n
γ+β

2 }, we see that

P
w {S(ζA) = −n; ζA < τγ}

Pw {S(ζA) = −n; τγ < ζA}

≤ P
w {ξ < ζA} supz P

z {S(ζA) = −n; ζA < τγ}
Pw {ξ < ζA} infz′ P

z′ {S(ζA) = −n; τγ < ζA}

=
supz P

z {S(ζA) = −n; ζA < τγ}
infz′ P

z′ {S(ζA) = −n; τγ < ζA}
,

where the sup and inf are both over {z ∈ H : n
γ+β

2 ≤ |z| < n
γ+β

2 +1}. One can check

easily that the supremum is bounded above by K1 exp{−K2n
1−γ} for some positive

constants K1 and K2 and that the infimum is greater than K3n
−2 for some positive

constant K3. Therefore,

P
w {S(ζA) = −n} =

∑

u,v∈bγ

P
w
{

Sτγ = u; τγ < ζA

}

P
−n
{

Sτγ = v; τγ < ζA

}

GA(u, v)

· (1 + O
(

exp{−Kn1−γ}
)

). (4.34)
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This, together with (4.33) and Corollary 4.6.6, gives

P
w{S(ζA) = −n}

=
∑

P
w
{

Sτγ = u; τγ < ζA

}

P
−n
{

Sτγ = v; τγ < ζA

}

(1 + O
(

e−βr
)

)

·
[

2

π
g(gA(u), gA(v)) + O

(

n− γ
3 log n

)

]

(1 + O
(

exp{−Kn1−γ}
)

),

where the sum is over all u, v ∈ bγ such that |rA(u) − rA(w)| ≤ rnγ and |rA(v) −

rA(−n)| ≤ rnγ. Letting r = log2 n, we get from Corollary 4.6.6 (for the first equality)

and Lemmas 4.7.2 and 4.7.4 (for the second),

P
w{S(ζA) = −n}

= P
w {τγ < ζA}P

−n {τγ < ζA} (1 + O
(

exp{−kn1−γ}
)

)(1 + O
(

n−β log n
)

)

·
[

2

π
g(rA(w) + O

(

nγ log2 n
)

+ iA(u)i, rA(−n) + iA(v)i) + O
(

n− γ
3 log n

)

]

= P
w {τγ < ζA}P

−n {τγ < ζA} (1 + O
(

exp{−kn1−γ}
)

)(1 + O
(

n−β log n
)

)

·
[

2

π
g
(

rA(w) − rA(−n) + O
(

nγ log2 n
)

+ i(nγ + O
(

n2β−γ
)

), i(nγ + O
(

n2β−γ
)

)
)

+ O
(

n− γ
3 log n

)

]

.

Proposition 3.2.5 shows that rA(−n) = −n(1 + O
(

n2β−2
)

). If we let X = rA(w)

and note that exp{−kn1−γ} = o(n−β log n), Lemma 4.7.4 gives

P
w{S(ζA) = −n}

= P
w {τγ < ζA}P

−n {τγ < ζA} (1 + O
(

n−β log n
)

)

·
[

O
(

n− γ
3 log n

)

+
4

π

n2γ(1 + O
(

n2β−2γ
)

)

|X + n + O
(

nγ log2 n
)

|2 · 1 + O (n2γ−2)

1 + O (n2β−2)

]

= P
w {τγ < ζA}P

−n {τγ < ζA} (1 + O
(

n−β log n
)

)

·
[

O
(

n− γ
3 log n

)

+
4

π

n2γ

|X + n|2 (1 + O
(

n2β−2γ
)

)(1 + O
(

nγ−1 log2 n
)

)

]
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= P
w {τγ < ζA}P

−n {τγ < ζA} (1 + O
(

n−β log n
)

)

·
[

4

π

n2γ

|X + n|2 (1 + O
(

n
6−7γ

3

)

)(1 + O
(

nγ−1 log2 n
)

)

]

= P
w {τγ < ζA}P

−n {τγ < ζA}
4

π

n2γ

|X + n|2 (1 + O
(

n
6−7γ

3

)

)(1 + O
(

nγ−1 log2 n
)

).

We also have

EsA(w) = P
w
{

S̃[1,∞) ∩ A = ∅
}

=
∑

x∈bγ

P
w {S[1, τγ] ∩ (A ∪ � ) = ∅; S(τγ) = x} Im(x)

Im(w)
P

x
{

S̃[1,∞) ∩ A = ∅
}

=
∑

x∈bγ

P
w {S[1, τγ] ∩ (A ∪ � ) = ∅; S(τγ) = x} Im(x)

Im(w)

iA(x)

Im(x)
(1 + O

(

n2β−2
)

)

= P
w {τγ < ζA}

1

Im(w)
nγ(1 + O

(

n2β−2γ
)

)(1 + O
(

n2β−2
)

).

Here, we used (4.10) for the second equality, Lemma 4.7.3 for the third, and Lemma

4.7.2 for the last. This implies that

P
w {τγ < ζA} =

EsA(w)Im(w)

nγ
(1 + O

(

n2β−2γ
)

).

Also, by Lemma 4.7.2 and the gambler’s ruin estimate (see Section A.2),

P
−n {τγ < ζA} =

1

4

1

nγ
(1 + O

(

n2β−2γ
)

).

Therefore,

P
w {S(ζA) = −n} =

1

π
EsA(w)Im(w)

1

|X + n|2 (1 + O (φ(n))),

where φ(n) = n2β−2γ + nγ−1 log2 n + n
6−7γ

3 .
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Appendix A

Standard Estimates for Brownian Motion
and Random Walk

This appendix will be devoted to state and prove some elementary results on random

walk and Brownian motion which are needed in this thesis. All of them are rather

standard. They include large deviations estimates for random walk and Brownian

motion, the gambler’s ruin formula, Beurling estimates, and the Harnack principle.

Although the Harnack principle is formulated in terms of harmonic functions, the

relationship between harmonic functions and hitting distributions makes the Harnack

principle a statement about the latter as well.

A.1 Large deviations

It is easy to check that in time n, Brownian motion and random walk are expected

to reach a distance of roughly
√

n. In this section we show how likely it is that

they travel far (i.e. reach a distance which is much greater than
√

n) or are very

constrained (i.e. remain in a disk which has a radius much smaller than
√

n). We

only give upper bounds for these probabilities, except in the case of Brownian motion

travelling too far, where the lower bound is straightforward enough for us to write it
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here as well at no cost.

Lemma A.1.1. If B is a planar Brownian motion and r ≥ 1,

P

{

sup
0≤t≤n

|Bt| ≥ rn1/2

}

� r−1 exp{−r2

2
}.

Proof. If we write Bt = (B1
t , B

2
t ), simple geometric considerations, Brownian scaling,

and the reflection principle give

P
{

B1
1 ≥ r

}

= P{B1
n ≥ rn1/2}

≤ P

{

sup
0≤t≤n

|Bt| ≥ rn1/2

}

≤ 2P

{

sup
0≤t≤n

|B1
t | ≥ rn1/2

}

≤ 4P

{

sup
0≤t≤n

B1
t ≥ rn1/2

}

= 2P
{

B1
n ≥ rn1/2

}

= 2P
{

B1
1 ≥ r

}

.

If φ(x) is the normal density and r > 0,

1

r + r−1
φ(r) ≤ P

{

B1
1 ≥ r

}

≤ 1

r
φ(r),

from which the result follows immediately

Remark 10. The following is an equivalent formulation of the lemma:

P {ξrn1/2 ≤ n} � r−1 exp{−r2

2
}.

We have evaluated the probability that Brownian motion goes farther than ex-

pected. We now look at the probability that it moves less than expected.

Lemma A.1.2. There exists a constant K > 0 such that for all n ≥ 1, r ≥ 2,

P

{

sup
0≤t≤n

|Bt| ≤ r−1n1/2

}

≤ exp{−Kr2}.
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Proof. For l ≥ 1, we define

Il = Il(r, n) = [(l − 1)
n

r2
, l · n

r2
].

Then, if k = [r2],

∪k
l=1Il ⊂ [0, n].

A simple geometric argument, the Markov property, and Brownian scaling give:

P

{

sup
0≤t≤n

|Bt| ≤ r−1n1/2

}

≤
k
∏

l=1

P

{

sup
t∈Il

|Bt − B(l−1) n
r2
| ≤ 2r−1n1/2

}

≤
k
∏

l=1

P
0

{

sup
0≤t≤1

|Bt| ≤ 2

}

≤ ρk ≤ exp{−Kr2},

where ρ < 1 is independent of r and n, and K = − ln ρ
2

> 0.

We need the same results for random walk. The nice scaling properties of Brow-

nian motion cannot be used here and we must do a little bit more work. We first

prove the result for random walk under slightly milder assumptions than needed for

simple random walk. These are still quite restrictive, but will be sufficient for our

needs.

Lemma A.1.3. Suppose (Xi)i≥1 are independent random variables with mean 0 such

that for some a > 0, the moment generating function

M(t) = E
[

etX1
]

< ∞ for |t| ≤ a. (A.1)

Then there exists a constant K1 depending on a and the distribution of X1 such that

if Sn =
n
∑

i=1

Xi, for all n ≥ 1, r > 0,

P
{

|Sn| ≥ r
√

n
}

≤ K1e
−ar.
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Proof. Choose a distribution X1 and an a for which (A.1) holds. It suffices to show

that there is a K1 > 0 such that P {Sn ≥ r
√

n} ≤ K1e
−ar. By Chebyshev’s inequality,

P

{

Sn√
n
≥ r

}

≤ E [exp{aSn/
√

n}]
ear

.

But by expanding E
[

etX1
]

about 0, we get for |t| ≤ a,

M(t) = 1 +
E [X2

1 ]

2
t2 + O

(

t3
)

,

so that we can find a constant K such that for all n ≥ 1,

M(
a√
n

) ≤ 1 +
K

n
.

Thus,

E
[

exp{aSn/
√

n}
]

= M(
a√
n

)n ≤ (1 +
K

n
)n ≤ K1,

where K1 = eK . This implies that

P

{

Sn√
n
≥ r

}

≤ K1e
−ar.

The next Corollary is an immediate consequence. We point out that it is not

optimal in the case of simple random walk, but as it will be sufficient for the purpose

of this thesis, we content ourselves with it.

Corollary A.1.4. Under the hypotheses of Lemma A.1.3, there exists a constant

C1 > 0 such that for all n ≥ 1, r > 0,

P

{

max
1≤k≤n

|Sk| ≥ r
√

n

}

≤ C1ne−ar.
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The following particular case is of special interest:

Corollary A.1.5. For one-dimensional standard Brownian motion started at 0, de-

fine T1 = inf{t ≥ 0 : |Bt| = 1 and for j ≥ 2, Tj = inf{t ≥ Tj−1 : |Bt − BTj−1
| = 1}.

Then there exist constants C1, a > 0 such that for all n ≥ 1, r > 0,

P

{

max
1≤k≤n

|Tk − k| ≥ r
√

n

}

≤ C1ne−ar.

Proof. The fact that E [T1] = 1 is well known and since for all j ≥ 1, Tj − Tj−1
D
= T1,

it suffices to show that there is an a > 0 such that E
[

ea(T1−1)
]

< ∞. It follows from

P {T1 ≥ k + 1|T1 ≥ k} ≤ P {|Bk+1 − Bk| ≤ 2} = ρ < 1

that P {T1 ≥ k} ≤ ρk, and it suffices to choose a < ln(ρ−1) to ensure that E
[

eaT1
]

<

∞.

We now complete the picture by giving the analogue to Lemma A.1.2 for planar

simple random walk.

Lemma A.1.6. There exists a constant K > 0 such that for all n ≥ 1, r ≥ 2,

P

{

max
0≤k≤n

|Sk| ≤ r−1n1/2

}

≤ exp{−Kr2}.

A.2 Gambler’s ruin

It is often useful to know what the chance is that Brownian motion or random walk

move much more in one direction than in the opposite. The following facts are well

known and their proofs can be found in any basic book on stochastic processes:

Let r1, r2 be positive reals and n1, n2 be positive integers. Define

σ = inf{k ≥ 0 : Im(Sk) = n1 or − n2}
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and

Σ = inf{t ≥ 0 : Im(Bt) = r1 or − r2}.

Lemma A.2.1. If z ∈ � 2 satisfies Im(z) = 0. Then

(a)Pz {Im(S(σ)) = n1} =
n2

n1 + n2
and P

z {Im(S(σ)) = −n2} =
n1

n1 + n2
.

(b)Pz {Im(B(Σ)) = r1} =
r2

r1 + r2

and P
z {Im(B(Σ)) = −r2} =

r1

r1 + r2

.

A.3 Beurling estimates

It is often useful to know how likely it is for Brownian motion to get to distance R

without hitting a set A with d(B0, A) = r and rad(A) ≥ 2R, when r
R

gets small.

The probability of this event can be bounded above by a power function of the ratio,

uniformly for all sets A. The same question for random walk is of course of equal

interest. Given the Beurling Projection Theorem which we state below, it is easy to

find the best possible exponent of this power function so that we do it in this section.

The discrete case is more difficult and we just refer the reader to [10], where the proof

is given.

The first result of this section is the Beurling Projection Theorem. It says that

among all connected sets of a given radius, that which Brownian motion will most

likely avoid is a straight line. Consider a set E ⊂ RD = {z ∈ �
: |z| ≤ R}. The

circular projection of E is γ(E) = {|z| : z ∈ E}.

Theorem A.3.1 (Beurling Projection Theorem).

P
−1 {ΞR < TE} ≤ P

−1
{

ΞR < Tγ(E)

}

.

For a proof, see [3] or [1].

We will be interested in the case where E satisfies γ(E) = [0, R]. Now that we

have Theorem A.3.1, we know that finding an upper bound for P
−1
{

ΞR < T[0,R]

}

also
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Figure A.1: The sequence of conformal transformations leading to the Beurling
estimate.

provides an upper bound for P
−1 {ΞR < TE} for all sets E ⊂ RD with γ(E) = [0, R].

We can compute such a bound via a sequence of conformal maps, the fact that the

exit distribution of the upper half-plane is a Cauchy distribution, and the fact that

harmonic measure is conformally invariant (see [3] for a proof of this). It turns out

that the bound we find is optimal up to a multiplicative constant.

Consider the following domains, where U = {z ∈ �
: |z| < 1}: the upper half-

plane � = {z ∈ �
: Im(z) > 0}, the slit unit disk Us = U \ {z ∈ �

: 0 ≤ Re(z) <

1; Im(z) = 0}, the upper half-disk Uu = U ∩ � , and the complement of the closed

upper half-disk � U = � ∩ {z ∈ �
: |z| > 1}.

We have the following conformal transformations (surjective conformal maps):

Us
f→ Uu

g→ � U

h→ � ,

where f(z) =
√

z, g(z) = − 1
z
, h(z) = z + 1

z
. Then h ◦ g ◦ f(−ε) = ( 1√

ε
− √

ε)i and

h ◦ g ◦ f(U) = [−2, 2].

Conformal invariance of Brownian motion implies that

P
ε {B(T∂Us) ∈ U} = P

( 1√
ε
−√

ε)i {B(T 	 ) ∈ [−2, 2]} .

Using the fact that the exit distribution of the upper half-plane is a Cauchy distri-

bution and the Beurling Projection Theorem, Brownian scaling gives the following:
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Theorem A.3.2 (Continuous Beurling Estimate). There exists a constant K >

0 such that for any R ≥ 1, any x with |x| ≤ R, any set A with [0, R] ⊂ γ(E),

P
x {ξR ≤ TA} ≤ K

( |x|
R

)1/2

.

As we pointed out earlier, showing that this result is true for random walk as

well is not as easy, mainly because none of the conformal invariance techniques are

available. In [10], Kesten first showed that the Beurling estimate holds in the discrete

case as well. We state the the theorem here without a proof.

Theorem A.3.3 (Discrete Beurling Estimate). Let R ∈ � be positive and

define AR to be the set of subsets of � 2 for which sup{|x| : x ∈ A} = R. Let

τA = inf{n ≥ 1 : Sn ∈ A} and ξR = inf{k ≥ 0 : |Sk| ≥ R}. Then there exists a

constant K > 0 such that if A ∈ AR, |x| < R,

P
x {τA > ξR} ≤ K

( |x|
R

)1/2

.

Note that although the exponents are the same in the continuous and discrete

case, it is not clear that in a given discrete disk, a straight line is the easiest set to

avoid for random walk.

A.4 Harnack inequalities

Harmonic functions play a fundamental role in analysis and have a strong connec-

tion to exiting probabilities for random walk and Brownian motion. Indeed, finding

a harmonic function with specific boundary conditions (in other words, solving a

Dirichlet problem) is equivalent to computing exiting probabilities. This is true in

the continuous setting as well as in the discrete.
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A.4.1 The continuous case

Recall that a function h : � 2 → � is C2 if its second order partial derivatives exist.

The Laplacian of a C2 function h : � 2 → � is the operator ∆ defined by

∆h =
∂2h

∂x2
+

∂2h

∂y2
.

If D is a domain and h : D → � is C2, we say that h is harmonic on D if ∆h ≡ 0

in D.

The following is an important but well-know result about nonnegative harmonic

functions. Recall that for a ∈ � +, D(a) is the disk of radius a, centered at the origin.

Theorem A.4.1. Suppose r < R are positive reals. There exists a constant c such

that if u is nonnegative and harmonic in D(R) and x, y ∈ D(r), then

u(x) ≤ cu(y).

For a proof, see [3].

A.4.2 The discrete case

If f : � 2 → � , the discrete Laplacian of f at x ∈ � 2 is defined by

∆f(x) =
1

4

∑

(f(x′) − f(x)),

where the sum is over {x′ ∈ � 2 : |x′ − x| = 1}. If A ⊂ � 2, we say that f is discrete

harmonic on A if for each x ∈ A, ∆f(x) = 0.

Let Cn = {x ∈ � 2 : |x| < n} and recall that C̄n = {z ∈ � 2 : d(z, Cn) ≤ 1}.

Then the following theorem, which can be found with its proof in [14], is the discrete

analogue of Theorem A.4.1:
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Theorem A.4.2. For every r < 1, there exists a constant cr such that if f : C̄n →

[0,∞) is harmonic on Cn and x1, x2 satisfy |x1| ≤ rn, |x2| ≤ rn, then

f(x1) ≤ crf(x2).
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Appendix B

Less Standard Estimates for Random
Walk

B.1 Introduction

The Laplacian ∆ of a C2 function f : � 2 → � is defined by

∆f(x, y) =
∂2f

∂x2
+

∂2f

∂y2
(x, y).

If in a domain D, ∆f ≡ 0, we say that f is harmonic in D. Similarly, recall that we

defined in Appendix A for any function f : � 2 → � the discrete Laplacian

∆f(x, y) =
1

4

∑

(f(x′, y′) − f(x, y)),

where the sum is over {(x′, y′) : |(x′, y′)−(x, y)| = 1}. By analogy with the continuous

case, we say that f : D̄ → � is discrete harmonic in a set D if ∆f ≡ 0 in D.

To solve the Dirichlet problem in a domain D with boundary condition φ, where

φ : ∂D → � is to find a function u : D̄ → � such that u is harmonic in D and u ≡ φ

on ∂D. The discrete Dirichlet problem is defined in the natural analogous way.

The Dirichlet problem is intimately related to Brownian motion and so is the dis-

crete Dirichlet problem to random walk. Solving the Dirichlet problem with appro-

priate boundary conditions is equivalent to computing the probability that Brownian
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motion (or random walk in the discrete case) leaves a domain at a given subset of the

boundary. More precisely, if A and B are disjoint subsets of the boundary of D and

A∪B = ∂D, solving the Dirichlet problem with boundary value 1 on A and 0 on B is

equivalent to finding the probability that Brownian motion (in the continuous case)

or random walk (in the discrete case) leaves D at A. (See [8] for a discussion of this

in the continuous case and [14] for the discrete case.) We will need upper bounds for

various such exiting probabilities in this thesis and solve the corresponding Dirichlet

problems here. We also prove a “difference estimate” which gives a bound on the

difference between the exiting distribution of a domain when starting at neighboring

points. While working on the problems of this thesis, we initially believed that we

would need this estimate, which eventually was replaced by another. As the result

is of interest by itself and is not, to our knowledge, anywhere in the litterature, we

present it here as well.

B.2 Discrete Dirichlet problem in the finite and infinite rect-

angles

We will solve the Dirichlet problem with boundary conditions a general funtion φ on

one side and 0 on the others. We will then use this to find bounds for the problem

with specific φ and starting points.

We start with a trivial lemma which will be needed in our study of the discrete

Dirichlet problem in some specific domains.

Lemma B.2.1. If for 1 ≤ j ≤ n − 1, aj = aj(n) is defined by the equation

cosh(aj) = 2 − cos(
πj

n
),

then

aj =
πj

n
(1 + O

(

j

n

)

).
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Moreover, for any 1 ≤ j ≤ n − 1,

j

2n
≤ aj ≤

πj

n
.

Proof. The equality

∑

k≥1

a2k
j

(2k)!
=
∑

k≥1

(−1)k+1 (πj/n)2k

(2k)!
,

obtained by Taylor-expanding the equation for aj, allows us to see that ∀ n > 0, ∀ j ≤

n/π,

πj

2n
≤ aj ≤

πj

n
.

Indeed, suppose that aj > πj
n

. Then

∑

k≥1

(πj/n)2k

(2k)!
<
∑

k≥1

(−1)k+1 (πj/n)2k

(2k)!
.

This is clearly impossible. Also, if we suppose that aj ≤ πj
2n

, we get the inequality

0 ≤
∑

k≥1

(πj/n)2k
(

(1/2)2k − (−1)k+1
)

(2k)!
.

The first term in this sum is −3
8

(πj
n

)2. The sum of the positive terms is

≤ 17

16
(
πj

n
)4
∑

k≥1

1

(4k)!
≤ 1

10
(
πj

n
)4,

and we get a contradiction. It is also easy to see directly from the cos and cosh

functions that for n/π ≤ j ≤ n − 1, 1/2 ≤ aj ≤ π. This is not optimal but sufficient

for our needs. The lemma now follows easily.
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We let

R(L, N) = {(x, y) ∈ � 2 : 1 ≤ x ≤ L − 1, 1 ≤ y ≤ N − 1},

be the discrete rectangle of “side lengths” L−1 and N −1, with boundary ∂R(L, N)

and closure R̄(L, N) = R(L, N) ∪ ∂R(L, N).

Lemma B.2.2. Let φ : {1, .., N − 1} → � be a given function. Then the unique

function f : R̄(L, N) → � satisfying

∆f(x, y) = 0 in R(L, N),

f(x, y) =

{

φ(y) on {(L, y) : 1 ≤ y ≤ N − 1}
0 on ∂R(L, N) \ {(L, y) : 1 ≤ y ≤ N − 1} ,

is given by

f(x, y) =
N−1
∑

j=1

bj(φ)
sinh(ajx)

sinh(ajL)
sin(

πyj

N
), (B.1)

where aj is the positive solution of

cosh(aj) = 2 − cos(
πj

N
), (B.2)

and

bj(φ) =
2

N − 1

N−1
∑

y=1

φ(y) sin(
πyj

N
). (B.3)

Proof. It suffices to check that the given function is harmonic and that it has the

right values on ∂R(L, N). Uniqueness follows from [14, Theorem 1.4.5].

We first check the boundary conditions. It is clear that

f(0, y) = f(x, 0) = f(x, N) = 0 ∀ x, y ∈ � .
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Also,

f(L, y) =

N−1
∑

j=1

bj(φ) sin(
πyj

N
)

=
2φ(y)

N − 1

N−1
∑

j=1

N−1
∑

k=1

sin(
πkj

N
) sin(

πyj

N
).

It is easy to see that if 1 ≤ y ≤ N − 1, then

N−1
∑

j=1

sin(
πkj

N
) sin(

πyj

N
) =

N − 1

2
δy,k,

from which it follows that

f(L, y) = φ(y) ∀ y ∈ {1, .., N − 1}.

To see that f is harmonic in R(L, N), we do a straightforward computation: Fix

(x, y) ∈ R(L, N). Then, using the fact that sin(x+ y) = sin(x) cos(y)+ sin(y) cos(x),

∆f(x, y)

= f(x + 1, y) + f(x − 1, y) + f(x, y + 1) + f(x, y − 1) − 4f(x, y)

=

N−1
∑

j=1

bj

[

2 sin(
πyj

N
)(cos(

πj

N
− 1))

sinh(ajx)

sinh(ajL)
+ 2 sin(

πyj

N
) sinh(ajx)(cosh(bj) − 1)

]

= 2

N−1
∑

j=1

bj

[

sin(
πyj

N
)
sinh(ajx)

sinh(ajL)

(

(cos(
πj

N
) − 1) + (cosh(aj) − 1)

)]

.

We see that this is 0 if cos(πj
N

) + cosh(aj) = 2.

We now turn to the infinite rectangle

R(n) = {(x, y) ∈ � 2 : x ≥ 1, 1 ≤ y ≤ n − 1}

with boundary ∂R(n) and closure R̄(n) = R(n) ∪ ∂R(n).
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Lemma B.2.3. Let φ : {1, .., n − 1} → � be a given function. Then the unique

bounded function f(x, y) : R̄(n) → � satisfying

∆f(x, y) = 0 in R(n),

f(x, y) =

{

φ(y) on {(0, y) : 1 ≤ y ≤ n − 1}
0 on ∂R(n) \ {(0, y) : 1 ≤ y ≤ n − 1}

is given by

f(x, y) =

n−1
∑

j=1

bj(φ) exp(−ajx) sin(
πyj

n
), (B.4)

where aj is the positive solution of

cosh(aj) = 2 − cos(
πj

n
),

and

bj(φ) =
2

n − 1

n−1
∑

y=1

φ(y) sin(
πyj

n
).

Proof. We invoke [14, Theorem 1.4.8] to show uniqueness. We can check that f has

the right boundary conditions exactly as in Lemma B.2.2. Harmonicity follows from

∆f(x, y) =
n−1
∑

j=1

bj(φ) exp(−ajx) sin(
πyj

n
)

(

2 cos(
πj

n
) + 2 cosh(aj) − 4

)

.

We now find upper bounds for solutions of the Dirichlet problem in a finite and

infinite rectangle at particular points.

Lemma B.2.4. If f(x, y) is the solution of the Dirichlet problem in R([an], n) with

φ(y) ≡ 1, then there exists a positive constant K, depending on a, such that for all

y and all n,

f(1, y) ≤ C
y

n2
.
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Proof. This is a particular case of Lemma B.2.2. First note that aj and bj depend

on n.

bj := bj(φ) =
2

n − 1

n−1
∑

k=1

sin

(

πkj

n

)

n→∞−→ 2

∫ 1

0

sin(πjx) dx =

{

4
πj

, j odd

0, j even,
,

so that ∃C > 0, s.t. ∀ n > 0, ∀ j ∈ {1, .., n − 1},

bj ≤
C

j
. (B.5)

Finding a bound for the term
sinh(ajx)

sinh(aj [an])
is more delicate. We first note that for all

x ≥ 0, sinh(x) ≥ x, and for x ≤ 1, sinh(x) ≤ 2x. We also recall from Lemma B.2.1

that aj ≥ j
2n

.

• If 1 ≤ j < 4
aπ

, then aj[an] ≥ C for some C > 0, and aj is small, so that

sinh(aj)

sinh(aj[an])
≤ C1aj

C2
≤ C

j

n
.

• If 4
aπ

≤ j < n
π

and n is large enough,

aj[an] ≥ [an]
πj

2n
≥ cj ≥ 1, for some c > 0, and aj < 1,

so that

sinh(aj)

sinh(aj[an])
≤ C

j/n

exp(cj)
.

• Finally, if j ≥ n/π, then

sinh(aj)

sinh(aj[an])
≤ C exp(−n/2).
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We also note that

sin(x) ≤ x, ∀x ≥ 0. (B.6)

Plugging these bounds into
sinh(aj)

sinh(aj [an])
, as well as (B.5) and (B.6) into (B.1), we

get

f(x, y) =
n−1
∑

j=1

bj(φ)
sinh(ajx)

sinh(ajL)
sin(

πyj

n
)

≤ C





[4/aπ]
∑

j=1

πyj

πjn2
+

[n/π]
∑

j=[4/aπ]

πyj2

πjn2 exp(cj)
+

n−1
∑

j=[n/π]

πyj exp(−n/2)

πjn





≤ C





y

n2
+

y

n2

[n/π]
∑

j=[4/aπ]

(
j

exp(cj)
) + 4y exp(−n/2)



 ≤ C
y

n2

Lemma B.2.5. If f(x, y) is the solution of the Dirichlet problem in R(n) with φ(y) ≡

1, then there exists a constant K > 0 such that for all n and all y ∈ {1, .., n − 1},

f(n, a) ≤ K
a

n
.

Proof. This is a particular case of Lemma B.2.3. From the proof of Lemma B.2.4,

we know that

bj ≤
C

j
and sin(

πaj

n
) ≤ πaj

n
.

We also know from Lemma B.2.1 that for j ≤ [n
π
], aj ≥ πj

2n
, so that

exp(−ajn) ≤ exp(−πj/2) ≤ exp(−j/2).

For [n/π] ≤ j ≤ n − 1, aj ≥ 1/2, so that we also have

exp(−ajn) ≤ exp(−n/2) ≤ exp(−j/2).
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Plugging all this into (B.4) gives

f(n, a) ≤ K
n−1
∑

j=1

1

j
exp(−j/2)

aj

n
≤ K

a

n
.

B.3 Difference estimates

Let α < 1, D(r) = {z ∈ � 2 : |z| ≤ r} be the discrete disk of radius r, centered at 0,

and Dα = D([nα]) ∩H. D will be short for D1.

The purpose of this section is to show that the probability that a random walk

starting at Dα leaves D at w0 ∈ H, given that it leaves D at some point of H, depends

mostly on the imaginary part of the starting point.

Since we have an exact expression for the solution of the Dirichlet problem in a

square, we will prove the result in the case where we replace the half-disks by squares.

Once this is done, extending the result to half-disks is straightforward.

Recall from (B.1) that the solution of the discrete Dirichlet problem in R(n, n)

with φ(y) = δk∗ is

H̃(j + ik, n + ik∗) =
2

n − 1

n−1
∑

m=1

sin(πm
k∗

n
)
sinh(amj)

sinh(amn)
sin(πm

k

n
), (B.7)

where am is as in (B.2). Here, j, k, and k∗ are integers. This series is unfortunately

hard to estimate precisely. Instead of analyzing it directly, we will show that it is

very close to another series which corresponds to a continuous Dirichlet problem for

which we can find a very precise solution.

Let Σ be the open domain bounded by the square with vertices (0, 0), (0, 1), (1, 1),

and (1, 0). The solution of the continuous Dirichlet problem in Σ, with boundary
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condition the delta function at 1 + iy∗ can be found by separation of variables to be

HΣ(x + iy, 1 + iy∗) = 2
∑

m≥1

sin(πmy∗)
sinh(πmx)

sinh(πm)
sin(πmy). (B.8)

Note that this is just the Poisson kernel. Here, x, y, and y∗ are real. The following

Lemma shows that the solution of the discrete Dirichlet problem in R(n, n) with a

certain boundary value can be expressed precisely in terms of the solution of the

continuous Dirichlet problem in Σ with the “corresponding” boundary value.

Lemma B.3.1. There exist constants C, N > 0 such that ∀ n ≥ N , j ≤ n
(log n)3

, and

k ∈ [n
2
− n

log n
, n

2
+ n

log n
],

|nH̃(j + ik, n + ik∗) − HΣ(
j

n
+ i

k

n
, 1 +

k∗

n
)| ≤ C

n
HΣ(

j

n
+ i

k

n
, 1 +

k∗

n
)|.

Proof. We may suppose without loss of generality that k∗ ≤ n
2
. We first show that in

the sums for H and H̃, most of the terms bring no contribution. For H we have

∣

∣

∣

∣

∑

m≥(log n)2

sin(πm
k∗

n
)
sinh(πm j

n
)

sinh(πm)
sin(πm

k

n
)

∣

∣

∣

∣

≤
∑

m≥(log n)2

sinh(πm j
n
)

sinh(πm)
≤

∑

m≥(log n)2

exp(πm(
j

n
− 1))(1 + O

(

e−πm
)

)

≤ C
∑

m≥(log n)2

exp(−πm

2
) ≤ C

∫ ∞

(log n)2−1

exp(−πx

2
) dx ≤ Cεn,

(B.9)

where εn decays faster than any power of n. In the case of H̃, we use Lemma B.2.1

to see that
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∣

∣

∣

∣

n−1
∑

m=(log n)2

sin(πm
k∗

n
)
sinh(amj)

sinh(amn)
sin(πm

k

n
)

∣

∣

∣

∣

≤
n−1
∑

m=(log n)2

sinh(amj)

sinh(amn)
≤ C

n−1
∑

m=(log n)2

exp(−am

2
n)

≤ C
∑

m≥(log n)2

exp(−m

4
) ≤ C

∫ ∞

(log n)2−1

exp(−x

4
) dx ≤ Cεn,

(B.10)

where again εn decays faster than any power of n.

We know from Lemma B.2.1 and the Taylor expansion of sinh that for any m and

any j ≤ n,

sinh(amj) =
πmj

n
(1 + O

(m

n

)

)(1 + O
((

jm

n
)2

))

= sinh(
πmj

n
)(1 + O

(m

n

)

),

so that

∣

∣

∣

∣

∣

∣

(log n)2
∑

m=1

sin(πm
k∗

n
)
sinh(πm j

n
)

sinh(πm)
sin(πm

k

n
) − sin(πm

k∗

n
)
sinh(amj)

sinh(amn)
sin(πm

k

n
)

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

(log n)2
∑

m=1

sin(πm
k∗

n
)

(

sinh(πm j
n
)

sinh(πm)
− sinh(amj)

sinh(amn)

)

sin(πm
k

n
)

∣

∣

∣

∣

∣

∣

≤ C
n

∣

∣

∣

∣

∣

∣

(log n)2
∑

m=1

m sin(πm
k∗

n
)
sinh(πm j

n
)

sinh(πm)
sin(πm

k

n
)

∣

∣

∣

∣

∣

∣

.

(B.11)

We now note that
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(log n)2
∑

m=1

m sin(πm
k∗

n
)
sinh(πm j

n
)

sinh(πm)
sin(πm

k

n
)

= sin(π
k∗

n
)
sinh(π j

n
)

sinh(π)
sin(π

k

n
)

·



1 +

(log n)2
∑

m=2

m
sin(πmk∗

n
)

sin(π k∗
n

)

sinh(πm j
n
)

sinh(π j
n
)

sinh(π)

sinh(πm)

sin(πm k
n
)

sin(π k
n
)



 .

Using the fact that sin(πmk∗

n
) ≤ πmk∗

n
, sin(π k∗

n
) ≥ k∗

2n
, sin(π k

n
) ≥ C, and recalling

that for small x, sinh(x) � x, we see that this last sum is smaller, in absolute value,

than C

(log n)2
∑

m=2

m3e−πm, which itself is bounded by a constant. Therefore,

(log n)2
∑

m=1

m sin(πm
k∗

n
)
sinh(πm j

n
)

sinh(πm)
sin(πm

k

n
) = sin(π

k∗

n
)
sinh(π j

n
)

sinh(π)
sin(π

k

n
)(1 + O (1)),

and similarly,

(log n)2
∑

m=1

sin(πm
k∗

n
)
sinh(πm j

n
)

sinh(πm)
sin(πm

k

n
) = sin(π

k∗

n
)
sinh(π j

n
)

sinh(π)
sin(π

k

n
)(1 + O (1)),

which implies that

∣

∣

∣

∣

∣

∣

(log n)2
∑

m=1

m sin(πm
k∗

n
)
sinh(πm j

n
)

sinh(πm)
sin(πm

k

n
)

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

(log n)2
∑

m=1

sin(πm
k∗

n
)
sinh(πm j

n
)

sinh(πm)
sin(πm

k

n
)

∣

∣

∣

∣

∣

∣

.

This together with (B.11) gives
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∣

∣

∣

∣

∣

∣

(log n)2
∑

m=1

sin(πm
k∗

n
)
sinh(πm j

n
)

sinh(πm)
sin(πm

k

n
) − sin(πm

k∗

n
)
sinh(amj)

sinh(amn)
sin(πm

k

n
)

∣

∣

∣

∣

∣

∣

≤ C
n

∣

∣

∣

∣

∣

∣

(log n)2
∑

m=1

sin(πm
k∗

n
)
sinh(πm j

n
)

sinh(πm)
sin(πm

k

n
)

∣

∣

∣

∣

∣

∣

.

= C
n

[∣

∣

1
2
HΣ( j

n
+ i k

n
, 1 + k∗

n
)
∣

∣ + O (εn)
]

≤ C
n
HΣ( j

n
+ i k

n
, 1 + k∗

n
),

(B.12)

since HΣ( j
n

+ i k
n
, 1 + k∗

n
) is positive and decays like a power of n. (B.9), (B.10), and

(B.12) show that

|nH̃(j + ik, n + ik∗) − HΣ(
j

n
+ i

k

n
, 1 +

k∗

n
)|

≤ C

n
HΣ(

j

n
+ i

k

n
, 1 +

k∗

n
) + 2O (εn) ≤ C

n
HΣ(

j

n
+ i

k

n
, 1 +

k∗

n
),

which proves the Lemma.

Recall that R(n, n) = {(x, y) ∈ � 2 : 1 ≤ x ≤ n − 1; 1 ≤ y ≤ n − 1}. Call the four

sides of ∂R(n, n)

E1 = {(x, y) ∈ ∂R(n, n) : x = 0} E2 = {(x, y) ∈ ∂R(n, n) : y = 0}

E3 = {(x, y) ∈ ∂R(n, n) : x = n} E4 = {(x, y) ∈ ∂R(n, n) : y = n}

Let λ = inf{n ≥ 1 : Sn ∈ ∂R(n, n)}. For l ∈ {1, .., 4}, 1 ≤ j, k ≤ n − 1, and w ∈ El,

define

φl(j + ik, w) = P
j+ik {S(λ) = w |S(λ) ∈ El} .

Lemma B.3.2. If α < 1, j, j ′ ≤ nα, n
2
− nα ≤ k, k′ ≤ n

2
+ nα, then for any w ∈ E3,

φ3(j + ik, w) = φ(j ′ + ik′, w)(1 + O
(

nα−1
)

).
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Proof. A first step in the proof is to estimate H̃(j+ ik, n+ ik∗), where H̃ is as defined

in (B.7). Lemma B.3.1 allows us to estimate H, given by (B.8), instead, since up

to an error term the relationship between H and H̃ is known. The series for H is

not easier to compute than the one for H̃. However, knowing that it is the Poisson

kernel in the square will allow us to derive it from the Poisson kernel in the upper

half plane, which, as noted in (4.2), is

H(x + iy, x′) =
1

π

y

(x − x′)2 + y2
,

where x, x′ ∈ � , y ∈ � +. To do this, we use the following fact which can be found

for instance in [3]:

If D, D′ ⊂ �
are domains and f : D → D′ a conformal transformation, then

HD′(f(z), f(w)) = |f ′(w)|−1HD(z, w). (B.13)

By mapping � to Σ we can derive (up to error terms) the Poisson kernel in Σ

from the Poisson kernel in � , at least for a specific selection of starting points. A

map from the half-plane to a square is given by the Schwarz-Christoffel formula (see

[2]):

F (w) =

∫ w

0

dz
√

(1 − z2)(1 − k2z2)
,

where k = (
√

2 − 1)2. F maps the points 1 and -1 to K/2 and −K/2, respectively,

and 1/k and −1/k to K/2 + iK and −K/2 + iK, respectively, where

K =

∫ 1

−1

dt
√

(1 − t2)(1 − k2t2)
∈ [3.1, 3.2].

Let G(z) = 1
K

(z + K/2). Then h = G ◦ F sends � to Σ. Numerical computations

give M = h−1(i/2) ∈ [−2.5,−2.4]. This will be precise enough for our purpose. Let

Q = {z ∈ �
: −3 ≤ Re(z) ≤ −2 , 0 ≤ Im(z) ≤ 1}
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and

Qn = {z ∈ �
: 0 ≤ Re(z) ≤ nα−1, 1/2(1 − nα−1) ≤ Im(z) ≤ 1/2(1 + nα−1)}.

We also let Rn be the region bounded by the closed rectangle defined by the points

P1 = (M + 100Knα−1, 0), P2 = (M − 100Knα−1, 0),

P3 = (M − 100Knα−1, 100Knα−1), P4 = (M + 100Knα−1, 100Knα−1).

Q and Rn are thought of as subsets of ¯� and Qn as a subset of Σ. Note that

Fx(z) = lim
h→0

F (z + h) − F (z)

h
=

1
√

(1 − z2)(1 − k2z2)
=

−i
√

|1 − z2||1 − k2z2|

and

Fy(z) =
1

√

|1 − z2||1 − k2z2|
.

Clearly, if z ∈ Rn, then

√

|1 − z2| = |1−M2|1/2(1+O
(

nα−1
)

) and
√

|1 − k2z2| = |1−k2M2|1/2(1+O
(

nα−1
)

).

Therefore the partial derivatives of h in Rn are

hx =
−i

K|1 − k2M2|1/2|1 − M2|1/2
(1 + O

(

nα−1
)

)

and

hy =
1

K|1 − k2M2|1/2|1 − M2|1/2
(1 + O

(

nα−1
)

).

It is easy to see that

1

K|1 − k2M2|1/2|1 − M2|1/2
≥ 1

80
.

By integrating hx and hy along paths on ∂Rn, going from M to each of the points

Pi, we get we get, for n large enough,

Im(h(P1)) ≤
1

2
− 10

9
nα−1, Im(h(P2)) ≥

1

2
+

10

9
nα−1,

Re(h(P3)) ≥
10

9
nα−1, Re(h(P4)) ≥

10

9
nα−1,
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and h−1(Qn) ⊂ Rn. Let z ∈ Rn and h(z) = x + iy. Then z = (M + ixK|1 −

k2M2|1/2|1−M2|1/2)(1+O (nα−1)) and if for 0 ≤ y∗ ≤ 1, we write v = 1+ iy∗, (B.13)

gives

HΣ(x + iy, v)

= |h′(h−1(v))|−1H((M + ixK|1 − k2M2|1/2|1 − M2|1/2)(1 + O
(

nα−1
)

), h−1(v))

= Cvx(1 + O
(

nα−1
)

), (B.14)

where Cv is a constant depending on v. In particular, for any x + iy ∈ Qn, v =

1 + iy∗, 0 ≤ y∗ ≤ 1,

HΣ(x + iy, v) =
x

x′HΣ(x′ + iy′, v)(1 + O
(

nα−1
)

).

Lemma B.3.1 gives the following relationship between the continuous and discrete

Dirichlet problem in a square:

H̃(j + ik, n + ik∗) =
1

n
HΣ(

j

n
+ i

k

n
, 1 + i

k∗

n
)(1 + O

(

n−1
)

).

Together with (B.14), this implies that

H̃(j + ik, n + ik∗) =
j

j ′
H̃(j ′ + ik′, n + ik∗)(1 + O

(

nα−1
)

). (B.15)

We now go through the same procedure for the discrete and continuous Dirichlet

problem with boundary value 1 on the right side of the square, 0 everywhere else.This

gives the probability that either random walk or Brownian motion leave a square on

its right side. The solutions are given by

f̃(j + ik) =
n−1
∑

m=1
m odd

4

πm

sinh(amj)

sinh(amn)
sin(πm

k

n
)
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for the discrete problem in R(n, n) with φ ≡ 1, and

fΣ(x + iy) =
∑

m≥1
m odd

4

πm

sinh(πmx)

sinh(πm)
sin(πmy)

for the continuous problem in Σ with boundary value 1 on {1 + iy : 0 ≤ y ≤ 1} and

0 everywhere else.

The same analysis as above, which we omit here, gives

f̃(j + ik) = fΣ(
j

n
+ i

k

n
)(1 + O

(

nα−1
)

),

fΣ(
j

n
+ i

k

n
) =

j

j ′
fΣ(

j ′

n
+ i

k′

n
)(1 + O

(

n−1
)

),

and thus

f̃(j + ik) =
j

j ′
f̃(j ′ + ik′)(1 + O

(

nα−1
)

).

The fact that φ3(j + ik, w) = H̃(j+ik,w)

f̃(j+ik)
now gives the lemma.

Remark 11. Using the same ideas, one can show the same result for φ2 and φ4.

If we let Dα = {z ∈ H : |z| ≤ nα},D = {z ∈ H : |z| ≤ 2n}, we can now show

that if we start a random walk inside Dα, the probability that it leaves D at a point

of H, depends mostly on the imaginary part of the starting point.

Corollary B.3.3. If z, z′ ∈ Dα, v ∈ ∂D, and K̃(z, v) = P
z {S(τ∂D) = v}, then

K̃(z, v)

Im(z)
=

K̃(z′, v)

Im(z′)
(1 + O

(

nα−1
)

).
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Proof. Let R = {z ∈ H : −[n/2] + 1 ≤ Re(z) ≤ [(n + 1)/2] − 1; 1 ≤ Im(z) ≤ n − 1}.

This is a discrete square composed of (n − 1) × (n − 1) points. Then the strong

Markov property yields

K̃(z, v)

K̃(z′, v)
=

∑

x∈∂R

H̃(z, x)K̃(x, v)

∑

x∈∂R

H̃(z′, x)K̃(x, v)

By (B.15) and the corresponding results for E2 and E4, since Dα is included in a

square of [nα] + 1 × [nα] + 1 points, we have for all z, z′ ∈ Dα, all x ∈ ∂R ∩ H,

H̃(z, x) =
Im(z)

Im(z′)
H̃(z′, x)(1 + O

(

nα−1
)

).

This gives the result.
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