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Lecture #1: Introduction; Probability Review

1.1 The Goals of Statistics

What are the goals of statistics?

To look at data sets and make inferences about the underlying randomness and use these
inferences to make predictions.

Some types of questions that statistics can answer:

• Is the stock market ”completely random”? if not, how can we profit from it.

• Does smoking cause cancer? A way to formulate this question precisely is the following:

“How likely is it that differences between the cancer rates of smokers and non-smokers
are caused purely by chance?”

For instance, if we are given a sample of 3 smokers and 3 non-smokers and the only
person with cancer is a non-smoker, what conclusion should we draw?

• Does pumping all that CO2 into the atmosphere cause global warming?

The problem with statistics: You never get an exact answer. The best you can say is, e.g.,
“It’s very likely that smoking causes cancer”.

The great thing about statistics: It’s very useful. In biology, geology, genomics, finance, and
any other field where understanding data is important. It’s also often elegant.

Understanding statistics (not just learning a bunch of recipes) is crucial to avoid a major
mis-interpretation of real-world data.

Example 1.1. (Number of games with given number of goals at the 2014 FIFA World Cup)

a 0 1 2 3 4 5 6 7 8 > 8
#(games with a goals) 7 12 8 20 9 4 2 1 1 0

This table yields the related table:

a 0 1 2 3 4 5 6 7 8 > 8
%(games with a goals) .109375 .1875 .125 .3125 .140625 .0625 .03125 .015625 .015625 0

If one were to look for a distribution which describes these data, one would definitely hope
that the mean of that distribution be the same as (or at least close to) the sample mean (to
be defined formally below).
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The sample mean, or in this context, the average number of goals scored per game at the
2014 Soccer World Cup, is

1

64
(0 · 7 + 1 · 12 + 2 · 8 + 3 · 20 + 4 · 9 + 5 · 4 + 6 · 2 + 7 · 1 + 8 · 1 = 171/64 = 2.671875,

where 64 is the total number of games at the 2014 FIFA World Cup.

Another way to think about this sample mean is as a weighted average:

0

64
· 7 +

1

64
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64
· 8 +

3

64
· 20 +

4
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· 9 +
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64
· 4 +

6

64
· 2 +

7

64
· 1 +

8

64
· 1 = 171/64 = 2.671875.

1.2 Some Important Distributions

1.2.1 The Poisson Distribution

The Poisson random variable Po(λ), λ > 0

• Is used as a model in different contexts. For instance, the following usually obey a
Poisson law:

1. The number of typos on the page of a book.

2. The number of cars passing through Times Square between 12:00 and 12:01 p.m.

3. The number of people in U.S. jails on a given day.

4. The number of students in this class who will ace a given exam.

• Has p.m.f. defined by P (X = i) = e−λ λ
i

i!
, i = 0, 1, 2, ...

• Its mode occurs at the largest integer k ≤ λ.

• Can be used to approximate the binomial if n is large and p is small (so that np is
“moderate”). In that case, Bin(n, p) ≈ Po(np).

• Has mean λ and variance λ.
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1.2.2 The Geometric Distribution

The Geometric random variable Geo(p)

• Used to model the number of trials needed until a success occurs in independent
Bernoulli experiments.

• Has p.m.f. defined by P (X = i) = (1− p)i−1p, i = 1, 2, ...

• Decays exponentially. Is the discrete version of the exponential random variable.

• Has mean 1
p
, variance 1−p

p2 .
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1.2.3 First Steps in Modeling

Let’s look again at the example from Section 1.1. We determined there the empirical distri-
bution of the number of hurricanes in a given year. Let’s try to see if the data fit a discrete
distribution we are now familiar with. As mentioned above, we’d certainly want the sample
mean and the theoretical mean to match. We found the sample mean to be 602

111
. Let’s use

this as the parameter in the Poisson and geometric random variables to see how well the
tables match:

For the Poisson r.v X ∼ Po(171
64

) and the geometric r.v Y ∼ Geo(64
71

), we get (all numbers
rounded after 3 decimals):
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a 0 1 2 3 4 5 6 7 8
P (X = a) 0.069 0.185 0.247 0.220 0.147 0.078 0.035 0.013 0.004
P (Y = a) 0.374 0.234 0.147 0.092 0.057 0.036 0.022 0.014 0.009

%(games with a goals) 0.109 0.188 0.125 0.313 0.141 0.063 0.031 0.016 0.016

We see that the Poisson distribution is certainly better suited than the geometric to model
these data.

1.2.4 The Normal Distribution

The Normal random variable N (µ, σ2), µ, σ ∈ R

• Is used to model experiments which consist of sums of independent random experi-
ments.

• Is therefore related to pretty much every random variable, through the Central Limit
Theorem.

• Has density

f(x) =
1√
2πσ

e−
(x−µ)2

2σ2 , x ∈ R.

• Its mode occurs at x = µ.

• The normal density is symmetric about the axis x = µ.

• The inflection points of the normal density are at x = µ± σ.

• Has mean µ, variance σ2.
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Definition 1.1. The sample mean of a family of random variables {X1, . . . , Xn} is

X̄ =
1

n

n∑
i=1

Xi.

The following is a very important property of the sample mean of i.i.d. normal random
variables which we we will use repeatedly throughout the semester:
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Proposition 1.1. Suppose X1, . . . , Xn are i.i.d. N(µ, σ2). Then

X̄ ∼ N

(
µ,
σ2

n

)
.

Proof. Let Φ(a) = P (X1 ≤ a) be the c.d.f. of X1. Then φ(a) := d
da

Φ(a) is the p.d.f. of X1.

P (
1

n
X1 ≤ a) = P (X1 ≤ na) = Φ(na).

So if f is the density of 1
n
X1,

f(a) =
d

da
Φ(na) = nφ(na) =

n√
2πσ

e−
(na−µ)2

2σ2 =
1√

2πσ/n
e
− (a−µ/n)2

2(σ/n)2 ,

which is the density of a N(µ/n, σ2/n2).

We know via moment generating functions that if Yi ∼ N(µi, σ
2
i ) are independent, then

n∑
i=1

Yi ∼ N(
n∑
i=1

µi,
n∑
i=1

σ2
i ). So

1

n

n∑
i=1

Xi ∼ N(µ, σ2/n).

1.2.5 Other Distributions

The Bernoulli random variable Be(p), 0 ≤ p ≤ 1.

• Used to model an experiment which can only result in one of two outcomes (0 or 1).

• Has p.m.f. defined by P (X = 1) = p, P (X = 0) = 1− p.

• Is connected to the binomial random variable as follows: If Xi, i = 1, 2, ... are i.i.d.
Bernoulli Be(p), then

∑n
i=1 Xi ∼ Bin(n, p).

• Has mean p and variance p(1− p).
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The Binomial random variable Bin(n, p), n ∈ N, 0 ≤ p ≤ 1

• Used to model the number of successes in n repeated independent identical Bernoulli
experiments.

• Has p.m.f. defined by P (X = i) =
(
n
i

)
pi(1− p)n−i, i = 0, .., n.

• In particular, if X ∼ Bin(1, p), then X ∼ Be(p).

• Its mode occurs at the largest integer k ≤ (n+ 1)p.

• Can be approximated by the Poisson random variable.

• Has mean np and variance np(1 − p) (which can be shown in one line using the fact
that a binomial is a sum of independent Bernoullis).
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The Exponential random variable Exp(λ), λ > 0

• Used to model the amount of time until an event occurs

• Has density

f(x) =

{
λe−λx, x ≥ 0
0, otherwise

• Has the lack of memory property.

• Is related to the Gamma random variable as follows. Exp(λ) has the same distribution
as Γ(1, λ). Moreover, if Xi ∼ Exp(λ), i = 1, 2, ... are i.i.d. , then

∑n
i=1Xi ∼ Γ(n, λ).

• Has mean 1
λ
, variance 1

λ2 .
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The Cauchy random variable

• Unlike most common random variables, the Cauchy has infinite variance.

• Has density

f(x) =
1

π(1 + x2)
, x ∈ R

• Is symmetric about the y-axis.

• Is connected to the normal: If X and Y are independent standard normals, then X
Y

is
Cauchy.

• If X is a Cauchy r.v., 1
X

is Cauchy as well.

• Satisfies E[|X|] =∞, V ar(X) =∞.
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The Gamma random variable Γ(α, λ) (α > 0, λ > 0)

• When α is an integer, the Gamma r.v. is a sum of Exponential r.v.s, in which case it
can be used to model the amount of time until α events occur.

• Has density

f(x) =

{
λe−λx(λx)α−1

Γ(α)
, x ≥ 0

0, x < 0

• Has mean α
λ
, variance α

λ2 .
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Prof. Christian Beneš

Lecture #2: Order Statistics

2.1 Order Statistics

Definition 2.1. If Y1, . . . , Yn are i.i.d. and all have the same distribution as Y , we define
Y(i) to be the ith smallest value of Y1, . . . , Yn. We use the following, more explicit notation
in two of the cases:

Ymin := Y(1), Ymax := Y(n).

Y(i) is called the ith order statistic.

Note 2.1. By definition,

Y(1) ≤ Y(2) ≤ · · · ≤ Y(n−1) ≤ Y(n).

It is important to note that the Y(i) are random variables too (since their values depend on
the random values of Y1, . . . , Yn. We will eventually need to deal with the distributions of
these random variables, so let’s see how to obtain them.

We start with a simpler case, that of Ymax = max{Y1, . . . ,Yn}. You may remember that
when looking for the p.d.f. of a random variable, it is often judicious to first look for the
c.d.f. The present setting is no exception to that general rule.

FYmax(y) = P (Ymax ≤ y) = P (Y1 ≤ y, . . . , Yn ≤ y)
indep.

= P (Y1 ≤ y) · · ·P (Yn ≤ y)
i.d.
= (P (Y ≤ y))n = (FY (y))n .

Therefore,

fYmax(y) =
d

dy
(FY (y))n = n (FY (y))n−1 d

dy
(FY (y)) = n (FY (y))n−1 fY (y).

Now let’s turn to the general case. We will assume that Y is a continuous distribution, so
that the probability that any of the Yi are equal is 0. In order for for the jth order statistic
to be equal to y, one of the r.v.’s Y1, . . . , Yn has to be equal to y, j − 1 of them have to be
less than y, and n− j of them have to be greater than y.

• The probability that in a given set of j − 1 Yi’s, all Yi’s are less than y is FY (y)j−1.

• The probability that in a given set of n − j Yi’s, all Yi’s are greater than y is (1 −
FY (y))n−j.

• The probability that a given Yi is in [y, y + dy] is approximately FY (y + dy)− FY (y).
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The probability that all this happens simultaneously is (by independence) approximately

FY (y)j−1(1− FY (y))n−j(FY (y + dy)− FY (y)).

Now we also need to take into account the fact that this state of things (i.e., that Y(j) = y)
can be attained by a number of different configurations. The number of ways of splitting the
n r.v.’s into three groups, one of j − 1 elements, one of 1 element, and one of n− j elements
is (

n

j − 1, 1, n− j

)
.

Therefore,

P (Y(j) ∈ [y, y + dy]) ≈
(

n

j − 1, 1, n− j

)
FY (y)j−1(1− FY (y))n−j(FY (y + dy)− FY (y)),

so that

fY(j)
(y) ≈

P (Y(j) ∈ [y, y + dy])

dy
≈
(

n

j − 1, 1, n− j

)
FY (y)j−1(1−FY (y))n−j

FY (y + dy)− FY (y)

dy
.

When dy goes to 0, the “ ≈ ” above become “ = ” and FY (y+dy)−FY (y)
dy

→ F ′Y (y) = f(y), so
we get

fY(j)
(y) =

(
n

j − 1, 1, n− j

)
FY (y)j−1(1− FY (y))n−jfY (y).

Note, in particular that this implies that

fYmax(y) =

(
n

n− 1, 1, 0

)
FY (y)n−1(1− FY (y))0fY (y) = nFY (y)n−1fY (y),

as we already showed, and that

fYmin
(y) =

(
n

0, 1, n− 1

)
FY (y)0(1− FY (y))n−1fY (y) = n(1− FY (y))n−1fY (y).
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Math 4501 (Spring 2018) February 5, 2018
Prof. Christian Beneš

Lecture #3: Parameter Estimation

3.1 Maximum Likelihood Estimation

3.1.1 the one-parameter case

We start by answering two questions:

1. If X ∼ Po(λ) and λ is fixed, what is the value of k for which P (X = k) is maximal?

2. If X ∼ Po(λ) and k is fixed, what is the value of λ for which P (X = k) is maximal?

Although these questions look very similar, they are very different in nature. The first is a
question a probabilist would ask, while the second is a statistician’s question.

1. For k ≥ 1,
P (X = k)

P (X = k − 1)
=
λ

k
≥ 1 ⇐⇒ λ ≥ k.

So if λ ≥ k, P (X = k) ≥ P (X = k − 1) and if λ < k, P (X = k) < P (X = k − 1).

Therefore, the maximum will be reached at k = [λ]. Here, [x] denotes the integer part
of x.

2. Since λ is a continuous parameter, we can differentiate:

d

dλ

(
e−λ

λk

k!

)
= e−λ

(
kλk−1

k!
− λk

k!

)
= 0 ⇐⇒ k − λ = 0 ⇐⇒ k = λ.

Taking second derivatives, we see that λ = k is a maximum.

A great place to experiment with this is:

http://www.causeweb.org/repository/statjava/PoiDensityApplet.html

Example 3.1. Suppose that a sample is drawn from a Poisson distribution and the outcome
is 3. What is your best guess for λ? The computation above shows that the most likely
value for λ is 3.

What if we draw again an independent sample from the same distribution and obtain the
number 4? If we call X1 and X2 the two independent random variables of which we’ve
observed the realization, we get

P (X1 = 3, X2 = 4) = e−λ
λ3

3!
e−λ

λ4

4!
.
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Setting the derivative of the expression on the right to 0, we see that this is maximal when
λ = 7

2
.

We can even take this one step further: Suppose X1, . . . , Xn are i.i.d. samples from a Poisson
random variable. What parameter λ makes the outcome

X1 = x1, . . . , Xn = xn

most likely?

L(λ) = P (X1 = x1, . . . Xn = xn) = e−λ
λx1

x1!
· · · e−λλ

xn

xn!
= e−nλ

λx1+...xn

x1! . . . xn!
.

This function is unfortunately not straightforward to maximize (in terms of λ), so we’ll use
a simple idea which will often tremendously simplify calculations for us: If f is maximal at
x0, ln(f) is also maximal at x0. In other words,

The functions f(x) and ln(f(x)) are maximal at the same point.

This is due to nothing else than the fact that the function ln(x) is monotonically increasing.
More precisely, since f(x) = eln(f(x)) and by the chain rule we have

d

dx
(f(x)) =

d

dx
(eln(f(x))) = eln(f(x)) d

dx
(ln(f(x))),

we see that, d
dx

(f(x)) = 0 if and only if d
dx

(ln(f(x))) = 0 since eln(f(x)) > 0.

So instead of looking for the maximum of the function L(λ) above, we can look for the
maximum of ln(L(λ)):

ln(L(λ)) = ln(e−nλ
λx1+...xn

x1! . . . xn!
) = −nλ+ (x1 + . . . xn) ln(λ)− ln(x1! . . . xn!).

So now, we can find the maximum of this function by setting its derivative to zero:

d

dλ
(−nλ+ (x1 + . . . xn) ln(λ)− ln(x1! . . . xn!)) = −n+

x1 + . . . xn
λ

= 0 ⇐⇒ λ =
x1 + . . . xn

n
.

So the maximum of L(λ) is reached at

λ =
x1 + . . . xn

n
= x̄,

that is, if λ is the mean of the observed data.

The example above illustrates a more general method, that of maximum likelihood.

Definition 3.1. If X1 = x1, . . . , Xn = xn is a random sample from the discrete p.m.f.
pX(x; θ) (respectively, continuous p.d.f. fX(x; θ)), the likelihood function L(θ) is the product
of the p.m.f.’s (respectively, p.d.f.’s) evaluated at the ki’s, that is

L(θ) =
n∏
i=1

pX(xi; θ)

(
respectively, L(θ) =

n∏
i=1

fX(xi; θ)

)
.
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Definition 3.2. A function of a random sample whose aim is to approximate/estimate a
parameter is called a statistic or an estimator. If θ is the parameter, the estimator is denoted
by θ̂. The value found when evaluating the estimator is the estimate.

Note 3.1. The estimator is a random variable, the estimate a number.

Note 3.2. In the Poisson example above with x1 = 3, x2 = 4, the estimator was

λ̂ =
X1 +X2

2
= X̄,

while the estimate was

λe =
x1 + x2

2
=

3 + 4

2
=

7

2
= x̄.

Definition 3.3. If L(θ) is the likelihood function corresponding to a random sample from a
distribution and if θe is a value of the parameter such that L(θe) ≥ L(θ) for all θ, then θe is
called the maximum likelihood estimate for θ. The (prior) function of the data yielding the
maximum likelihood estimate is the maximum likelihood estimator.

Example 3.2. If

f(x) =

{
1
θ

0 < x < θ
0 otherwise

,

find the maximum likelihood estimator θ̂ for θ.

Solution:

L(θ) =
n∏
i=1

fX(xi; θ),

where the xi are the outcomes of the data. So

L(θ) =

{
1
θn

0 < x1, . . . xn < θ
0 otherwise

.

We usually like to find maxima by differentiating and setting the derivative equal to 0. The
problem here is that there is no solution to d

dθ
L(θ) = 0. We have to think about L(θ) a bit

more carefully...

Since θ must be ≥ the largest value of the xi, we have the constraint θ ≥ max1≤i≤n xi. On
the other hand, since L(θ) is decreasing when it isn’t 0, we want θ to be as small as possible.
The smallest it can be all the while satisfying θ ≥ max1≤i≤n xi is θe = max1≤i≤n xi = xmax.
In particular the maximum likelihood estimator is

θ̂ = max
1≤i≤n

Xi = Xmax.

3.1.2 the multi-parameter case

When dealing with several parameters θ1, . . . , θr, we get a likelihood function L(θ1, . . . , θr)
which we want to maximize. As above, there are several ways of doing this, but if the
function is differentiable, one way of maximizing it is by solving

~∇ lnL(θ1, . . . , θr) = ~0,
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which is the same as solving

∂

∂θi
lnL(θ1, . . . , θr) = 0, 1 ≤ i ≤ r.

Example 3.3. This idea can be used to find the maximum likelihood estimator (µ̂, σ̂2) for
a sample of i.i.d. normal random variables.

3.2 Method of Moments Estimation

The main idea is that if our model is good, the theoretical moments should be close to
the sample moments. For this to make sense, we need to define sample moments. This is
done in the natural and intuitive way by analogy with the definition of moments of a random
variable.

Definition 3.4. If x1, . . . , xn are random samples from the p.d.f fX(x; θ1, . . . , θs), then

1

n

n∑
i=1

xji

is called the jth sample moment.

Note 3.3. The first sample moment is just the sample mean. By the law of large numbers,
the sample mean looks more and more like the true mean as n gets large. Similarly, the jth
sample moment looks more and more like the true jth moment as n gets large.

Definition 3.5. The method of moments estimates θ1,e, . . . , θs,e for the parameters θ1, . . . θs
in a distribution are the solutions of the set of equations

1

n

n∑
i=1

xi = E[X]

...

1

n

n∑
i=1

xsi = E[Xs],

where X is a random variable with the given distribution.

Note 3.4. In general, finding the method of moments estimate for a random variable de-
pending on s variables amounts to solving s equations in s unknowns.

Example 3.4. Suppose x1 = 1.2, x2 = 3, x3 = 0.8 are drawn from a gamma distribution
with parameters r and λ. What is the method of moments estimate for (r, λ)?

Solution: First recall that if X ∼ Γ(r, λ), then E[X] = r/λ and V ar(X) = r/λ2, so that
E[X2] = V ar(X) + E[X]2 = r+r2

λ2 .

The first sample moment is

1

3

3∑
i=1

xi =
5

3
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and the second sample moment is

1

3

3∑
i=1

x2
i = 3.693̄.

We therefore need to solve{
E[X] = 5

3

E[X2] = 3.693̄
⇒
{

r
λ

= 5
3

r+r2

λ2 = 3.693̄
.

From the first equation, we get r = (5/3)λ, which, when plugged into the second equation
gives

5
3
λ+

(
5
3
λ
)2

λ2
= 3.693̄⇒

((
5

3

)2

− 3.693̄

)
λ = −5

3
⇐⇒ λ =

5/3

0.915̄
⇐⇒ λ ≈ 1.82.

Therefore, r = 5
3
λ ≈ 3.034. All this gives

(re, λe) ≈ (3.034, 1.82).
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Lecture #4: Interval Estimation

Suppose we estimate a parameter θ of a distribution using some method (e.g. of moments
or max. likelihood) and find a value θe. How comfortable should we feel that this is close to
reality?

This of course depends on the distribution of θ̂.

Draw a few pictures with different variances.

In the second picture θe is more likely to be far away from the true value of θ.

Instead of focusing on finding a single value for θ, we will try to find intervals which are
very likely to contain θ.

4.0.1 Confidence intervals for the mean of a normal distribution with known
variance

Example 4.1. Suppose X ∼ N(µ, 9) and if we draw four samples, we get x1 = 2.3, x2 =
4.3, x3 = 8.6, x4 = 4.8, how good an estimate is the MLE?

First, let’s find the MLE: A few computational steps [to be filled in later] give µ̂ = X̄, so
the maximum likelihood estimate is 5.

Now we know from Proposition 1.1 that X̄−µ
σ/
√
n
∼ N(0, 1), which implies that in our case

X̄ − µ
3/
√

4
=

2

3
(X̄ − µ) ∼ N(0, 1).

We will now set out to answer the following question: Can we find an interval which has a
95% chance of containing µ?

For 0 < α ≤ 1/2, let’s define zα to be the number for which

P (Z ≥ zα) = α.

Using the normal table, we find that z0.025 ≈ 1.96, which implies that

P (−1.96 ≤ Z ≤ 1.96) ≈ 0.95.

Our computation above now implies

P (−1.96 ≤ 2(X̄ − µ)/3 ≤ 1.96) ≈ 0.95 ⇒ P (−2.94 ≤ X̄ − µ ≤ 2.94) ≈ 0.95

⇒ P (X̄ − 2.94 ≤ µ ≤ X̄ + 2.94) ≈ 0.95.

Therefore, the random interval [X̄ − 2.94, X̄ + 2.94] will contain µ roughly 95% of the time
(i.e., has probability 95% of containing the parameter µ). In our example, the intervals is
approximately [2.06, 7.94]. It is called a 95% confidence interval for µ.
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In the example above, we can replace 0.05 by α and let the sample size be an arbitrary n,
then based on n independent samples Xi ∼ N(µ, σ2), we can use the same procedure to find
an interval which will have 100(1− α)% probability of containing µ.

P

(
−zα/2 ≤

X̄ − µ
σ/
√
n
≤ zα/2

)
= 1− α⇒ P

(
X̄ − zα/2

σ√
n
≤ µ ≤ X̄ + zα/2

σ√
n

)
= 1− α.

Therefore, an interval which has 100(1− α)% probability of containing µ is(
X̄ − zα/2

σ√
n
, X̄ + zα/2

σ√
n

)
.

This interval is called a 100(1− α)% confidence interval for µ.

Note 4.1. The confidence interval we derived here is for the mean µ of a normal random
variable with unknown mean µ and known mean σ2 and is based on n independent samples
from that random variable.

4.0.2 Confidence intervals for the binomial parameter p

When performing a poll where two options are given (Yes/No, Obama/McCain, etc.), one
often assumes that voting intentions from one individual to the next. In this context, we are
dealing with independent Bernoulli random variables, so that their sum is a binomial r.v.

Recall that if X ∼ Bin(n, p), we have E[X] = np and V ar(X) = np(1− p), so that, by the
central limit theorem (since a binomial is a sum of independent random variables, namely
Bernoulli r.v.’s),

X − np√
np(1− p)

approx∼ N(0, 1)

or, equivalently,
X/n− p√
p(1− p)/n

approx∼ N(0, 1) (1)

The goal is now to come up with a set of inequalities for p as we did above for µ. Based on
(1), this would be difficult (if you’re not convinced, try it), but we can approximate one level
further and use the fact that (by the law of large numbers) X/n approximates p, so that we
can rewrite (1) as

X/n− p√
X/n(1−X/n)

n

approx∼ N(0, 1).

This implies that

P

−zα/2 ≤ X/n− p√
X/n(1−X/n)

n

≤ zα/2

 ≈ 1− α. (2)

We can now use this to construct a confidence interval for p. We can do this exactly as in
the previous subsection by putting p in the center of two inequalities, which will be based
on (2). This gives the following approximate 100(1− α)% confidence interval for p:(

X/n− zα/2

√
X/n(1−X/n)

n
,X/n+ zα/2

√
X/n(1−X/n)

n

)
.
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Note 4.2. The approximate confidence interval we just derived relied heavily on the fact
that a binomial random variable “looks enough like” a normal random variable. This is not
going to be the case if n is small. We’ll get back to what we mean by “n small” later.

Let’s see how these ideas can be applied in the context of polls:

Example 4.2. In a survey conducted between January 12 and 14, 2007, 600 adults were
asked the question: “ Do you approve or disapprove the job Ted Kennedy is doing as a U.S.
Senator?” The pollsters reported that 67% of the population approved Ted Kennedy’s job,
with a margin of error of 4%.

What does this mean? It turns out that we need a bit more information to understand the
pollsters’ statement precisely.

The actual data were (“data” is actually a plural, so since I’m a bit pedantic, I’ll treat it as
such even though most people don’t) as follows: 402 of the polled people said they approve
Kennedy’s job, 198 said they don’t. We can thus look for a confidence interval for the true
value of the parameter p representing the probability that an individual from the entire
population (not just the sampled people) approves Kennedy’s job. Let’s look (as is usually
the case) for a 95% confidence interval. All that we have to do is to plug into the formula
above 402 for X, 600 for n, and 1.96 for z0.025. Then an approximate 95% confidence interval
for p is

(0.67− 0.038, 0.67 + 0.038) ≈ (0.632, 0.711).

This means that with confidence of 95% (make sure you think about what this means), we
can say that p is within 3.8% of 67%, So why did the pollsters say 4% when in fact they did
a bit better than that? The reason is that they gave the maximal margin of error, a concept
which we now discuss.

Definition 4.1. The margin of error is half of the width of the confidence interval (note
that this depends on p). The maximum margin of error is half of the greatest possible width
of the confidence interval (regardless of what p is).

We already know from our computations above that the margin of error is

zα/2

√
X/n(1−X/n)

n
.

To find the maximum margin of error, we need to know how big X/n(1−X/n) can be. Since
0 < X/n < 1, we need to maximize the function f(p) = p(1− p) for 0 ≤ p ≤ 1. Since we’re
experts at calculus, this will be a piece of cake.

Lemma 4.1. If 0 ≤ p ≤ 1,

p(1− p) ≤ 1

4
.

Proof. Let f(p) = p(1 − p) = p − p2. Then f ′(p) = 1 − 2p = 0 ⇐⇒ p = 1
2
. We check the

critical points and boundary points: f(0) = f(1) = 0; f(1/2) = 1/4. Therefore, f reaches
its maximum of 1/4 at 1/2.
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A consequence of this lemma is that the maximum margin of error is

zα/2
2
√
n
. (3)

Note 4.3. Sometimes pollsters will report the maximum margin of error rather than the
true (or specific) margin of error. This is what happened in the example above. Indeed,

1.96
2
√

600
≈ 4%.

So why does one care about the maximum margin of error? Well, as you can see in the formula
above, the max. margin of error depends on n only. This means that before conducting a
poll, you can choose what you would like the margin of error to be at most and choose n
accordingly. Here are some values for the maximum margin of error for different values of n
and two values of α. They are obtained from (3) above.∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

sample size at 95% confidence level (in %) at 90% confidence level (in %)

60 12.7 10.6
100 9.8 8.2
300 5.7 4.7
500 4.4 3.7
800 3.5 2.9
1000 3.1 2.6

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
To know what n to choose given a desired maximum margin of error, we have the following
easy result:

Theorem 4.1. If X/n is the estimator for p in a binomial distribution, in order for X/n
to have at least a 100(1 − α)% probability of being within distance d of p, the sample size
should be at least

n =
z2
α/2

4d2
.

Proof. We want to find the smallest n for which

1− α = P (−d ≤ X/n ≤ d) ≈ P

(
−d
√
n√

p(1− p)
≤ Z ≤ d

√
n√

p(1− p)

)
.

But we know that (by definition)

1− α = P (−zα/2 ≤ Z ≤ zα/2) = 1− α.

Therefore, by Lemma 4.1,

d
√
n√

p(1− p)
= zα/2 ⇒ n =

z2
α/2p(1− p)

d2
≤
z2
α/2

4d2
.
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Lecture #5: Unbiasedness

5.1 Unbiased Estimators

One would hope that an estimator θ̂ for a parameter θ would, on average, yield the actual
value of θ. This is addressed by the notion of unbiasedness.

Definition 5.1. If Y1, . . . , Yn is a random sample from some distribution f(y; θ), then θ̂ is
unbiased if

E[θ̂] = θ,

regardless of the actual value of θ. If θ̂ is not unbiased, it is biased.

Example 5.1. If Y1, . . . , Yn are drawn from a normal distribution with unknown mean µ,
variance σ2, then the ML and the method of moments estimators for µ and σ2 are

µ̂ = Ȳ , σ̂2 =
1

n

n∑
i=1

(Yi − Ȳ )2.

Are any of these unbiased?

E[µ̂] = E[Ȳ ] = E[
1

n

n∑
i=1

Yi] =
1

n

n∑
i=1

E[Yi] =
1

n
nµ = µ,

so µ̂ is unbiased.

Before computing E[σ̂2], let’s re-write σ̂2 in a more convenient way:

σ̂2 =
1

n

n∑
i=1

(Yi − Ȳ )2 =
1

n

n∑
i=1

(Y 2
i − 2YiȲ + Ȳ 2)

=
1

n

(
n∑
i=1

Y 2
i − 2

n∑
i=1

YiȲ +
n∑
i=1

Ȳ 2

)

=
1

n

(
n∑
i=1

Y 2
i − 2Ȳ

n∑
i=1

Yi + nȲ 2

)

=
1

n

(
n∑
i=1

Y 2
i − 2Ȳ nȲ + nȲ 2

)

=
1

n

(
n∑
i=1

Y 2
i − nȲ 2

)
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Therefore, since Yi ∼ N(µ, σ2), so that E[Y 2
i ] = σ2 + µ2 and Ȳ ∼ N(µ, σ2/n), so that

E[Ȳ 2] = σ2/n+ µ2, we have

E[σ̂2] =
1

n
E

[
n∑
i=1

Y 2
i − nȲ 2

]
=

1

n

n∑
i=1

E
[
Y 2
i

]
− E[Ȳ 2]

=
1

n
n(σ2 + µ2)− (σ2/n+ µ2) = σ2(1− 1

n
) = σ2n− 1

n
.

Therefore, σ̂2 is biased. Can we find an unbiased estimator for σ2? Sure. Let S2 := n
n−1

σ̂2.
Then

E[S2] =
n

n− 1
E[σ̂2] =

n

n− 1
σ2n− 1

n
= σ2,

so S2 is unbiased.

Definition 5.2. The estimator S2 := 1
n−1

∑n
i=1(Yi− Ȳ )2 is the sample variance. S =

√
S2

is the sample standard deviation.
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Lecture #6: Efficiency; Minimum Variance Estimators; the
Cramér-Rao Bound

6.1 Efficiency

Another desirable property of estimators is that they be likely to be close to the true value
of the parameter, something that is not guaranteed entirely by the sole property of unbi-
asedness.

Definition 6.1. If θ̂1 and θ̂2 are two unbiased estimators for θ, θ̂1 is more efficient than

θ̂2 if Var(θ̂1) < Var(θ̂2). The relative efficiency of θ̂1 with respect to θ̂2 is Var(θ̂2)

Var(θ̂2)
.

Example 6.1. Let Y1, . . . , Yn have p.d.f.

fY (y) =

{
1/θ, 0 < y < θ
0, otherwise

.

Find an unbiased estimator for θ based on Ymax. Is it more efficient than the method of
moments estimator?

First, let’s look for the method of moments estimator. Ȳ = E[Y ] ⇐⇒ Ȳ = θ/2 ⇐⇒ θ =
2Ȳ so the method of moments estimator is θ̂1 = 2Ȳ .

Recall from a previous lecture that the maximum likelihood estimator for θ is Ymax. Is it
unbiased? To determine that we need its distribution.

Recall that
fYmax(y) = n(FY (y))n−1fY (y).

In our particular case,

FY (y) =


0, y < 0,
y/θ, 0 < y < θ
1, y > θ

,

so

fYmax(y) =


0, y < 0,

n
(
y
θ

)n−1 1
θ
, 0 < y < θ

0, y > θ

=


0, y < 0,

ny
n−1

θn
, 0 < y < θ

0, y > θ

.

From this, we can compute

E[Ymax] =

∫ θ

0

n
yn−1

θn
y dy =

∫ θ

0

n
yn

θn
dy =

n

n+ 1

yn+1

θn

∣∣∣∣θ
0

=
n

n+ 1
θ.

Therefore, θ̂2 = n+1
n
Ymax is an unbiased estimator.

To determine which of θ̂1 and θ̂2 is more efficient, we need to compute their variances.
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• Since Y1 ∼ U(0, θ), we have Var(Y1) = θ2/12. Therefore,

Var(θ̂1) = Var(2Ȳ ) = 4 Var(
1

n

n∑
i=1

Yi) =
4

n2

n∑
i=1

Var(Yi) =
4

n2
n
θ2

12
=
θ2

3n
.

• Note first that

E[Y 2
max] =

∫ θ

0

y2n

θ

(y
θ

)n−1

dy =
n

θn(n+ 2)
θn+2 =

n

n+ 2
θ2.

Therefore,

Var(θ̂2) = E[θ̂2
2]− E[θ̂2]2 =

(n+ 1)2

n(n+ 2)
θ2 − θ2 =

n2 + 2n+ 1− n2 − 2n

n(n+ 2)
θ2 =

θ2

n(n+ 2)
.

Which of θ̂1 and θ̂2 is more efficient depends on n:

n(n+ 2) > 3n ⇐⇒ n2 − n > 0 ⇐⇒ n(n− 1) > 0 ⇐⇒ n < 0 or n > 1.

Therefore, θ̂2 is more efficient than θ̂1 for all n ≥ 2. Its relative efficiency with respect to θ̂1

is n(n+2)
3n

= n+2
3
.

6.2 Minimum Variance Estimators

One might wonder if there is a limit to how efficient an unbiased estimator can be. The
answer, perhaps not too surprisingly, is yes.

Note 6.1. The requirement of unbiasedness is of course important for this question to be
interesting, as the estimator θ̂ = 5 (for any parameter of any distribution) has zero variance,
but is unbiased (and certainly a very bad estimator).

Theorem 6.1 (Cramér-Rao Bound). Suppose Y1, . . . , Yn is a sample from the pdf fY (y; θ),
where fY has continuous first and second order partial derivatives everywhere except perhaps
at a finite number of points and the domain of fY doesn’t depend on θ. Let θ̂ be an unbiased
estimator for θ. Then

Var(θ̂) ≥

(
nE

[(
∂lnfY (Y ; θ)

∂θ

)2
])−1

=

(
−nE

[
∂2 ln fY (Y ; θ)

∂θ2

])−1

.

The same inequality holds for discrete distributions such that the p.m.f. doesn’t depend on
θ.

Definition 6.2. Let Θ be the set of all unbiased estimators θ̂ for θ. We say that θ∗ ∈ Θ
is a best or minimum variance unbiased estimator (MVUE) if Var(θ∗) ≤ Var(θ̂) for
all θ̂ ∈ Θ. An unbiased estimator is efficient if its variance equals the Cramér-Rao lower
bound.
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Note 6.2. If an unbiased estimator is efficient, then it is a MVUE. The other implication
does not hold.

Example 6.2 (Cautionary tale). If Y1, . . . , Yn ∼ U(0, θ), then we know from earlier that
θ̂ = n+1

n
Ymax is an unbiased estimator and Var(θ̂) = θ2

n(n+2)
. Also,(

nE

[(
∂lnfY (y; θ)

∂θ

)2
])−1

=

(
nE

[(
∂

∂θ
ln(1/θ)

)2
])−1

=

(
nE

[
− 1

θ2

])−1

=
θ2

n
.

But this implies that for all n,Var(θ̂) is smaller than the Cramér-Rao lower bound! The
problem here is that we were not allowed to use the theorem, since the domain of fY depends
on the parameter θ.

Example 6.3. Suppose X1, . . . , Xn ∼ Po(λ), that is, PX(k;λ) = e−λλk

k!
. Then λ̂ = X̄ is an

unbiased estimator for λ (check this!). Is λ̂ an MVUE?

Note first that

Var(λ̂) = Var(
1

n

n∑
i=1

Xi) =
1

n2

n∑
i=1

Var(Xi) =
1

n2
nλ =

λ

n
.

Let’s compute the Cramér-Rao bound:

∂

∂λ
ln pX(X;λ) =

∂

∂λ
(−λ+X ln(λ)− ln(k!)) = −1 +

X

λ
.

Therefore,

E

[(
∂

∂λ
ln pX(X;λ)

)2
]

= E

[
1− 2X

λ
+
X2

λ2

]
= 1− 2λ

λ
+
λ+ λ2

λ2
=

1

λ
,

and so (
nE

[(
∂

∂λ
ln pX(X;λ)

)2
])−1

=
λ

n
,

which implies that λ̂ is efficient and therefore an MVUE.
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Lecture #7: Consistency; sufficiency

7.1 Consistency

Definition 7.1. An estimator θ̂n = f(Y1, . . . , Yn) is consistent if for every ε > 0,

lim
n→∞

P (|θ̂n − θ| > ε) = 0.

Draw a picture.

Example 7.1. Suppose X ∼ N(µ, σ2) and X1, . . . , Xn are independent samples with the
same distribution as X. Let µ̂1

n = X1 and µ̂1
n = X̄n. Which of µ̂1

n and µ̂2
n are consistent?

First note that E[µ̂1
n] = µ, so µ̂1

n is unbiased. However,

P (|µ̂1
n − µ| > ε) = P (|X1 − µ| > ε) = 2

∫ µ−ε

−∞

1√
2πσ

e−
(x−µ)2

2σ2 dx,

which is a constant and therefore can’t go to 0.

As we already know, µ̂2
n is unbiased. Moreover, since X̄n ∼ N(µ, σ2/n), we have, by Cheby-

shev’s inequality,

P (|µ̂2
n − µ| > ε) = P (|X̄n − µ| > ε) ≤ Var(X̄n)

ε2
=

σ2

nε2
→ 0, as n→∞.

Note 7.1. We can see from the argument of the last example that in order to show consis-
tency of an unbiased estimator θ̂n, it suffices to show that Var(θ̂n)→ 0 as n→∞.

7.2 Sufficiency

The concept of a sufficient statistic is a little bit more difficult to grasp well than the other
properties of statistics we’ve discussed so far. In a few words, a statistic is sufficient for
a given parameter if knowing its value is just as good as knowing the whole sample for
the purpose of making the estimate. For example, if one tries to estimate θ based on a
sample X1, . . . , Xn ∼ U(0, θ), we’ve seen before that the two estimators for θ, θ̂1 = 2X̄ and
θ̂2 = Xmax are, respectively, the method of moments and maximum likelihood estimators for
θ. Intuitively, are they sufficient to estimate the parameter θ or would knowing the whole
sample X1, . . . , Xn have any additional influence on the choice of θ? For example

• if I see the entire data set and tell you that xmax = 5, might I come to a better
conclusion than you (i.e., that θ = 5) by seeing the entire data set?

• if I see the entire data set and tell you that 2x̄ = 4, might I come to a better conclusion
than you (i.e., that θ = 4) by seeing the entire data set?
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The answer in the first case is no, while in the second it is yes. Indeed, suppose that the data
set was 1, 2, 1, 5, 1. Then x̄ = 2, so that the method of moments estimate is 4. However,
having seen the entire data set, I can tell you that this estimate is not one that I would
make. Indeed, having seen the value 5, I know that there is no way that θ could be 4. In
this case, just knowing the value of x̄ was not sufficient to estimate θ well.

The formal definition of sufficiency is as follows:

Definition 7.2. Let Y1, . . . , Yn be a random sample from a probability distribution with
unknown parameter θ. The statistic U = g(Y1, . . . , Yn) is said to be sufficient for θ if the
conditional distribution of Y1, . . . , Yn given U doesn’t depend on θ.

Since conditional distributions are not always easy to compute, the following factorization
theorem will come in very handy:

Theorem 7.1. (Factorization Theorem) Let U be a statistic based on the random sample
Y1, . . . , Yn. Then U is a sufficient statistic for θ if and only if the likelihood L(θ) can be
factored into two nonnegative functions

L(θ) = g(u, θ) · h(y1, . . . , yn),

where g(u, θ) is a function only of u and θ and h(y1, . . . , yn) is not a function of θ.

Example 7.2. Let’s revisit the motivating example from earlier. Suppose Y1, . . . , Yn ∼
U(0, θ). Then as we have seen already,

L(θ) =
1

θn
1{0 ≤ θ ≤ ymax} · 1,

so using the factorization theorem with u = ymax, g(u, θ) = 1
θn
1{0 ≤ θ ≤ Ymax}, h(y1, . . . , yn) =

1, we see that U = Ymax is a sufficient statistic.

Example 7.3. Find a sufficient estimator for p when X1, . . . , Xn ∼ Geo(p).

L(θ) =
n∏
i=1

P (Xi = xi) =
n∏
i=1

(1− p)xip = (1− p)
∑n
i=1 xi

(
p

1− p

)n
= g(h(x1, . . . , xn), p) · 1,

where b(x1, . . . , xn) = 1, h(x1, . . . , xn) =
∑n

i=1 xi and g(a, p) = (1 − p)a
(

p
1−p

)n
, so by the

factorization theorem, U =
∑n

i=1Xi is a sufficient statistic.

7–2



Math 4501 (Spring 2018) February 26, 2018
Prof. Christian Beneš

Lecture #8: Hypothesis Testing

8.1 Introduction

Example 8.1. A colony of laboratory mice consists of several thousand mice. The average
weight of all the mice is 32g. with standard deviation 4g. A lab assistant was asked by a
scientist to select 25 mice for an experiment. However, before performing the experiment,
the scientist decided to weigh the mice as an indicator of whether the assistant’s selection
constituted a random sample or whether it was made with some unconscious bias. If the
sample mean of the mice was 30.4, would this be significant evidence (at the 5% level of
significance) against the hypothesis that the selection constituted a random sample? Assume
the weights of the mice in the colony are normally distributed.

We’ll return to the example shortly, but first a few generalities about hypothesis testing:

Hypothesis testing works like the judicial system: Innocent unless proven guilty.

Step 1: Set up a null hypothesis (H0) and an alternative hypothesis (H1). Usually H0

represents status quo, that is, the situation where nothing unusual is happening.

In our case,

H0 : The sample is random (i.e., the assistant did do his job well)

H1 : There is a bias in the sample (i.e., the assistant didn’t do his job well)

We want to check if there is a strong case against H0. We assume that 32 is the true mean
weight of the mice. In mathematical terms, if µ is the mean weight of the mice selected by
the assistant, we want to test H0 : µ = 32 against H1 : µ 6= 32.

What is the probability that something as extreme as or more than what we observed would
happen under the assumption H0? Here X1, . . . , X25 are the random weights of the 25
selected mice. Then under H0, X̄ ∼ N(32, 16

25
).

P (something as extreme as or more than what we observed would happen under the assumption H0)

= P (X̄ ≤ 30.4 or X̄ ≥ 33.6|H0 true)

= P (|X̄ − 32| ≥ 1.6|H0 true) = 2P (X̄ ≤ 30.4|H0 true)

= 2P

(
X̄ − 32

4/5
≤ 30.4− 32

4/5
|H0 true

)
= 2P (Z ≤ −2) ≈ 0.0455

The probability we just computed is the p-value. It measures the probability that something
as extreme as or more than what we observed would happen under the assumption H0?
Usually, we will reject H0 only if the p-value is small. In general, we reject H0 at the α
significance level if the p-value is less than or equal to α. In our particular example, we’d
reject H0 at the 5% level of significance.
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Another equivalent way of testing such a hypothesis is by setting up a critical region, the
region in which the statistic (in this case X̄) must fall in order for H0 to be rejected.

In that case, one determines beforehand that

P (we reject H0|H0 is true) = α,

In our example, this would lead to the equation

P (|X̄ − 32| ≥ a|H0 true) = 5% ⇐⇒ 2P (X̄ ≥ a+ 32|H0 true) = 5%

⇐⇒ 2P (
X̄ − 32

4/5
≥ a

4/5
|H0 true) = 5%

⇐⇒ P (Z ≥ 5a/4) = 0.025.

Therefore, using values from the normal table we find

5a

4
≈ 1.96 ⇐⇒ a ≈ 1.56.

So we should reject H0 if and only if

|X̄ − 32| ≥ 1.56 ⇐⇒ X̄ ≥ 33.56 or X̄ ≤ 30.44.

Here are the general definitions related to hypothesis testing:

Definition 8.1. A function of the observed data whose numerical value dictates whether
H0 is rejected or not is called a test statistic. The values of the test statistic for which H0

is rejected are the critical region. The number(s) on the boundary between the critical
region is (are) called the critical value(s). The probability α that the test statistic lies
in the critical region if H0 is true is the level of significance of the test. The p−value
associated with a test statistic is the probability is the probability that we get a value as
extreme as or more extreme than what was observed, relatively to H1, given that H0 is true.

Note 8.1. α is a number you choose a priori (before conducting the experiment). p is a
number you obtain a posteriori (after the experiment has been conducted).

If the p-value is less than α, you will reject H0 at the α level of significance.

The critical region is determined both by α and by the alternative hypothesis H1. We will
see how this works in the particular case of testing for the mean of a normal random variable
with known variance:

Testing H0 : µ = µ0 for Y1, . . . Yn ∼ N(µ, σ2) with σ known

We let z = ȳ−µ0

σ/
√
n

1. (one-sided test) To test H0 : µ = µ0 against H1 : µ > µ0 (respectively, H1 : µ < µ0) at
the α level of significance, we reject H0 if z ≥ zα (respectively, z ≤ −zα).

2. (two-sided test) To test H0 : µ = µ0 against H1 : µ 6= µ0, we reject H0 if z ≥ zα/2 or
z ≤ −zα/2.

Note 8.2. One should use 2-sided test if there is no a priori reason for suspecting that
µ > µ0 rather than µ < µ0. For example, suppose we are testing whether steroids increase
strength. If µ0 is the mean weight people can lift, then for a sample of people on steroids,
one would test H0 : µ = µ0 against H1 : µ > µ0.
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Lecture #9: Type I and Type II Errors; Binomial Data

9.1 Type I and Type II Errors

When setting up hypothesis tests, we usually choose a level of significance α which yields
a critical region for the statistic/estimator we are measuring. If it falls within the critical
region, we reject H0. This is our decision rule. Of course, our decision can be wrong. One
of two bad things can happen:

• H0 is actually true and we reject it. This is a Type I error.

• H0 is false and we fail to reject it. This is a Type II error.

We can put the 4 possible configurations in a table:

H0 true H0 false
Fail to reject H0 X Type II Error

Reject H0 Type I Error X

By definition of the level of significance,

P (Type I error) = P (Reject H0|H0 is true) = α.

Moreover,
P (Type II error) = P (Fail to reject H0|H0 is false).

H0 being false typically encompasses a large number of scenarios which need to be considered
separately.

Example 9.1. Suppose that X1, . . . , X120 ∼ U(0, θ) and we wish to test H0 : θ = 4 against
H1 : θ 6= 4 using the maximum likelihood estimator θ̂ = Xmax. Suppose we have chosen the
decision rule to be that we fail to reject H0 if 3.9 ≤ Xmax ≤ 4 and reject otherwise. Then

α = P (type I error) = P (reject H0|H0 true)

= P (Xmax < 3.9|θ = 4) + P (Xmax > 4|θ = 4)

= P (Xmax < 3.9|θ = 4) =

∫ 3.9

0

120

4

(y
4

)n−1

dy =

(
3.9

4

)120

≈ 0.048.

Also,
β = P (type II error) = P (fail to reject H0|H0 false).

There are uncountably many ways in which H0 can be false, so we’ll compute

P (fail to reject H0|θ) = P (3.9 ≤ Xmax ≤ 4|θ)

for all θ (in particular the cases of interest are θ 6= 4). We subdivide this calculation into
three cases:
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• If θ ≤ 3.9,
P (3.9 ≤ Xmax ≤ 4|θ) = 0.

• If 3.9 ≤ θ ≤ 4,

P (3.9 ≤ Xmax ≤ 4|θ) =

∫ θ

3.9

120

θ

(y
θ

)n−1

dy =
(y
θ

)120
∣∣∣∣θ
3.9

=
θ120 − 3.9120

θ120
.

• If θ ≥ 4,

P (3.9 ≤ Xmax ≤ 4|θ) =

∫ 4

3.9

120

θ

(y
θ

)n−1

dy =
(y
θ

)120
∣∣∣∣4
3.9

=
4120 − 3.9120

θ120
.

Graphs of θ vs β and θ vs 1− β.

Definition 9.1. 1− β is the power of the test. The graph of θ versus 1− β is the power
curve of the test.

Note 9.1. Increasing α decreases β and vice-versa. Increasing n helps both α and β (but
costs more). Typically we care more about α than β.

Example 9.2. Suppose H0 : µ = 10 is tested against H1 : µ < 10 at the α = 0.01 level of
significance, based on X1, . . . , Xn ∼ N(µ, 9). What is the smallest value of n for which the
power of the test will be at least 0.75 if µ = 9? Perform a test using the estimator X̄ for µ.

We first need to determine the decision rule:

P (rejectH0|H0true) = 0.01 ⇐⇒ P (X̄ ≤ a|µ = 10) = 0.01

⇐⇒ P

(
X̄ − 10√

9/n
≤ a− 10√

9/n

∣∣∣∣µ = 10

)
= 0.01

⇐⇒ P (Z ≤ a− 10√
9/n

) = 0.01.

But we know that P (Z ≤ −2.33) = 0.01, so we need to solve

−2.33 =
a− 10

3

√
n ⇐⇒ a = −6.99√

n
+ 10.

So the rule requires that we reject H0 if X̄ ≤ 10− 6.99√
n

.

Now we wish to find n such that

P (fail to rejectH0|µ = 9) = β ≤ 0.25.

0.25 ≥ P (X̄ ≥ 10− 6.99√
n
|µ = 9)

X̄∼N(9,9/n)
= P

(
X̄ − 9

3

√
n ≥

10− 6.99√
n
− 9

3

√
n

)

= P (Z ≥
√
n

3
− 2.33)
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But we know that P (Z ≥ 0.67) ≈ 0.25, so we solve

√
n

3
− 2.33 ≥ 0.67 ⇐⇒

√
n ≥ 9 ⇐⇒ n ≥ 81.

Note that this corresponds to a = 9.22.

We can draw a picture with two normals with mean 9 and 10 for the case n = 81 where we
see the probabilities α and β determined by areas under the curves to either side of 9.22.
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Lecture #10: Testing Binomial Data - H0 : p = p0; Generalized
Likelihood Ratio Test

10.1 Large-sample case

We will use the normal approximation to the binomial whenever we can. However, this is
not always a reasonable thing to do.

Suppose X ∼ Bin(100, 1
100

), so that P (X = k) =
(

100
k

) (
1

100

)k ( 99
100

)100−k
. Then the graph of

the p.m.f. of X doesn’t look normal at all.

The problem is that the mean of X is too close to one of the extreme values of the distribution
(“close” here is in the sense of number of standard deviations). If we were to normalise this
binomial, we’d define

Z =
X − np√
np(1− p)

=
X − 1√
99/100

,

a random variable that cannot take any values below −
√

99
100
≈ −1.

Similarly, if Y ∼ Bin(100, 99
100

), the random variable

Z =
Y − np√
np(1− p)

=
Y − 99√
99/100

is a random variable that cannot take any values above
√

100
99
≈ 1.

Some useful applets to play with this:

http://digitalfirst.bfwpub.com/stats_applet/stats_applet_2_cltbinom.html

https://www.geogebra.org/m/CmHJuJxs

If we require, somewhat arbitrarily, that the mean of the binomial be at least three standard
deviations away from its extreme values (i.e., 0 and n), we don’t have this problem anymore.
This requirement is equivalent to

3
√
np(1− p) ≤ np ≤ n− 3

√
np(1− p).

When this requirement is satisfied, we can perform a so-called large-sample hypothesis
test.

Example 10.1. You are gambling with a friend. You win $1 if the flip of a coin gives heads
and lose $1 if it gives tails. You suspect your friend’s coin is not fair and that heads is
more likely to come up. After 100 flips, you owe your friend $20. Does a 5% significance
hypothesis test confirm your doubts?

We let p = P (Tails comes up) and test

H0 : p = 1/2,
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H1 : p > 1/2.

Let’s check if the large-sample requirement is satisfied:

3

√
100

1

2

1

2
= 15 ≤ 50 ≤ 100− 15 = n− 3

√
npq,

so we can perform a large-sample test.

The idea is that since the normal is a good approximation for the binomial. Let X be the
number of tails. Then the outcome of the experiment was X = 60 (resulting in you winning
$40 and your friend $60 for a net loss of $20). Let’s compute the p-value:

p = P (X ≥ 60|H0) = P

(
X − 50

5
≥ X − 50

5

∣∣∣∣H0

)
≈ P (Z ≥ 2) ≈ 0.023 < α.

Therefore, we reject H0. The difference between X and 100p is statistically significant.

Note 10.1. If we had been testing H0 : p = 1/2 against H1 : p 6= 1/2, we would have

P (X ≥ 60|H0) = 0.023 < 0.025 = α/2.

This is closer, though we would still have rejected H0. Having the option of a one-sided
alternative, generally gives you a better chance to reject H0.

See Theorem 6.3.1 for the formal procedure of the binomial large-sample test.

Example 10.2. (continued) What is the probability of a Type II error if H0 : p = 1/2, H1 :
p = 11/20?

P (fail to reject H0|H0 false) = P (fail to reject H0|p = 11/20).

The critical region in the one-sided case is determined by the value K for which P (X ≥
K|p = 1/2) = 0.05.

P (X ≥ K|p = 1/2) = 0.05 ⇐⇒ P

(
X − 50

5
≥ K − 50

5

)
= 0.05 ⇐⇒ K − 50

5
≈ 1.64 ⇐⇒ K ≈ 58.2,

so we reject H0 if X ≥ 58.2. Therefore,

P (Type II Error) = P (X ≤ 58.2|p = 11/20) = P

 X − 55

10
√

11
20

9
20

≤ 58.2− 55

10
√

11
20

9
20

 ≈ P (Z ≤ 0.643) ≈ 0.74.

Picture showing these probabilities.

10.2 Small-sample case

If the large-sample inequalities don’t hold, we can usually deal with the binomial distribution
directly.
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Example 10.3. Can people tell the difference between Miller and Löwenbräu?

18 people were asked to taste 3 beers (2 Miller and one Löwenbräu) and determine which
one was different. 8 people guessed correctly.

Let p be the probability that an individual guessed correctly. Then we are testing

H0 : p = 1/3

H1 : p 6= 1/3

Let X be the number of correct guesses and α = 0.05.

Then we have

p− value = P (X ≥ 8|p =
1

3
) ≈ 0.108 6< α,

so we fail to reject H0. We don’t have enough evidence to say that people can tell the
difference between the beers.

Alternatively (and more complicatedly), let’s first find the critical region:

p(X ≥ K|H0) =
18∑
i=k

(
18

i

)
(1/3)i(2/3)18−i !

≤ 0.05.

• P (X = 18) = (1/3)18

• P (X = 17) = 18(1/3)17(2/3)

• P (X = 16) = 18·17
2

(1/3)16(2/3)2 ≈ 1.58 · 10−6

• . . .

• P (X ≥ 9) ≈ 0.043

• P (X ≥ 8) ≈ 0.108

These calculations show we should reject H0 if X ≥ 9.

The p-value given by the experiment is 0.108. Since this is greater than α we fail to reject
(as already implied by the previous line).

10.3 The GLR

All the tests we have developed are based on distributions involving the parameter(s) for
which we would like to make some inference. It may require some cleverness to come up
with the right distributions. There are also cases in which we have more than one reasonable
estimator for a given parameter and therefore more than one decision rule (e.g. for the
uniform parameter θ,Xmax and 2X̄ are distinct estimators for θ with distinct distributions).

We now examine a systematic way of developing a test for a given parameter.
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When testing hypotheses, we usually assume under H0 that the parameter θ comes from
some set ω. We also denote by Ω the set of all possible values of θ. The generalized
likelihood ratio is

Λ =
maxω L(θ;X1, . . . , Xn)

maxΩ L(θ;X1, . . . , Xn)
.

Note that θ can be a vector.

If the data are about as likely under H0 as they would be under any assumption on the
parameter, then H0 explains the data well. It should be rejected if the numerator of Λ does
a much worse job at explaining L than the denominator does. We will reject H0 at the
significance level α if λ, the realization of Λ is below some threshold λ∗ defined by

P (0 < Λ ≤ λ∗|H0 true) = α.

This test is the Generalized Likelihood Ratio Test (GLRT).

Example 10.4. Suppose X1, . . . , Xn ∼ U(0, θ) and we wish to test H0 : θ = θ0 against
H1 : θ 6= θ0.

Since ω consists of only one value of θ, i.e., θ0, we see that

max
ω

L(θ;X1, . . . , Xn) = L(θ0;X1, . . . , Xn) =
1

θn0

since

L(θ0) =

{
(1/θ0)n, Xmax ≤ θ0

0 otherwise
.

Similarly, as we derived early this semester,

max
Ω

L(θ;X1, . . . , Xn) =
1

Xn
max

since

L(θ) =

{
(1/θ)n, Xmax ≤ θ

0 otherwise
.

Therefore,

Λ =
Xn

max

θn0
.

Now

α = P (0 < Λ ≤ λ∗|H0 true) = P (0 <
Xn

max

θn0
≤ λ∗|H0 true)

= P (0 < Xn
max ≤ θn0λ

∗|H0 true) = P (0 < Xmax ≤ θ0(λ∗)1/n|H0 true).

Now we know from earlier in the semester that the pdf of Xmax in this setting is

fXmax(x) =


n

θn
xn−1, 0 ≤ x ≤ θ

0 otherwise
.
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If H0 is true, then

fXmax(x) =


n

θn0
xn−1, 0 ≤ x ≤ θ0

0 otherwise
,

so that

α = P (0 < Xmax ≤ θ0(λ∗)1/n|H0 true) =

∫ θ0(λ∗)1/n

0

n

θn0
xn−1 dx =

(θ0(λ∗)1/n)n

θn0
= λ∗.

Therefore, the decision rule is to reject H0 if λ ≤ α, i.e., when xnmax ≤ αθn0 , i.e., when

xmax ≤ θ0α
1/n.

Note that this test was already used implicitly in an example Lecture 9 in the particular case
where n = 120 and θ0 = 4. You were told that the decision rule is to reject if Xmax ≤ 3.9
and found α = 0.048. And indeed, with these values

θ0α
1/n = 4 · 0.048 ≈ 3.9 = λ∗.

We will find the GLRT for the parameter µ in the case X1, . . . , Xn ∼ N(µ, σ2) with both
parameters unknown, when testing H0 : µ = µ0 vs H1 : µ 6= µ0.

Example 10.5. We have

ω = {(µ, σ2) : µ = µ0, σ
2 ∈ R+}

and
Ω = {(µ, σ2) : µ ∈ R, σ2 ∈ R+}

Since

L(µ, σ2) =

(
1√
2πσ

)n
exp

{
−1

2

n∑
i=1

(
xi − µ
σ

)2
}
,

which is maximized on ω0 (as can be verified by setting the partial derivatives equal to 0) at
the point (µ0,

1
n

∑
(xi − µ0)2) and on Ω0 at the point (x̄, 1

n

∑
(xi − x̄)2).

We then can use direct substitution to compute λ.

10–5



Math 4501 (Spring 2018) March 7, 2018
Prof. Christian Beneš

Lecture #11: Neyman-Pearson Lemma; Ȳ−µ
S/
√
n

11.1 The Neyman-Pearson Lemma

Suppose we are testing H0 : θ = θ0 against H1 : θ = θa. We have

power(θa) = P (rejectH0|θ = θa).

What does the ideal power curve look like? DRAW IT (0 at θ0 and 1 everywhere else).
Every different test yields a different power curve, so we should choose the test for which
the power curve looks as close to this ideal curve as possible. Fortunately, there is a result
that tells us what that test is!

Definition 11.1. A hypothesis is simple if it uniquely specifies the distribution of the pop-
ulation from which the sample is taken. A hypothesis that is not simple is composite.

Example 11.1. 1. If Y1, . . . , Yn ∼ N(µ, 9), then H0 : µ = 3 is a simple hypothesis (since
under it we know exactly how Yi is distributed).

2. If Y1, . . . , Yn ∼ N(µ, σ2) with σ2 unknown, then H0 : µ = 3 is a composite hypothesis
(since under it we don’t know the exact distribution of Yi).

Lemma 11.1. (Neyman-Pearson Lemma) Consider all α level hypothesis tests with simple
null and alternative hypotheses. Then the likelihood ratio test with H0 : θ = θ0, H1 : θ = θ1

which rejects H0 if

Λ(X1, . . . , Xn) =
L(θ0;X1, . . . , Xn)

L(θ1;X1, . . . , Xn)
≤ λ∗,

where λ∗ is such that P (Λ(X1, . . . , Xn) ≤ λ∗|H0) = α, is the most powerful test, i.e., the test
with the highest power,

Example 11.2. Suppose X1, . . . , Xn ∼ N(µ, 1) is a random sample of size n = 100. Find
the most powerful test with α = 0.05 for H0 : µ = 0 against H1 : µ = 1.

Since both hypotheses are simple, we can use the Neyman-Pearson Lemma. Note that

L(0;X1, . . . , Xn)

L(1;X1, . . . , Xn)
≤ λ∗ ⇐⇒

e−
∑100
i=1 X

2
i /2√

2π
n

e−
∑100
i=1

(Xi−1)2/2
√

2π
n

≤ λ∗

⇐⇒ e−
∑100
i=1(X2

i −(Xi−1)2)/2 ≤ λ∗

⇐⇒
100∑
i=1

(Xi − 1/2) ≥ − ln(λ∗) ⇐⇒ X̄ ≥ 1

2
− 100 ln(λ∗)

So we reject H0 if X̄ ≥ k for some constant k. Since

0.05 = P (X̄ ≥ k|H0) = P (X̄
√

100 ≥
√

100k)|H0)

= P (Z ≥ 10k)

11–1



and 0.05 = P (Z ≥ 1.645), we have k = 0.1645, so the power of the test when µ = 1 is

P (X̄ ≥ 0.1645|µ = 1) = P (10(X̄ − 1) ≥ −8.355|µ = 1) = P (Z ≥ −8.355) ≈ 1.

This is the greatest power any such test can achieve.

11.2 Determining the Distribution of Ȳ−µ
S/
√
n

We know that if Y1, . . . , Yn ∼ N(µ, σ2), then Ȳ−µ
σ/
√
n
∼ N(0, 1). We can use this to make

inferences about µ if σ is known. But in general, we don’t know σ, although we have an
estimator for it:

σ̂ = Sn =
1√
n− 1

√√√√ n∑
i=1

(Yi − Ȳ )2.

It is natural to wonder if replacing σ by S changes the distribution. The answer, provided
by William Gossett, is that it does, very much so if n is small.

We will now go through a sequence of steps in order to determine the distribution of Ȳ−µ
S/
√
n
.

Definition 11.2. If Z1, . . . , Zn are independent standard normal random variables,

U =
n∑
i=1

Z2
i

has a chi-squared distribution with n degrees of freedom. We write U ∼ χ2
n.

Recall that X ∼ Γ(r, λ) has the gamma distribution with parameters r and λ if

fX(x) =

{
λr

Γ(r)
xr−1e−λx x ≥ 0

0 x < 0
.

We have E[X] = r/λ and Var(X) = r/λ2.

Theorem 11.1. If U ∼ χ2
n, then U ∼ Γ

(
n
2
, 1

2

)
. That is, the chi-square distribution with n

degrees of freedom is the same as the gamma distribution with parameters n/2 and 1/2.

Proof. We’ll first find the distribution of Z2 when Z ∼ N(0, 1): For a ≥ 0,

FZ2(a) = P (Z2 ≤ a) = P (−
√
a ≤ Z ≤

√
a) = Φ(

√
a)− Φ(−

√
a),

where Φ is the standard normal c.d.f. Therefore, for a > 0,

fZ2(a) =
d

da
FZ2(a) =

d

da

(
Φ(
√
a)− Φ(−

√
a)
)

=
1

2
√
a
φ(
√
a)+

1

2
√
a
φ(−
√
a) =

1√
2π
a−1/2e−a/2.

Using the fact that Γ(1/2) =
√
π, we recognize this as the pdf of the Γ(1/2, 1/2) distribution,

so Z2 ∼ Γ(1/2, 1/2).
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We know that if for i = 1, . . . , n,Xi ∼ γ(ri, λ), then
∑n

i=1Xi ∼ Γ(
∑n

i=1 ri, λ). Therefore,
since if Zi ∼ N(0, 1), Z2

i ∼ Γ(1/2, 1/2), so that if U ∼ χ2
n,

U =
n∑
i=1

Z2
i ∼ Γ(n/2, 1/2).

Definition 11.3. If Z ∼ N(0, 1) and U ∼ χ2
n are independent, then

Tn =
Z√
U/n

is a t random variable with n degrees of freedom. We write Tn ∼ tn.

Lemma 11.2. If Tn ∼ tn, Tn is symmetric.

Proof.

−Tn =
−Z√
U/n

,

so since −Z ∼ N(0, 1), −Tn ∼ tn.

Theorem 11.2.

fTn(t) =
Γ
(
n+1

2

)
√
nπΓ

(
n
2

) (
1 + t2

n

)(n+1)/2
, t ∈ R.

Note 11.1. fTn is even, which confirms that Tn is symmetric.

Theorem 11.3. If Y1, . . . , Yn ∼ N(µ, σ2) are independent, then

1. S2 and Ȳ are independent.

2. (n−1)S2

σ2 = 1
σ2

∑n
i=1(Yi − Ȳ )2 ∼ χ2

n−1.

Theorem 11.4. If Y1, . . . , Yn ∼ N(µ, σ2) are independent, then

Ȳ − µ
S/
√
n
∼ tn−1.

Proof.

Ȳ − µ
S/
√
n

=

Ȳ−µ
σ/
√
n√

(n−1)S2

(n−1)σ2

.

By part 2. of the last theorem, (n−1)S2

σ2 ∼ χ2
n−1 and is independent of Ȳ−µ

σ/
√
n

and Ȳ−µ
σ/
√
n
∼

N(0, 1), so the theorem follows from the definition of the tn−1 distribution.
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Example 11.3. (Use of the chi-square distribution) A small variation of lactic acid concen-
tration corresponds to a small variation in the taste of cheese (which is desirable). Experi-
ments show that for n chunks of cheese in which the concentration of lactic acid is modeled
by Xi ∼ N(µ, 0.09),

Y =
1

n

n∑
i=1

|Xi − µ|2 ≥ 0.09,

a good measure of how concentrations differ from µ, leads to decreased sales, so producers
will want to avoid this. For 10 chunks of cheese in which the concentration of lactic acid is
modeled by Xi ∼ N(µ, 0.09), what is P (Y ≥ 0.09)?

P (Y ≥ 0.09) = P

(
0.09

10

10∑
i=1

Z2
i ≥ 0.09

)
= P (

10∑
i=1

Z2
i ≥ 10) = P (X ≥ 10) ≈ 0.45,

where X ∼ χ2
n. To compute the probability in question, one option is to use the following

applet, also useful for the t and normal distributions: https://surfstat.anu.edu.au/

surfstat-home/tables/chi.php

11–4
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Lecture #12: Normal Data - Inference for µ and σ2

We are assuming throughout this lecture that Y1, . . . , Yn ∼ N(µ, σ2) are independent.

12.1 Inference for µ if σ2 is unknown

The key idea here will be that Ȳ−µ
S/
√
n
∼ tn−1.

To construct confidence intervals, the procedure will be the same as before except we’ll be
working with Ȳ−µ

S/
√
n
∼ tn−1 rather than Ȳ−µ

σ/
√
n
∼ N(0, 1).

12.1.1 Confidence Intervals

We define tα,n as follows:

Definition 12.1. Suppose that T ∼ tn. Then

P (T ≥ tα,n) = α.

Therefore, using the fact that Ȳ−µ
S/
√
n
∼ tn−1, we have

P

(
−tα/2,n−1 ≤

Ȳ − µ
S/
√
n
≤ tα/2,n−1

)
= 1− α.

So

P

(
−tα/2,n−1

S√
n
≤ Ȳ − µ ≤ tα/2,n−1

S√
n

)
= 1− α.

Therefore,

P

(
−tα/2,n−1

S√
n
− Ȳ ≤ −µ ≤ tα/2,n−1

S√
n
− Ȳ

)
= 1− α,

so

P

(
Ȳ − tα/2,n−1

S√
n
≤ µ ≤ Ȳ + tα/2,n−1

S√
n

)
= 1− α.

Therefore, the (1− α)100% confidence interval for µ is(
Ȳ − tα/2,n−1

S√
n
, Ȳ + tα/2,n−1

S√
n

)
.

Note 12.1. For comparison,

• if σ is assumed to be known, a 100(1− α)% confidence interval for µ is(
Ȳ − zα/2

σ√
n
, Ȳ + zα/2

σ√
n

)
.
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• If Y1, . . . , Yn ∼ Be(p) are independent, an approximate 100(1−α)% confidence interval
for p is (with Y =

∑n
i=1 Yi)Ȳ − zα/2

√
Y
n
Y−k
n√
n

, Ȳ + zα/2

√
Y
n
Y−k
n√
n

 .

12.1.2 Testing H0 : µ = µ0

Example 12.1. Automobile producers need to destroy some of their cars to test their
solidity. They have built a specific car with the goal in mind that a certain type of frontal
car crash would yield a damage whose cost is normally distributed with mean $15, 000. They
crashed 15 cars and found, for the cost, a sample mean of $15, 789 and a standard deviation
of $4782.50. With µ the mean cost of the damage in dollars, test at the 5% significance level
H0 : µ = 15, 000 against H1 : µ 6= 15, 000.

We compute the p-value: For T14 ∼ t14,

P (X̄ ≥ 15, 789 or X̄ ≤ 14, 221|H0 true ) = 2P (X̄ ≥ 15, 789|H0 true )

= 2P (
X̄ − 15, 000

4782.5/
√

15
≥ 15, 789− 15, 000

4782.5/
√

15
|H0 true )

= 2P (T14 ≥
789

4782.5/
√

15
)

= 2P (T14 ≥ 0.639) ≈ 0.5331.

Therefore, we fail to reject H0. There isn’t strong evidence that the mean cost of the given
frontal crash is not $15, 000.

12.2 Inference for σ2

The key idea is to use S2 as an estimator for σ2. We will need the following definition:

Definition 12.2. Suppose that X ∼ χ2
n. Then

P (X ≤ χ2
α,n) = α.

The definition, together with the fact that (n−1)S2

σ2 ∼ χ2
n−1 implies that

P

(
χ2
α/2,n−1 ≤

(n− 1)S2

σ2
≤ χ2

1−α/2,n

)
= 1− α.

Therefore,

P

(
1

χ2
α/2,n−1

≥ σ2

(n− 1)S2
≥ 1

χ2
1−α/2,n

)
= 1− α,
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so

P

(
(n− 1)S2

χ2
1−α/2,n

≤ σ2 ≤ (n− 1)S2

χ2
α/2,n−1

)
= 1− α,

which implies that a (1− α)100% confidence interval for σ2 is(
(n− 1)S2

χ2
1−α/2,n

,
(n− 1)S2

χ2
α/2,n−1

)
,

and a (1− α)100% confidence interval for σ is(√
(n− 1)S2

χ2
1−α/2,n

,

√
(n− 1)S2

χ2
α/2,n−1

)
.

Example 12.2. The National Center for Educational Statistics surveyed college graduates
about the time needed to complete their Bachelor”s degree. Polling 101 people gave a sample
mean of 5.15 years and a sample standard deviation of 1.68 years. Find a 99% confidence
interval for the standard deviation of the time needed by college students to graduate.

Using a chi square applet or table gives χ2
199/200,100 ≈ 140.17 and χ2

1/200,100 ≈ 67.33. This

gives the following 99% confidence interval:

I ≈
(

10 · 1.68√
140

,
10 · 1.68√

67.33

)
≈ (1.419, 2.047).
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Lecture #13: Exam 1
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Lecture #14: Equality of Means - Motivation

Example 14.1. (Random Dot Stereograms) If you know what is hidden behind a random
dot stereogram, do you see it faster?

In an experiment, subjects were divided into two groups, one of which (NV) was given no
information about the image hidden in a random dot stereogram, while the other (VV) was
given verbal and visual information. The times (in seconds) needed for subjects to recognize
the image are represented by X1, . . . , X43 for the NV group and Y1, . . . , Y35 for the VV group.
The data are available at

http://userhome.brooklyn.cuny.edu/cbenes/RDS.txt

To load that data set into R, we use

> www=“http://userhome.brooklyn.cuny.edu/cbenes/RDS.txt”

> TIMES=read.table(www,fill=TRUE)

The following commands allow us to separate the data into the two groups :

> T1=TIMES[1:43,1]

> T2=TIMES[44:78,1]

Note that “[1:43,1]” means that we are considering rows 1 to 43 and the first column.

Typing “T1” or “T2” now allows us to see the data sets separately. We can also obtain the
mean and standard deviation by using the commands “mean” and “sd”.

> mean(T1)

[1] 8.560465

> mean(T2)

[1] 5.551429

> sd(T1)

[1] 8.085412

> sd(T2)

[1] 4.801739

14–1

http://userhome.brooklyn.cuny.edu/cbenes/RDS.txt


Math 4501 (Spring 2018) March 21, 2018
Prof. Christian Beneš

Lecture #15: Equality of Means - the Two-Sample t Test

We are assuming throughout this lecture thatX1, . . . , Xn ∼ N(µX , σ
2), Y1, . . . , Ym ∼ N(µY , σ

2)
are independent. Note that we are assuming a same variance for data from both samples,
but not a same mean.

15.1 Inference for µX − µY

Definition 15.1. For random variables X1, . . . , Xn, Y1, . . . , Ym, the pooled variance is

S2
p =

(n− 1)S2
X + (m− 1)S2

Y

n+m− 2
=

1

n+m− 2

(
n∑
i=1

(Xi − X̄)2 +
m∑
i=1

(Yi − Ȳ )2

)
.

Theorem 15.1. If X1, . . . , Xn ∼ N(µX , σ
2), Y1, . . . , Ym ∼ N(µY , σ

2) are independent, then

X̄ − Ȳ − (µX − µY )

Sp

√
1
n

+ 1
m

∼ tn+m−2.

Proof. We have

T =
X̄ − Ȳ − (µX − µY )

Sp

√
1
n

+ 1
m

=

X̄−Ȳ−(µX−µY )

σ
√

1
n

+ 1
m√

1
n+m−2

(
(n−1)S2

X

σ2 +
(m−1)S2

Y

σ2

) . (4)

Since X̄ ∼ N(µX , σ
2/n) and Ȳ ∼ N(µY , σ

2/m) are independent, we know that X̄ − Ȳ is
normal. Note that

• E[X̄ − Ȳ ] = µX − µY

• Var(X̄ − Ȳ )
indep.

= Var(X̄) + Var(−Ȳ ) = Var(X̄) + Var(Ȳ ) = 1
n

+ 1
m
.

This implies that for the numerator in the last expression of (4), we have

X̄ − Ȳ − (µX − µY )

σ
√

1
n

+ 1
m

∼ N(0, 1).

To determine the distribution of the denominator, we note that

(n− 1)S2
X

σ2
∼ χ2

n−1 and
(m− 1)S2

Y

σ2
∼ χ2

m−1 are independent,
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so that, since a sum of gammas is gamma and the chi square r.v. is a particular case of the
gamma,

U =
(n− 1)S2

X

σ2
+

(m− 1)S2
Y

σ2
∼ χ2

n+m−2.

Moreover, for the same reason as in the one-sample case, the numerator and the denominator
are independent, so we have

T =
Z√
U

n+m−2

,

with Z ∼ N(0, 1) and χ2
n+m−2 independent, so T ∼ tn+m−2.

The theorem we just proved allows us to test equality of means H0 : µX = µY since under
the assumption H0,

X̄ − Ȳ

Sp

√
1
n

+ 1
m

∼ tn+m−2.

Example 15.1. (Random Dot Stereograms) If you know what is hidden behind a random
dot stereogram, do you see it faster?

In an experiment, subjects were divided into two groups, one of which (NV) was given no
information about the image hidden in a random dot stereogram, while the other (VV) was
given verbal and visual information. The times (in seconds) needed for subjects to recognize
the image are represented by X1, . . . , X43 for the NV group and Y1, . . . , Y35 for the VV group.
The data are available at

http://userhome.brooklyn.cuny.edu/cbenes/RDS.txt

(and originally at http://lib.stat.cmu.edu/DASL/Datafiles/FusionTime.html)

To load that data set into R, we use

> www=”http://userhome.brooklyn.cuny.edu/cbenes/RDS.txt”

> TIMES=read.table(www,fill=TRUE)

We separate the data into the two groups:

> T1=TIMES[1:43,1]

> T2=TIMES[44:78,1]

> hist(T1)

> hist(T2)

> mean(T1)

[1] 8.560465

> mean(T2)

[1] 5.551429

> sd(T1)

[1] 8.085412
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> sd(T2)

[1] 4.801739

This is translated into the following statistics:

X̄ ≈ 8.56, SX ≈ 8.09, S2
X ≈ 65.45,

Ȳ ≈ 5.55, SY ≈ 4.80, S2
Y ≈ 23.04.

We will test H0 : µX = µY against H1 : µX > µY at the 5% significance level. In order to
compute the p-value, it will be useful to have

S2
p =

(n− 1)S2
X + (m− 1)S2

Y

n+m− 2
≈ 42 · 65.45 + 34 · 23.04

76
≈ 46.48,

so that Sp ≈ 6.82. Moreover,
√

1
n

+ 1
m

=
√

1
43

+ 1
35
≈ 0.23. Letting T76 ∼ t76, all this gives

the following p− value:

P (X̄ − Ȳ > 8.56− 5.55|H0) = P

(
X̄ − Ȳ

1.55
>

8.56− 5.55

1.55
|H0

)
≈ P (T76 > 1.94) ≈ 0.028,

so we reject H0, which means that there is strong evidence suggesting that having verbal
and visual information about the image in a random dot stereogram, increases the speed at
which one sees it.

Note 15.1. 1. Was it OK to assume that the data are normal? Not quite. For one,
the data are discrete, but more importantly, we’ll see later that a test for normality
suggests that we can’t make that assumption.

However, this is not a big problem, as t-tests are “robust” with respect to departure
from normality: If Yi are not normal, the distribution of Ȳ−µ

σ/
√
n

is relatively unaffected

by the actual distribution of the Yi, as long as that distribution is not too skewed and
n is not too small.

2. Was it OK to assume σ2
X = σ2

Y ? We’ll see in our next class how to answer this
question. You’ll also see on the homework in Problem 9.2.15 how to address the case
where σ2

X 6= σ2
Y are both unknown.

3. How do we test H0 : µX = µY in the (unrealistic) case we know both σ2
X and σ2

Y ? Then

X̄ − Ȳ − (µX − µY )√
σ2
X

n
+

σ2
Y

m

∼ N(0, 1).
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Lecture #16: Equality of Variances - the F test

16.1 The F distribution

In order to test equality of variances, we need to introduce a new distribution.

Definition 16.1. Suppose U ∼ χ2
n and V ∼ χ2

m are independent. Then we define the F
distribution with m and n degrees of freedom to be the distribution of the random variable

F =
V
m
U
n

.

We write F ∼ Fm,n.

Note 16.1. Since the chi-square distribution is positive, so is the F distribution.

Definition 16.2. We define quantiles for the F distribution as follows: For 0 ≤ α ≤ 1, if
F ∼ Fm,n,

P (F ≤ Fα,m,n) = α.

Obtaining the p.d.f. of an F random variable is a bit harder than for the t or χ2 distributions,
but it can be done as well:

Theorem 16.1. If F ∼ Fm,n, then

fF (w) =
Γ
(
m+n

2

)
mm/2nn/2wm/2−1

Γ
(
m
2

)
Γ
(
n
2

)
(n+mw)(n+m)/2

for w ≥ 0, and fF (w) = 0 otherwise.

Proof. The proof is involved, but here is the idea:

FF (w) = P

(
V/m

U/n
≤ w

)
= P

(
V ≤ m

n
Uw
)
.

This is something we can easily compute:

P
(
V ≤ m

n
Uw
)

=

∫ ∞
0

∫ m
n
w

0

fU(u)fV (v) dv du.

From here on, it’s just (nontrivial) algebra.
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16.2 Testing Equality of Variances

Recall that if X1, . . . , Xn ∼ N(µ, σ2) with µ and σ2 unknown, then

(n− 1)S2

σ2
∼ χ2

n−1.

So to test H0 : σ2 = σ2
0 against, say, H1 : σ2 > σ2

0 at the α significance level, we reject H0 if
(n−1)s2

σ2
0
≥ χ2

(1−α),n−1.

If dealing with X1, . . . , Xn ∼ N(µX , σ
2
X), Y1, . . . , Ym ∼ N(µY , σ

2
Y ), we know that

(n− 1)S2
X

σ2
X

∼ χ2
n−1 and

(m− 1)S2
Y

σ2
Y

∼ χ2
m−1,

so that
S2
X

σ2
X

S2
Y

σ2
Y

∼ Fn−1,m−1.

In particular, under H0 : σX = σY ,

S2
X

S2
Y

∼ Fn−1,m−1.

Example 16.1. (Back to Random Dot Stereograms) Let’s test, at the 5% significance level,
for the equality of the variances of the two samples in the random dot stereogram example.

From the data X1, . . . X43 ∼ N(µX , σ
2
X), Y1, . . . , Y35 ∼ N(µY , σ

2
Y ), we obtained s2

X ≈ 65.45
and s2

Y ≈ 23.04, which implies that

s2
X

s2
Y

≈ 2.841.

A priori, there is no good reason for doing a 1-sided test rather than a 2-sided test, so we
will test

H0 : σX = σY against H1 : σX 6= σY .

Let’s find the critical region for S2
X/S

2
Y . We know that under H0, S

2
X/S

2
Y ∼ F42,34, so the

critical region is

(0, F0.025,42,34) ∪ (F0.975,42,34,∞) ≈ (0, 0.53) ∪ (1.94,∞).

Since
s2
X

s2
Y

≈ 2.84 ∈ (0, 0.53) ∪ (1.94,∞),

we reject H0. There is strong evidence that the variances of the two samples are not the
same.
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Lecture #17: Two-sample binomial test

17.1 Testing Equality of Binomial Parameters

We will assume that X1, . . . , Xn ∼ Be(pX) and Y1, . . . , Ym ∼ Be(pY ) and X =
∑n

i=1 Xi, Y =∑m
j=1 Yj.

The key idea will be that
X
n
− Y

m
− (pX − pY )√

pX(1−pX)
n

+ pY (1−pY )
m

approx∼ N(0, 1).

In particular, if we test H0 : pX = pY , then under H0 (using p for the common parameter),
X
n
− Y

m√
p(1−p)
n

+ p(1−p)
m

approx∼ N(0, 1).

This can’t quite be used for hypothesis testing, as p is unknown, but we can approximate p
by the estimator X+Y

n+m
which, under H0 is unbiased, and write

X
n
− Y

m√
X+Y
n+m

(1−X+Y
n+m

)

n
+

X+Y
n+m

(1−X+Y
n+m

)

m

=
X
n
− Y

m

1
n+m

√
(X + Y )(n+m− (X + Y ))

(
1
n

+ 1
m

) approx∼ N(0, 1).

Example 17.1. In a democracy, it is important to have as many people as possible registered
to vote. A random sample of 1100 potential voters was placed into two groups:

• Group 1: 600 potential voters to whom registration reminders were sent; 332 registered.

• Group 2: 500 potential voters to whom no registration reminders were sent; 248 regis-
tered.

Determine at the 5% significance level whether reminders make a difference or not.

We let X1, . . . X600 ∼ Be(pX) be 1 if an individual of the first group registered, 0 otherwise
and Y1, . . . Y500 ∼ Be(pY ) be 1 if an individual of the second group registered, 0 otherwise.
We will test

H0 : pX = pY against H1 : pX > pY .

Note that for this experiment, x = 332, y = 248, n = 600,m = 500.

The p-value equals

P

(
X

n
− Y

m
>

332

600
− 248

500

∣∣∣∣H0

)

= P

 X
n
− Y

m

1
n+m

√
(X + Y )(n+m− (X + Y ))

(
1
n

+ 1
m

)> 332
600
− 248

500

1
n+m

√
(X + Y )(n+m− (X + Y ))

(
1
n

+ 1
m

)∣∣∣∣H0


≈ P (Z ≥ 1.8965) ≈ 0.0287,
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so we reject H0. There is strong evidence that registration reminders do increase the chance
that a potential voter will register.
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Lecture #18: Confidence Intervals for the Two-Sample Problems

The procedure for finding confidence intervals in the two-sample case is based on the same
distributional facts and approximations as in the construction of hypothesis tests.

To determine whether it is possible that

• µX = µY

• pX = pY

• σX = σY

we will construct (approximate) confidence intervals for

• µX − µY

• pX − pY

• σX/σY

Note 18.1. In the case of variances, the confidence interval is for the quotient, since that is
the quantity which appears in the distributional fact involving the sample variances.

Example 18.1. (Random Dot Stereograms re-revisited) IfX1, . . . , Xn ∼ N(µX , σ
2
X), Y1, . . . , Ym ∼

N(µY , σ
2
Y ) are independent, we know that

S2
Y

σ2
Y

S2
X

σ2
X

∼ Fm−1,n−1,

so

P

Fα/2,m−1,n−1 ≤
S2
Y

σ2
Y

S2
X

σ2
X

≤ F1−α/2,m−1,n−1

 = 1− α.

Therefore,

P

(
Fα/2,m−1,n−1

S2
X

S2
Y

≤ σ2
X

σ2
Y

≤ F1−α/2,m−1,n−1
S2
X

S2
Y

)
= 1− α

and so a 100(1− α)% confidence interval for
σ2
X

σ2
Y

is(
Fα/2,m−1,n−1

S2
X

S2
Y

, F1−α/2,m−1,n−1
S2
X

S2
Y

)
.
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In our specific example, we had S2
X ≈ 65.45 and S2

Y ≈ 23.04 so that S2
X/S

2
Y ≈ 2.841.

Moreover, F0.025,34,42 ≈ 0.528, F0.975,34,42 ≈ 1.94, so a 95% confidence interval for σ2
X/σ

2
Y is

(with n = 43,m = 35)(
Fα/2,m−1,n−12.841, F1−α/2,m−1,n−12.841

)
≈ (1.5, 5.5).

Since 1 doesn’t belong to this interval, we have good reason to suspect that σ2
X/σ

2
Y 6= 1, in

other words, that σ2
X 6= σ2

Y .

As a reminder of what this means (and doesn’t mean), we can’t say, based on our calculation,
that there is a 95% chance that σ2

X/σ
2
Y 6= 1. This wouldn’t make any sense since σ2

X/σ
2
Y

isn’t random so that we can’t talk about probabilities. What we do know is that the random
interval we constructed had a 95% chance of containing the true ratio σ2

X/σ
2
Y . Since 1 doesn’t

belong to the interval, there are strong reasons for believing that σ2
X/σ

2
Y 6= 1 (though of

course, we’ll never know for sure).

The confidence intervals for µX − µY and pX − pY are constructed in a similar fashion. See
the homework for more details.
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Lecture #19: Goodness of Fit Tests

The general type of question addressed is: Could a given data set come from a given distri-
bution?

A key concept here is the multinomial distribution:

Suppose Y1, . . . , Yn are i.i.d. with P (Yi = rj) = pj, j = 1, . . . , t,
∑t

i=1 pj = 1. For j = 1, . . . , t,
let

Xj =
n∑
i=1

1{Yi = rj},

where

1{Yi = rj} =

{
1, Yi = rj
0, otherwise

,

be the number of times rj comes up. Then if X1 = x1, . . . Xk = xk, we have
∑t

i=1 xj = n.

Definition 19.1. The random vector (X1, . . . , Xt) has the multinomial distribution with
parameters n, p1, . . . , pt.

Theorem 19.1. If (X1, . . . , Xt) has the multinomial distribution with parameters n, p1, . . . , pt
and x1, . . . , xt ∈ N ∪ {0} with

∑t
i=1 xj = n, then

P (X1 = x1, . . . Xk = xk) = p(X1,...,Xt)(x1, . . . , xt) =

(
n

x1, . . . , xt

) t∏
i=1

pxii .

Proof. Each configuration of x1 r1s, . . . , xt rts has probability
∏t

i=1. The number of such
configurations is (

n

x1

)(
n− x1

x2

)
· · ·
(
n−

∑t−1
i=1

xt

)
=

(
n

x1, . . . , xt

)
.

Theorem 19.2. If (X1, . . . , Xt) is a multinomial random variable with parameters n, p1, . . . , pt,
then the marginal distribution of Xj, j = 1, . . . , t is a binomial with parameters n and pj.

Proof. Xj is the number of times rj occurs. For each realization Y1, . . . , Yn, P (rj occurs) = pj.
Since Xj =

∑n
i=1 1{Yi = rj} is a sum of n Bernoulli random variables with parameter

pj, Xj ∼ Bin(n, pj).

Corollary 19.1. If (X1, . . . , Xt) is a multinomial random variable with parameters n, p1, . . . , pt,
then

E[Xj] = npj, Var(Xj) = npj(1− pj).
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Example 19.1. (RDS re-re-revisited) We consider the times of the people who had visual
and verbal aids. There were 35 samples with sample mean 5.55 and sample variance 23.04.
Could it be that the data came from a normal distribution with mean 5.55 and variance
23.04?

The idea is to put the data in bins, say quartiles. For a standard normal, the quartiles are

−z0.25 ≈ −0.674, z0.5 = −z0.5 = 0, z0.25 ≈ 0.674.

Since if X ∼ N(5.55, 23.04), we can write

X =
√

23.04Z + 5.55,

and so the quartiles of X are

√
23.04(−0.674) + 5.55 = 2.31,

√
23.04(0) + 5.55 = 5.55,

√
23.04(0.674) + 5.55 = 8.79.

So we can count the number of outcomes in each of the following four “bins”:

(−∞, 2.31], (2.31, 5.55], (5.55, 8.79], (8.79,∞).

We get, respectively, 10, 11, 8, and 6 realizations when, what we’d expect is 35/4 = 8.75
realizations in each bin. How different is what we observed from that? How would we
compute a p-value?

We will re-visit this example once we’ve taken another, less direct, approach to the question.
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Lecture #20: Goodness of fit test

Following the motivation from our last class, we will develop tools to test whether a sample
could come from a given distribution. The main tool is an ubiquitous object called Pearson’s
test statistic.

Theorem 20.1. Suppose r1, . . . , rt are the possible outcomes (or ranges of outcomes) asso-
ciated with n independent trials Y1, . . . , Yn,

• for j = 1, . . . , n, P (Yj = ri) = pi for i = 1, . . . , t,

• Xi = #{occurrences of ri}, i = 1, . . . , t.

Then

D =
t∑
i=1

(Xi − npi)2

npi

approx.∼ χ2
t−1.

For a good approximation, we’d like npi ≥ 5 for all i and for a reasonable approximation,
we’d like npi ≥ 3/2 for all i.

Proof. (for t = 2, that is, the 2-bin case) We want to show that

D =
t∑
i=1

(Xi − npi)2

npi
≈ Z2

with Z ∼ N(0, 1). Note that

D =
(X1 − np1)2

np1

+
(n−X1 − n(1− p1))2

n(1− p1)

=
(X1 − np1)2(1− p1) + (np1 −X1)2p1

np1(1− p1)

=
(X1 − np1)2 ((1− p1) + p1)

np1(1− p1)
=

(
X1 − np1√
np1(1− p1)

)2

≈ Z2,

by the central limit theorem.

If for 1 ≤ i ≤ t, pi is the probability of the outcome ri and pi,0 is some number, we now have
a procedure for testing

H0 : p1 = p1,0, . . . , pt = pt,0 against H1 : pi 6= pi,0 for some 1 ≤ i ≤ t:

If x1, . . . , xt are the observed frequencies of the outcomes r1, . . . , rt and np1,0, . . . npt,0 are the
expected frequencies under H0, then at the α level of significance, we should reject H0 if

d =
t∑
i=1

(xi − npi,0)2

npi,0
≥ χ2

1−α,t−1

and npi,0 ≥ 5 for all i.
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Note 20.1. We don’t do a two-sided test here since if d ≤ χ2
α/2,t−1, then d is very close to 0,

which means xi and npi,0 are close for all i, which would confirm H0 rather than contradict
it.

Example 20.1. A library wishes to ensure that its books fit the users’ needs. It conducts
and inventory and compares it to a sample of the books that are checked out. This gives

subject area books in library(%) number of books in sample
Business 32 268

Humanities 25 214
Natural Sciences 20 215
Social Sciences 15 115

Other 8 76

Use a 5% significance test to determine whether the distribution of checked out books fits
the library’s book distribution.

We assign a numerical value to each subject area and also include percentages of books in
the sample to compare with the percentages of books in the library:

subject area books in library(%) number of books in sample books in sample(%)
1 Business 32 268 30.2
2 Humanities 25 214 24.1
3 Natural Sciences 20 215 24.2
4 Social Sciences 15 115 13
5 Other 8 76 8.5

We let pi be the probability that a book from subject area i is picked in the sample and test

H0 : p1 = p1,0 = 0.32, p2 = p2,0 = 0.25, p3 = p3,0 = 0.2, p4 = p4,0 = 0.15, p5 = p5,0 = 0.08

against

H1 : pi 6= pi,0 for some 1 ≤ i ≤ 5.

Note first that npi,0 ≥ 5 for all 1 ≤ i ≤ 5.

Using the sample size n = 888, we compute

d =
(268− 284.16)2

284.16
+

(214− 222)2

222

(215− 177.6)2

177.6

(115− 133.2)2

133.2

(76− 71.04)2

71.04
≈ 11.92 > 9.488 = χ2

0.95,4,

so we reject H0. There is strong evidence suggesting that the books in the sample weren’t
selected according to the distribution of the books in the library.
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Lecture #22: More Goodness of fit test

22.1 Goodness of Fit Tests with Unknown Parameters

If we are given a data set, can we guess what distribution it might come from? Yes, to the
extent that statistics allows us to make guesses. There are several methods that allow us to
do this. We will look at Pearson’s goodness-of-fit test.

Recall the Random-dot stereogram example in which we tried to determine if having infor-
mation about the object hiding in a random dot stereogram increases the speed at which
people recognize it. We performed a two-sample t-test which relied on equality of variances
and on the normality of the data. At the time we didn’t know how to test for either of these
hypotheses. We already saw that the there was cause to reject equality of variances, using
the F test. Had we not rejected equality of variances, we would still have needed to check
normality of the data. We will see in a few moments how to do this, but let’s first try to get
some intuition for what the answer might be by looking at the histogram obtained from the
data. The times needed for people with visual aid to recognize the image can be found at

http://userhome.brooklyn.cuny.edu/cbenes/RDS.txt

We can import the file into R and draw the histogram with the following sequence of com-
mands:

> RDS=“http://userhome.brooklyn.cuny.edu/cbenes/RDS.txt”

> Visual=scan(RDS)

> hist(Visual)

Histogram of VV

VV
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0
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4
6

8
10

The question is now: Could this be the the histogram of 35 independent realizations of a
normal r.v.?

And what about the following graph?
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> Norm=rnorm(35,5.55,4.80)

> hist(Norm)

Histogram of Norm

Norm

Fr
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8
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12

And the following?

> Norm=rnorm(20,5.55,4.80)

> hist(Norm)

Histogram of Norm

Norm

Fr
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nc
y

0 5 10 15 20

0
1

2
3

4

It turns out that the last two graphs are of independent normals (35 and 20, respectively).
With small data sets, one should be careful not to draw conclusions too quickly, as even
perfectly normal data sets may not appear to be so.

Let us now develop the tools that will allow us to answer this question precisely.

Let’s look at another data set, that of the Percent Gain or Loss for the S&P 500 Index Yearly
Returns for the years 1975 to 2010, available at

http://userhome.brooklyn.cuny.edu/cbenes/S&P500Returns.txt

(Calculations do not reflect any dividends paid or any stock spinoffs from original stock.
Taxes and commissions are not factored into calculations.)

As before, we can acquire the data set as follows and plot a histogram:

> SP=“http://userhome.brooklyn.cuny.edu/cbenes/S&P500Returns.txt”

> SP500=scan(SP)
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> hist(SP500)

Histogram of SP500

SP500
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We can also obtain the sample mean and sample standard deviation for the data using the
following commands.

> mean(SP500)

[1] 9.795

> sd(SP500)

[1] 16.64338

Now if this histogram were that of 36 realizations of normal random variables, what would
be our best guess as to the mean and standard deviation of those normals? The same as the
sample mean and sample standard deviation, of course!

So now the question is: What would we expect 36 samples from a N(9.8, 277) to look like?
Well, we’d certainly like roughly half to be on each side of 9.8, but thanks to normal quantiles,
we can say much more about what we’d expect. Let’s look at how we’d do this by focusing
on quartiles:

We know from the normal table that z0.25 = 0.6745. Therefore, a standard normal has
probability 25% of falling in each of the following intervals:

(−∞,−0.6745) (−0.6745, 0) (0, 0.6745) (0.6745,∞).

So using the fact that if X ∼ N(9.8, 277), X = 16.64338Z+µ, we see that X has probability
25% of falling in each of the following intervals:

(−∞,−0.6745 · 16.643 + 9.8) (−0.6745 · 16.643 + 9.8, 0 · 16.643 + 9.8)

(0 · 16.643 + 9.8, 0.6745 · 16.643 + 9.8) (0.6745 · 16.643 + 9.8,∞),

equivalently of falling in each of the following intervals:

(−∞,−1.43) (−1.43, 9.8) (9.8, 21.03) (21.03,∞).
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So if the Percent Gain or Loss for the S&P 500 Index Yearly Returns for the years 1975 to
2010 were normally distributed, we would expect to find about 9 data points in each of the
intervals (“bins”) above. It turns out that there are 8, 8, 10, and 10, respectively. Is this
evidence against the hypothesis of normality?

A natural question to ask would be: What is the probability that we would have observed
this? If for i = 1, . . . , 4, Xi is the number of realizations in bin i, what is

P (X1 = 8, X2 = 8, X3 = 10, X4 = 10)?

We can compute this exactly, since (X1, X2, X3, X4) is multinomial with parameters 36, 1/4,
1/4, 1/4, 1/4.

P (X1 = 8, X2 = 8, X3 = 10, X4 = 10) =

(
36

8, 8, 10, 10

)(
1

4

)3

6.

More importantly, what is the probability that something as extreme or more as what we
observed would have happened?

It’s not clear what that means... so we’ll try a different approach. The key idea is to construct
a test statistic from the random variables X1, . . . , Xt in such a way that its distribution can
be found or at least approximated.

Theorem. (Pearson’s test statistic) If r1, . . . , rt are the possible (ranges of) outcomes as-
sociated with n independent trials from an entirely known distribution, P (ri) = pi, and
Xi = #(outcomes of ri), i = 1, . . . , t, then

D =
t∑
i=1

(Xi − npi)2

npi

approx∼ χ2
t−1.

Note that we don’t generally know the parameters of the distribution which we would like
to fit to the data. When we have to estimate them, the statement of the theorem changes
just a little bit:

Theorem. (Pearson’s test statistic) If r1, . . . , rt are the possible (ranges of) outcomes as-
sociated with n independent trials from a distribution with s unknown parameters esti-
mated with the maximum likelihood estimator, p̂i is the estimated probability of ri, and
Xi = #(outcomes of ri), i = 1, . . . , t, then

D =
t∑
i=1

(Xi − np̂i)2

np̂i

approx∼ χ2
t−1.

Example: For the S&P500 returns, let’s test at the 95% level if the data could be normal
with estimated mean and variance. Note that the last theorem requires using the maximum
likelihood estimates for the mean and variance (under the normality assumption). While the
sample mean is the maximum likelihood estimator for the mean, the sample variance is not
the maximum likelihood estimator for the variance, so we need a slightly different estimate
from the one above. We need to use the maximum likelihood estimator for the variance
which, in R, is
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> s2=sum((SP500-mean(SP500))2)/36

so that the variance is

> s=sqrt(sum((SP500-mean(SP500))2)/36)

> s

[1] 16.41059

We can then find our bins, as above, using the commands for normal quantiles as follows:

> s*qnorm(0.25)+mean(SP500)

[1] -1.273777

> s*qnorm(0.75)+mean(SP500)

[1] 20.86378

This means that our four equiprobable bins for the normal distribution with estimated
parameters are

(−∞,−1.273777), (−1.273777, 9.795), (9.795, 20.86378), (20.86378,∞).

We have n = 36 and need npi ≥ 5 for all i. Though this is not optimal, let’s choose pi = 4
as above. Then

d1 =
1

9
+

1

9
+

1

9
+

1

9
=

4

9
6≥ χ2

0.95,1 = 3.841.

Therefore, there is no cause to reject the hypothesis that the data are normally distributed
with estimated mean and variance.

We could improve our analysis by taking the number of bins to be as large as possible. By
making the pi equal, we can choose pi = 1/7, so that for every i, npi = 36

7
≥ 5. Then, using

the commands

> s*qnorm(1/7)+mean(SP500)

[1] -7.724465

> s*qnorm(2/7)+mean(SP500)

[1] 0.5074442

> s*qnorm(3/7)+mean(SP500)

[1] 6.84089

> s*qnorm(4/7)+mean(SP500)

[1] 12.74911

> s*qnorm(5/7)+mean(SP500)

[1] 19.08256

> s*qnorm(6/7)+mean(SP500)

[1] 27.31447
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we see that our bins are

(∞,−7.724), (−7.724, 0.507), (0.507, 6.841), (6.841, 12.749),

(12.749, 19.083), (19.083, 27.314), (27.314,∞)

For i = 1, . . . , 7, we call these intervals Ii and r.v. counting the number of data points in
each Xi. Then

x1 = 6, x2 = 2, x3 = 6, x4 = 4, x5 = 5, x6 = 10, x7 = 3.

Therefore,

d2 =
7∑
i=1

(xi − 36/7)2

36/7
≈ 7.94 6> 9.844 = χ0.05,4.

Therefore, there is no cause to reject the hypothesis that the data are normally distributed
with estimated mean and variance.
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Lecture #23: Least Squares Estimation

24 Contingency Tables

We will see in this section how one can test for independence of two variables.

Example 24.1. Consider the following table:

Income Level
Happiness Level

low moderate high

below average 83 249 94
average 221 372 53

above average 110 159 21

We will try to use this table to determine if the variables “Income level” and “Happiness
level” may be independent or not. We re-write the table with totals and numerical values
assigned to the various outcomes of the two variables:

Income Level
Happiness Level

low (1) moderate (2) high (3)

below average (1) 83 249 94 426
average (2) 221 372 53 646

above average (3) 110 159 21 290
414 780 168 1362

Can we infer from this table whether the (random) variablesX=income level and Y=happiness
level are independent or not?

There are two key ideas involved:

Key idea 1: If X and Y are independent, then for all i, j,

P (X = i, Y = j) = P (X = i)P (Y = j).

Note that from here on P̂ represents estimated probabilities and Ê estimated expectations.

For our sample we find the estimates

P̂ (X = 1) =
426

1362
≈ 0.313, P̂ (Y = 1) = 414

1362
≈ 0.304,

P̂ (X = 2) =
646

1362
≈ 0.474, P̂ (Y = 2) = 780

1362
≈ 0.573, (5)

P̂ (X = 3) =
290

1362
≈ 0.213, P̂ (Y = 3) = 168

1362
≈ 0.123.
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In particular, if we pick a person at random, we are drawing from the estimated joint
distribution defined by (5) and the assumed independence. Then if drawing n samples
(X, Y )`, 1 ≤ ` ≤ n, we get

E[#(times (X, Y )` = (i, j))] = E[
n∑
`=1

1{(X, Y )` = (i, j)}]

=
n∑
`=1

E[1{(X, Y )` = (i, j)}]

=
n∑
`=1

P ((X, Y )` = (i, j))

(X,Y )`i.d.
= nP ((X, Y )` = (i, j))

X,Y indep.
= nP (X = i)P (Y = j).

Key idea 2: If n observations are taken on a sample space partitioned by A1, . . . , Ar and also
by B1, . . . Bc. For 1 ≤ i ≤ r, 1 ≤ j ≤ c, let

pi = P (Ai), qj = P (Bj), pij = P (AiBj).

If Xij is the number of observations of {X ∈ Ai, Y ∈ Bj}, then

D2 =
r∑
i=1

c∑
j=1

(Xij − npij)2

npij

approx.∼ χ2
rc (if npij ≥ 5 for all i, j).

Also, if H0 : Ai are independent of Bj and P̂i and Q̂j are the estimated probabilities of Ai
and Bj, respectively, then

D2 =
r∑
i=1

c∑
j=1

(Xij − nP̂iQ̂j)
2

nP̂iQ̂j

approx.∼ χ2
(r−1)(c−1) (if npij ≥ 5 for all i, j).

In our example, since we have

nP̂ (X = 1)P̂ (Y = 1) = 1362
426

1362

414

1362
≈ 129.5,

nP̂ (X = 1)P̂ (Y = 2) = 1362
426

1362

780

1362
≈ 244,

nP̂ (X = 1)P̂ (Y = 3) = 1362
426

1362

168

1362
≈ 52.2,

nP̂ (X = 2)P̂ (Y = 1) = 1362
646

1362

414

1362
≈ 196.4,

nP̂ (X = 2)P̂ (Y = 2) = 1362
646

1362

780

1362
≈ 370,

nP̂ (X = 2)P̂ (Y = 3) = 1362
646

1362

168

1362
≈ 79.7
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nP̂ (X = 3)P̂ (Y = 1) = 1362
290

1362

414

1362
≈ 88.1,

nP̂ (X = 3)P̂ (Y = 2) = 1362
290

1362

780

1362
≈ 166.1,

nP̂ (X = 3)P̂ (Y = 3) = 1362
290

1362

168

1362
≈ 35.8.

d2 =
(83− 129.5)2

129.5
+

(249− 244)2

244
+

(94− 52.2)2

52.2

+
(221− 196.4)2

196.4
+

(372− 370)2

370
+

(53− 79.7)2

79.7

+
(110− 88.1)2

88.1
+

(159− 166.1)2

166.1
+

(21− 35.8)2

35.8
≈ 16.7 + 8 terms > 9.488 ≈ χ2

0.95,4,

so we reject H0 at the 5% level. There is strong evidence that income levels and happiness
levels are correlated.

24.1 Least squares linear regression

Consumer reports picked 8 cars at random and produced the following table:

weight (1000s of lbs) miles per gallon
x y
27 30
44 19
32 24
47 13
23 29
40 17
34 21
52 14

If we plot x against y, can we find a straight line that fits the data well?

Q: What does it mean to “fit the data well”?

A: There are many possible answers:

• A line that contains as many of the data points as possible (more than two such points
is typically not possible)

• A line such that the sum of the distances between the data points and the line is
minimal.
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• A line such that the sum of squares of the vertical distances is minimal (sounds far
fetched, but...)

• . . .

We will focus on the last of these (and will see in a few lectures why this is a natural choice).

Our goal will be to find a line y = a + bx (i.e., find a and b) such that for the n points
(x1, y1), . . . (xn, yn), the quantity

L(a, b) =
n∑
i=1

(yi − (a+ bxi))
2

is minimal.

Theorem 24.1. Given n points (x1, y1), . . . (xn, yn), the straight line y = a + bx which
minimizes L =

∑n
i=1(yi − (a+ bxi))

2 has slope

b =
n
∑n

i=1 xiyi − (
∑n

i=1 xi)(
∑n

i=1 yi)

n(
∑n

i=1 x
2
i )− (

∑n
i=1 xi)

2

and y-intercept

a =

∑n
i=1 yi − b

∑n
i=1 xi

n
= ȳ − bx̄.

Proof. L(a, b) =
∑n

i=1(yi − (a + bxi))
2 is quadratic in a and b, so we can find its maximum

by solving
∂L

∂b
(a, b) = 0,

∂L

∂a
(a, b) = 0.

∂L

∂b
(a, b) = 0 ⇐⇒

n∑
i=1

−2xi(yi − (a+ bxi)) = 0 ⇐⇒
n∑
i=1

xi(yi − (a+ bxi)) = 0

and

∂L

∂a
(a, b) = 0 ⇐⇒

n∑
i=1

−2(yi − (a+ bxi)) = 0 ⇐⇒
n∑
i=1

(yi − (a+ bxi)) = 0.

This yields the following two linear equations in a and b:

n∑
i=1

xiyi = a
n∑
i=1

xi + b
n∑
i=1

x2
i ,

n∑
i=1

yi = na+ b
n∑
i=1

xi.

Solving for a and b (for instance by substitution or Cramér’s law from linear algebra) yields
the theorem

In the example given at the beginning of this lecture, we find a ≈ 43.33 and b ≈ −0.60 as
we can obtain from R using the following commands:

> X=c(27,44,32,47,23,40,34,52)
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> Y=c(30,19,24,13,29,17,21,14)

> fit=lm(Y∼X)

> fit

Call:

lm(formula = Y ∼ X)

Coefficients:

(Intercept) X

43.3263 -0.6007

We can see how well the line fits by using the following commands:

> plot(X,Y)

> abline(fit)

24.2 Least squares for power and exponential functions

How do we find the functions which best approximates the data (xi, yi), i = 1, . . . , n, when

1. f(x) = aebx,

2. f(x) = axb?

1. The key idea is that if y = f(x) = aebx, then ln(y) = ln(a) + bx, so ln(y) is a linear
function of x. So using the least squares result for linear functions, we get

b =
n
∑n

i=1 xi ln(yi)− (
∑n

i=1 xi)(
∑n

i=1 ln(yi))

n
∑n

i=1 x
2
i − (

∑n
i=1 xi)

2
,

ln(a) = ln(y)− bx̄.

2. The key idea is that if y = f(x) = axb, then ln(y) = ln(a) + b ln(x), so ln(y) is a linear
function of ln(x). So using the least squares result for linear functions, we get

b =
n
∑n

i=1 ln(xi) ln(yi)− (
∑n

i=1 ln(xi))(
∑n

i=1 ln(yi))

n
∑n

i=1(ln(xi))2 − (
∑n

i=1 ln(xi))2
,

ln(a) = ln(y)− bln(x).

Example 24.2. (log plots and log-log plots)

> A=1:20

> B=Aˆ2/10

> C=1.1ˆA

> plot(A,B)
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> plot(A,C)

> plot(A,log(B))

> plot(A,log(C))

> plot(log(A),log(B))

> plot(log(A),log(C))
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Lecture #24: Least Squares Estimation; the Kolmogorov-Smirnov
test

24.1 Residuals

Definition 24.1. The residuals in a least square model are the difference between the
data and the corresponding points on the least square line. More precisely, if the data are
(xi, yi), i = 1, . . . , n and the least squares line is y = a+ bx, then the residuals are

ri = yi − (a+ bxi).

A graph of xi vs. ri is a residual plot.

A residual plot can indicate whether the assumption about the type of curve assumed to
be underlying the data was well chosen. For a good choice, the residual plot should look
completely random.

Example 24.1. In our example from earlier, we can obtain the residuals from R as follows:

> X=c(27,44,32,47,23,40,34,52)

> Y=c(30,19,24,13,29,17,21,14)

> fit=lm(Y∼X)

> fit$resid

> plot (X,fit$resid)

A quick inspection of the residuals shows no obvious pattern, so it is reasonable to assume
that the least squares line is an adequate model for the data.

Example 24.2. A perfectly alternating residual plot would also exhibit a pattern which
should cause us to be cautious with the model.

Example 24.3. Consider the power function data from our last class. We will try to find a
least squares line for it:

> A=1:20

> B=Aˆ2/10

> powerfit=lm(B∼A)

> plot(A,powerfit$resid)

24.2 The Kolmogorov-Smirnov Test

We already know how to test if a sample could have been produced by a given distribution
using Pearson’s chi-square goodness-of-fit test. We will now see another method which allows
us to test the same thing.
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We will assume that x1, . . . , xn are a sample from a continuous distribution, so that x(1) <
x(2) < · · ·x(n).

Definition 24.2. The empirical distribution of the sample X1, . . . , Xn is

Fn(x) =


0, x < x(1)

k/n, x(k) ≤ x < x(k+1)

1, x(n) ≤ x
.

Note that the empirical function depends on the data, so is a priori random. How can we
use this object to determine if a given data set could be generated by a specific distribution?

Fix x and letW = Fn(x). ThenW is a random variable which can take values 0, 1/n, 2/n, . . . , 1.

Note that nW = k ⇐⇒ k observations are ≤ x and n− k observations are > x.

The probability that a single observation is ≤ x is F (x), so by independence of trials,

P (nW = k) =

(
n

k

)
F (x)k(1− F (x))n−k, k = 0, . . . , n.

Note that since nW ∼ Bin(n, F (x)),

E[nW ] = nF (x), Var(nW ) = nF (x)(1− F (x)).

Therefore,

E[Fn(x)] = E[W ] = F (x), Var(Fn(x)) = Var(W ) =
F (x)(1− F (x))

n
.

This suggests that for every x, Fn(x)→ F (x).

Definition 24.3. The Kolmogorov-Smirnov statistic is

Dn = sup
x

[|Fn(x)− F0(x)|] .

Its distribution can be computed (R does it for you), which is all one needs to test hypotheses.

We now work out an example in R:

Example 24.4. We will generate 20 standard normal samples and compare the empirical
cumulative distribution with the standard normal cdf. We also use the Komogorov-Smirnov
test to check if the data could come from a standard normal distribution (presumably, the
test should not lead to the rejection of that hypothesis, since we do know that the data are
standard normal).

> x=seq(-3,3,0.01)

> plot(x,pnorm(x),type=”l”)

> N=rnorm(20)

> ecdf(N)

> plot(ecdf(N),add=TRUE)
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> ks.test(N,pnorm)

One-sample Kolmogorov-Smirnov test

data: N

D = 0.1518, p-value = 0.6907

alternative hypothesis: two-sided

Since the p-value is greater than 5%, we fail to reject

H0: The data follow a standard normal distribution.

against

H1: They don’t.

at the 5% significance level.

Note that the empirical distribution function should look more and more like the true dis-
tribution function as the number of samples increases. Here is a picture of the cdf and ecdf
for 200 standard normal samples:

> x=seq(-3,3,0.01)

> plot(x,pnorm(x),type=”l”)

> N=rnorm(200)

> ecdf(N)

> plot(ecdf(N),add=TRUE)
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And another for 2000 standard normal samples:

> x=seq(-3,3,0.01)

> plot(x,pnorm(x),type=”l”)

> N=rnorm(2000)

> ecdf(N)

> plot(ecdf(N),add=TRUE)
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Lecture #25: The Linear Model

25.1 The Linear Model

The least squares model doesn’t take into account any randomness as the variables x and y
were not given any randomness structure. In the linear model, we will think of our data as
a combination of a deterministic and a random component.

Example 25.1. If a sample is taken from a population and x is the number of years of
education is plotted against y, annual income, then it is not unreasonable to assume that
for fixed x, the average value of y is given y = 4000x− 20000.

We will now think of y as being a random quantity that depends on the deterministic value
x, so we’ll write Y rather than y. For each x, we have a conditional distribution fY |x. Then
E[Y |x], the expectation associated with the density fY |x is the regression curve on x (also
called the trend).

The simple linear model satisfies

1. Y |x ∼ N(µx, σ
2) (with the same σ for all x).

2. y = E[Y |x] = β0 + β1x.

3. Y |x is independent of Y |x′ if x 6= x′.

Show a graphical representation for the example above.

Our goal will be to estimate β0, β1, and σ2 in the simple linear model.

25.2 Maximum Likelihood Estimators for β0, β1, and σ2

By thinking of Y1, . . . , Yn as random variables, we get points (x1, Y1), . . . (xn, Yn) of which we
assume that they come from the simple linear model with E[Y |x] = β0 + β1x. We can then
find estimators for β0, β1, and σ2 in terms of the random variables Y1, . . . , Yn (and estimates
in terms of the outcomes y1, . . . , yn).

Theorem 25.1. In the simple linear model, the Maximum Likelihood Estimators for β0, β1, σ
2

are

β̂1 =
n
∑n

i=1 xiYi − (
∑n

i=1 xi)(
∑n

i=1 Yi)

n
∑n

i=1 x
2
i − (

∑n
i=1 xi)

2

β̂0 = Ȳ − β̂1x̄

σ̂2 =
1

n

n∑
i=1

(Yi − Ŷi)2, where Ŷi = β̂0 + β̂1xi
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Note 25.1. 1. In particular, given the data (x1, y1), . . . , (xn, yn), the Maximum Likeli-
hood Estimates β0,e, β1,e for β0 and β1 are the same as the least squares estimates.

2. Why is the linear model better than just considering least squares estimates? Since β̂0

and β̂1 are random variables, we can use them to find confidence intervals or to test
hypotheses for β0 and β1.

Proof. To find maximum likelihood estimators, we of course first need the likelihood function.

L(y1, . . . , yn) =
n∏
i=1

fY |xi(yi) =
n∏
i=1

1√
2πσ

e−
1
2( yi−β0−β1xi

σ )
2

.

Therefore,

ln(L(y1, . . . , yn)) = −1

2

n∑
i=1

(
yi − β0 − β1xi

σ

)2

− n

2
ln(2π)− n

2
ln(σ2).

Therefore,

∂

∂β0

(ln(L)) =
1

σ2

n∑
i=1

(yi − β0 − β1xi) = 0

∂

∂β1

(ln(L))
1

σ2

n∑
i=1

xi(yi − β0 − β1xi) = 0

∂

∂σ2
(ln(L)) =

1

2(σ2)2

n∑
i=1

(yi − β0 − β1xi)
2 − n

2σ2
= 0

Now checking that β0,e, β1,e, and σ2
e solve this equation completes the proof.

Note 25.2. In the textbook, β̂0, β̂1, and σ̂2 are estimators when boldfaced, estimates other-
wise.

To test hypotheses for β0, β1, and σ2 we need to know the distributions of estimators for
these parameters. The next theorem determines the exact distributions of β̂0 and β̂1.

Theorem 25.2. (a) β̂0 and β̂1 are normally distributed.

(b) β̂0 and β̂1 are unbiased.

(c)

Var(β̂1) =
σ2∑n

i=1(xi − x̄)2
.

(d)

Var(β̂0) =
σ2
∑n

i=1 x
2
i

n
∑n

i=1(xi − x̄)2
.
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Proof. (for β̂1)

β̂1 =
n
∑n

i=1 xiYi − (
∑n

i=1 xi)(
∑n

i=1 Yi)

n
∑n

i=1 x
2
i − (

∑n
i=1 xi)

2
=
n
∑n

i=1 xiYi − n2x̄Ȳ

n
∑n

i=1 x
2
i − n2x̄2

=

∑n
i=1 xiYi − nx̄Ȳ∑n
i=1 x

2
i − nx̄2

∑n
i=1 2xix̄=2nx̄2

=

∑n
i=1 xiYi − x̄

∑n
i=1 Yi − Ȳ

∑n
i=1 xi + nx̄Ȳ∑n

i=1(x2
i − 2xix̄+ x̄2)

=

∑n
i=1(xi − x̄)Yi − Ȳ

∑n
i=1(xi − x̄)∑n

i=1(xi − x̄)2

∑n
i=1(xi−x̄)=0

=

∑n
i=1(xi − x̄)Yi∑n
i=1(xi − x̄)2

=
n∑
i=1

(xi − x̄)∑n
i=1(xi − x̄)2

Yi.

Since the summands are independent normals, we see that β̂1 is normal, since it is the sum
of independent normals. Moreover, our calculations yield

E[β̂1] =
n∑
i=1

(xi − x̄)∑n
i=1(xi − x̄)2

E[Yi] =
n∑
i=1

(xi − x̄)∑n
i=1(xi − x̄)2

(β0 + β1xi)

= β0

n∑
i=1

(xi − x̄)∑n
i=1(xi − x̄)2

+
n∑
i=1

β1xi(xi − x̄)∑n
i=1(xi − x̄)2

∑n
i=1(xi−x̄)=0,

∑n
i=1(xi−x̄)β1x̄=0

=
1∑n

i=1(xi − x̄)2

(
n∑
i=1

(xi − x̄)β1xi −
n∑
i=1

(xi − x̄)β1x̄

)

=
1∑n

i=1(xi − x̄)2

n∑
i=1

(xi − x̄)β1(xi − x̄) = β1.

Also,

Var(β̂1) = Var(
n∑
i=1

(xi − x̄)∑n
i=1(xi − x̄)2

Yi)

=
1

(
∑n

i=1(xi − x̄)2)2

n∑
i=1

(xi − x̄)2 Var(Yi) =
σ2∑n

i=1(xi − x̄)2
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Lecture #26: The Linear Model

26.1 Inference for σ2

Theorem 26.1. (a) β̂1, Ȳ , and σ̂2 are mutually independent.

(b) nσ̂2

σ2 ∼ χ2
n−2.

Note 26.1. Part (b) of the last theorem is all you need to make inference for σ2.

Corollary 26.1. S2 = n
n−2

σ̂2 = 1
n−2

∑n
i=1(Yi − β̂0 − β̂1xi)

2 is an unbiased estimator for σ2.

Proof.

E

[
n

n− 2
σ̂2

]
=

n

n− 2
E
[
σ̂2
]

=
n

n− 2

σ2

n
E

[
nσ̂2

σ2

]
E
[
nσ̂2

σ2

]
=n−2

= σ2.

26.2 Inference for β1

Theorem 26.2.
β̂1 − β1

S/
√∑n

i=1(xi − x̄)2
∼ tn−2.

Proof.

β̂1 − β1

S/
√∑n

i=1(xi − x̄)2
=

β̂1−β1

σ/
√∑n

i=1(xi−x̄)2√
(n−2)S2

σ2

n−2

∼ tn−2,

since (n−2)S2

σ2 ∼ χ2
n−2 and β̂1−β1

σ/
√∑n

i=1(xi−x̄)2
∼ N(0, 1) are independent.

Note 26.2. This last theorem provides the key fact needed to test hypotheses or find con-
fidence intervals for β1.

Example 26.1. Are you more likely to bench press a heavy weight if you can bench press
60lbs many times?

57 female athletes were tested for

x = #(times they could bench press 60lbs) and

y = largest weight they could bench press once.

The data yielded S√∑n
i=1(xi−x̄)2

≈ 0.15 and β1,e = 1.49

We assume the data follow the linear model and test at the 5% level
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H0 : β1 = 0 (meaning x has no influence on Y )

against

H1 : β1 > 0.

A one-sided test is indicated, as it is reasonable to assume that the ability to bench-press
60lbs many times is an indication of strength and wold suggest an ability to lift a heavy
weight rather than the inability to do so.

We compute the p-value:

P

(
β̂1 − β1

S/
√∑n

i=1(xi − x̄)2
≥ 1.49− β1

0.150
|β1 = 0

)
≈ P (T ≥ 9.96) = 0.0000 . . . ,

where T ∼ t55, so we reject H0 and conclude there is strong evidence that the ability to
bench press 60lbs many times has a positive effect on the maximal weight one can lift.

26.3 Inference for β0

Theorem 26.3.
β̂0 − β0

S
√∑n

i=1 x
2
i /
√
n
∑n

i=1(xi − x̄)2
∼ tn−2.

Note 26.3. This last theorem provides the key fact needed to test hypotheses or find con-
fidence intervals for β0.

26.4 Testing Equality of Slopes

Theorem 26.4. If (x1, Y1), . . . (xn, Yn) and (x∗1, Y
∗

1 ), . . . (x∗m, Y
∗
m) satisfy the assumptions of

the simple linear model, then

β̂1 − β̂∗1 − (β1 − β∗1)

S
√

1∑n
i=1(xi−x̄)2 + 1∑m

i=1(x∗i−x̄∗)2

∼ tn+m−4,

where

S =

√∑n
i=1(Yi − (β̂0 + β̂1xi))2 +

∑m
i=1(Y ∗i − (β̂∗0 + β̂∗1xi))

2

n+m− 4
.

Note 26.4. See Example 11.3.4 in the textbook for a nice application of this theorem to
the question of genetic diversity.

26.5 Inference for E[Y |x]

The true value of E[Y |x] is β0 + β1x, so a natural estimator is β̂0 + β̂1x =: Ŷ .
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Theorem 26.5.
Ŷ − (β0 + β1x)

S
√

1
n

+ (x−x̄)2∑n
i=1(xi−x̄)2

∼ tn−2.

Proof. E[Ŷ ] = β0 + β1x (since β̂0 and β̂1 are unbiased).

Var(Ŷ ) = Var(β̂0) + x2 Var(β̂1) = σ2

(∑n
i=1 x

2
i + nx2

n
∑

(xi − x̄)2

)
= · · · = σ2

(
1

n
+

(x− x̄)2∑n
i=1(xi − x̄)2

)
.

Since nσ̂2

σ2 ∼ χ2
n−2 and S2 = n

n−2
σ̂2, we have (n−2)S2

σ2 ∼ χ2
n−1. Therefore,

Ŷ−(β0+β1x)

σ

√
1
n

+
(x−x̄)2∑n
i=1

(xi−x̄)2

(n−2)S2

σ2

n−2

∼ tn−2.

Note 26.5. This last theorem provides the key fact needed to test hypotheses or find con-
fidence intervals for E[Y |x]. Note that the larger x− x̄, the larger the confidence interval.

26.6 Inference for Future Observations

Theorem 26.6. Suppose (x, Y ) is a possible future observation of the linear model for which
we have the data (x1, Y1), . . . (xn, Yn). Then

Ŷ − Y

S
√

1 + 1
n

+ (x−x̄)2∑n
i=1(xi−x̄)2

∼ tn−2.

Draw a picture containing the 95% confidence bands for E[Y |x] and for Y |x.
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Lecture #27: Sample Correlation

27.1 Covariance and Correlation

We have so far treated x as a non-random variable. This makes sense if x represents, for
instance, time. However, in many cases, X could be considered as a random variable, just
as Y is. We will, for today, consider both X and Y to be random.

Recall
Cov(X, Y ) = E[(X − µX)(Y − µY )] = E[XY ]− E[X]E[Y ]

is the covariance of X and Y . In particular,

Cov(X,X) = Var(X)

and if X and Y are independent, then Cov(X, Y ) = 0 (the converse is not true).

Corr(X, Y ) = ρ(X, Y ) =
Cov(X, Y )√

Var(X)
√

Var(Y )

is the correlation of X and Y .

Fact 27.1. 1. |ρ(X, Y )| ≤ 1.

2. |ρ(X, Y )| = 1 ⇐⇒ Y = aX + b for some a, b ∈ R.

Definition 27.1. The sample correlation coefficient of (X1, Y1), . . . , (Xn, Yn) is

R =
1
n

∑n
i=1 XiYi − X̄Ȳ√

1
n

∑n
i=1(Xi − X̄)2

√
1
n

∑n
i=1(Yi − Ȳ )2

.

It is an estimator for ρ(X, Y ).

A useful interpretation of R can be obtained from the following fact:

Proposition 27.1. If (x1, y1), . . . (xn, yn) have sample coefficient r, then

r = β1,e

√
n
∑n

i=1 x
2
i − (

∑n
i=1 xi)

2√
n
∑n

i=1 y
2
i − (

∑n
i=1 yi)

2
= β1,e

√∑n
i=1(xi − x̄)2√∑n
i=1(yi − ȳ)2

,

where β1,e is the maximum likelihood estimate for the slope in the linear model.

Proof.

r =
n
∑n

i=1 xiyi −
∑n

i=1 xi
∑n

i=1 yi√
n
∑n

i=1 x
2
i − (

∑n
i=1 xi)

2
√
n
∑n

i=1 y
2
i − (

∑n
i=1 yi)

2

=
n
∑n

i=1 xiyi −
∑n

i=1 xi
∑n

i=1 yi
n
∑n

i=1 x
2
i − (

∑n
i=1 xi)

2

√
n
∑n

i=1 x
2
i − (

∑n
i=1 xi)

2√
n
∑n

i=1 y
2
i − (

∑n
i=1 yi)

2
.

The first fraction in this last product is β1,e.
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Corollary 27.1. r > 0 ⇐⇒ β1,e > 0 and r < 0 ⇐⇒ β1,e < 0.

Proposition 27.2.

r2 =

∑n
i=1(yi − ȳ)2 −

∑n
i=1(yi − β0,e − β1,exi)

2∑n
i=1(yi − ȳ)2

.

Corollary 27.2. If
∑n

i=1(yi−β0,e−β1,exi)
2 = 0, that is, if for all i = 1, . . . , n, yi = β0,e−β1,exi,

then r = ±1.

Note 27.1. This last proposition suggests that the more yi departs from β0,e + β1,exi, the
smaller |r| will be.

27.2 The Bivariate Normal

Definition 27.2. If µX , µY , σX , σY , ρ are constants, then if X and Y have joint p.d.f.

f(X,Y )(x, y) =
1

2πσXσY
√

1− ρ2
exp

(
−1

2

1

1− ρ2

((
x− µX
σX

)2

− 2ρ

(
x− µX
σX

)(
y − µY
σY

)
+

(
y − µY
σY

)2
))

,

then (X, Y ) have the bivariate normal distribution.

Theorem 27.1. If (X, Y ) is bivariate normal as defined above, then

1. The marginals X and Y satisfy X ∼ N(µX , σ
2
X), Y ∼ N(µY , σ

2
Y ).

2. ρ = Corr(X, Y ).

3. E[Y |X = x] = µY + ρσX
σY

(x− µX).

4. Var(Y |X = x) = (1− ρ2)σ2
Y .

Note 27.2. For X ∼ N(µX , σ
2
X), Y ∼ N(µY , σ

2
Y ), there are infinitely many bivariate normal

distributions having X and Y as marginals. However, if ρ is also specified, there is only one.

The following is a very important fact about bivariate normal random variables.

Corollary 27.3. If X and Y are bivariate normal and ρ(X, Y ) = 0, then X and Y are
independent. In particular

X, Y are uncorrelated ⇐⇒ X, Y are independent.

27.3 Inference for the Bivariate Normal

Theorem 27.2. If X, Y are bivariate normal, then the Maximum Likelihood Estimators for
µX , µY , σX , σY , ρ are, respectively, X̄, Ȳ , 1

n

∑n
i=1(Xi − X̄)2, 1

n

∑n
i=1(Yi − Ȳ )2, and R.
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Theorem 27.3. If (X1, Y1), . . . (Xn, Yn) are a sample from a bivariate normal and R is the
sample correlation coefficient, then under H0 : ρ = 0,

√
n− 2R√
1−R2

∼ tn−2.

Note 27.3. This theorem is incorrect in some versions of the textbook.

Example 27.1. In the bench-press example from last time, r ≈ 0.8. We can use this to
test H0 : r = 0 against H1 : r > 0 at the 5% significance level. A one-sided test is advisable
for the same reason as when we last performed a test for this example. Since n = 57 and
r ≈ 0.8, we see that √

n− 2r√
1− r2

≈
√

550.8√
1− 0.82

≈ 9.88 >> t55,0.05,

so we again reject H0 and conclude that there is strong evidence that the number of times
one is able to bench-press 60lbs is positively correlated with the largest weight one is able
to bench-press once.
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Lecture #28: Multidimensional linear Regression

28.1 Another Look at Linear Regression

Recall that in the simple linear model

Y = β0 + β1x+ ε,

we found the following maximum likelihood estimators for β0 and β1:

β̂1 =
1
n

∑n
i=1 xiYi − x̄Ȳ

1
n

∑n
i=1 x

2
i − x̄2

, β̂0 = Ȳ − β̂1x̄ = Ȳ − x̄
1
n

∑n
i=1 xiYi − x̄Ȳ

1
n

∑n
i=1 x

2
i − x̄2

.

Note that we can write this in vector form as follows: If

Y = (Y1, Y2, . . . Yn−1, Yn)′ =


Y1

Y2
...

Yn−1

Yn

 , x =


1 x1

1 x2
...
1 xn−1

1 xn

 , β̂ = (β̂0, β̂1)′,

then we have
x′xβ̂ = x′Y,

so that
β̂ = (x′x)−1x′Y,

Example 28.1. We will look for the least squres line through the points (−2, 0), (−1, 0), (0, 1), (1, 1), (2, 3).
In this problem,

y = (0, 0, 1, 1, 3)′, x =


1 −2
1 −1
1 0
1 1
1 2

 .

Therefore,

x′x =

(
5 0
0 10

)
⇒ (x′x)−1 =

(
1/5 0
0 1/10

)
, x′y = (5, 7)′.

Therefore,

βe = (x′x)−1x′y =

(
1/5 0
0 1/10

)(
5
7

)
=

(
1

7/10

)
.

Therefore,
β0,e = 1, β1,e = 7/10.
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We can check that R gives the same values (of course it should!):

> X=c(-2,-1,0,1,2)

> Y=c(0,0,1,1,3)

> lm.r=lm(Y∼X)

> lm.r

Call:

lm(formula = Y ∼ X)

Coefficients:

(Intercept) X

1.0 0.7

Both ways of doing this (manually or with the help of R) show that the simple linear model
for this data set is

Y = 1 + 0.7x+ ε.

Note that we can also use R to do a quadratic regression as follows:

> X=c(-2,-1,0,1,2)

> Y=c(0,0,1,1,3)

> lm2.R=lm(Y∼X+I(Xˆ2))

> lm2.R

Call:

lm(formula = Y ∼ X + I(Xˆ2))

Coefficients:

(Intercept) X I(Xˆ2)

0.5714 0.7000 0.2143

This shows that the quadratic model for this data set is

Y = 0.5714 + 0.7x+ 0.2143x2 + ε.

28.2 Multidimensional Linear Regression

It turns out that the expression above is valid for multidimensional linear regression as well
(as long as we re-define x,Y, and β). Suppose we have the linear model

Y = β0 + β1x1 + . . .+ βkxk + ε,

where ε ∼ N(0, σ2). Define Y as above and let

x =


1 x11 x12 · · · x1k

1 x21 x22 · · · x2k
...

...
...

...
1 xn1 xn2 · · · xnk

 , β̂ = (β̂0, β̂1, . . . , β̂k)
′.
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Then one can show that the maximum likelihood estimator β satisfies

β̂ = (x′x)−1x′Y.

29 Examples

We will study the relationship between tar content, nicotine content and CO2 emissions
of cigarettes (see http://http://www.amstat.org/publications/jse/datasets/cigarettes.txt for
details on the data set). First we download the data:

> www=“http://www.amstat.org/publications/jse/datasets/cigarettes.dat”

> CIG=read.table(www)

> CIG

V1 V2 V3 V4 V5

1 Alpine 14.1 0.86 0.9853 13.6

2 Benson&Hedges 16.0 1.06 1.0938 16.6

3 BullDurham 29.8 2.03 1.1650 23.5

4 CamelLights 8.0 0.67 0.9280 10.2

5 Carlton 4.1 0.40 0.9462 5.4

6 Chesterfield 15.0 1.04 0.8885 15.0

7 GoldenLights 8.8 0.76 1.0267 9.0

8 Kent 12.4 0.95 0.9225 12.3

9 Kool 16.6 1.12 0.9372 16.3

10 L&M 14.9 1.02 0.8858 15.4

11 LarkLights 13.7 1.01 0.9643 13.0

12 Marlboro 15.1 0.90 0.9316 14.4

13 Merit 7.8 0.57 0.9705 10.0

14 MultiFilter 11.4 0.78 1.1240 10.2

15 NewportLights 9.0 0.74 0.8517 9.5

16 Now 1.0 0.13 0.7851 1.5

17 OldGold 17.0 1.26 0.9186 18.5

18 PallMallLight 12.8 1.08 1.0395 12.6

19 Raleigh 15.8 0.96 0.9573 17.5

20 SalemUltra 4.5 0.42 0.9106 4.9

21 Tareyton 14.5 1.01 1.0070 15.9

22 True 7.3 0.61 0.9806 8.5

23 ViceroyRichLight 8.6 0.69 0.9693 10.6
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24 VirginiaSlims 15.2 1.02 0.9496 13.9

25 WinstonLights 12.0 0.82 1.1184 14.9

We now define the appropriate variables, calling Y the carbon monoxide content (in mg),
X1 the tar content (in mg), and X2 the nicotine content (in mg):

> Y=CIG[,5]

> X1=CIG[,2]

> X2=CIG[,3]

This now allows us to find a linear model for Y in terms of the variables X1 and X2:

> lm.r=lm(Y∼ X1+X2)

> lm1.r=lm(Y∼X1)

> lm2.r=lm(Y∼X2)

> summary(lm.r)

Call:

lm(formula = Y ∼ X1 + X2)

Residuals:

Min 1Q Median 3Q Max

-2.899405 -0.784700 -0.001444 0.915854 2.430645

Coefficients:

Estimate Std. Error t value Pr(> |t|)
(Intercept) 3.0896 0.8438 3.662 0.001371 **

X1 0.9625 0.2367 4.067 0.000512 ***

X2 -2.6463 3.7872 -0.699 0.492035

—

Signif. codes: 0 0.001 0.01 0.05 0.1 1

Residual standard error: 1.413 on 22 degrees of freedom

Multiple R-squared: 0.9186, Adjusted R-squared: 0.9112

F-statistic: 124.1 on 2 and 22 DF, p-value: 1.042e-12

> summary(lm1.r)

Call:

lm(formula = Y ∼ X1)

Residuals:

Min 1Q Median 3Q Max

-3.1124 -0.7166 -0.3754 1.0091 2.5450

Coefficients:
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Estimate Std. Error t value Pr(> |t|)
(Intercept) 2.74328 0.67521 4.063 0.000481 ***

X1 0.80098 0.05032 15.918 6.55e-14 ***

—

Signif. codes: 0 0.001 0.01 0.05 0.1 1

Residual standard error: 1.397 on 23 degrees of freedom

Multiple R-squared: 0.9168, Adjusted R-squared: 0.9132

F-statistic: 253.4 on 1 and 23 DF, p-value: 6.552e-14

> summary(lm2.r)

Call:

lm(formula = Y ∼ X2)

Residuals:

Min 1Q Median 3Q Max

-3.3273 -1.2228 0.2304 1.2700 3.9357

Coefficients:

Estimate Std. Error t value Pr(> |t|)
(Intercept) 1.6647 0.9936 1.675 0.107

X2 12.3954 1.0542 11.759 3.31e-11 ***

—

Signif. codes: 0 0.001 0.01 0.05 0.1 1

Residual standard error: 1.828 on 23 degrees of freedom

Multiple R-squared: 0.8574, Adjusted R-squared: 0.8512

F-statistic: 138.3 on 1 and 23 DF, p-value: 3.312e-11
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