
Math 4501 Fall 2012

A Quick Introduction to R
The point of these few pages is to give you a quick introduction to the possible uses of the free

software R in statistical analysis. I will only expect you to know how to perform very basic tests
using R, but will give you some additional information here that you might find useful (either now
for the purpose of this course or later in your professional life if you deal with randomness).

1 Obtaining R

The size of the basic R package is about 30Mb, so it should take only a few minutes to download
(possibly less if using a fast connection). You can get it at

http://www.r-project.org/

First click on “Download R”, then click on the name of your operating system (Linux, Mac OS X,
or Windows), after which you can pick the package to install (the link to follow depends on your
operating system). The rest should be fairly self-explanatory.

2 Distributions

The following is a(n incomplete) list of distributions available in R. Many things can be done with
these distribution, but two important features are the possibility to

• generate random numbers according to the given distribution

• draw the p.d.f. or c.d.f. of the given distribution

Distribution R name parameters

binomial binom size, prob
Cauchy cauchy location, scale

chi− squared chisq df, ncp
exponential exp rate

F f df1, df2, ncp
gamma gamma shape, scale

geometric geom prob
hypergeometric hyper m, n, k

negative binomial nbinom size, prob
normal norm mean, sd
Poisson pois lambda

Student′s t t df, ncp
uniform unif min, max

Note that these commands for distributions and a few others can be found on p.39 of one of the
many user’s manuals for R at

cran.r-project.org/doc/manuals/R-intro.pdf



2.1 random number generation

• To generate random data from one of the distributions above, stick an “r” (for “random
number”) in front of the chosen distribution. For instance, “U=runif(1000,1,3)” produces
1000 independent U(1, 3) (that is, uniform with parameters 1 and 3) random variables. (Note:
“U” is the name I chose to give to this vector of random variables. Pretty much any other
name you wish to choose should be fine as well)

• To see a histogram of data , write “hist(U)”. This will automatically generate a certain
number of bars for your histogram. If you would like to change the number of bars, you can
do that. For instance, if you’d like to generate 100 bars, write “hist(U,breaks=100)”.

It’s certainly worth playing with this for a while and trying a number of distributions.

2.2 drawing p.d.f.’s

To obtain the probability density function of a given random variable, use the same suffix as in the
table above, but stick a “d” (for density) in front of it.

This is only very slightly involved, as one has to define the domain as well. Of course, infinity
exists in mathematics, but should be avoided in computer science (infinity is a nice concept, but
you don’t want your computer to do anything for infinite time). Therefore, you should pick a part
of the domain you’re interested in. The key to defining the domain is to choose the left and right
bounds and say how often you want the p.d.f. to be evaluated in between (this is the number of
points your graph will consist of). Let’s look at an example (try this at home).

Let’s draw the p.d.f. of an exponential with mean 1. Since exponential random variables are
positive, the interesting part of the domain is on the positive real axis. We’ll do this in three steps:

1. Let’s see what we get if we choose x ∈ [0, 4].

• Type “x=seq(0,4,0.5)” (this will create points for x-values between 0 and 4 with incre-
ments of 0.5; that is, it will create the set of points 0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4).

• Now type “y=dexp(x)” (this will define the value of the p.d.f. at the points we just
defined above).

• Now type “plot(x,y)”. You now have a rough picture of the p.d.f. of an Exp(1) random
variable.

2. You’ll probably agree that the picture you just got could look better. Let’s try taking a bigger
domain (say from 0 to 8).

• Type “x=seq(0,8,0.5)”.

• Now type “y=dexp(x)”.

• Now type “plot(x,y)”. You now have a better picture of the p.d.f. of an Exp(1) random
variable.

3. It’s still not a great picture. Let’s try again with the same range but more x values.

• Type “x=seq(0,8,0.01)”.

• Now type “y=dexp(x)”.



• Now type “plot(x,y)”. You now have a much better picture of the p.d.f. of an Exp(1)
random variable.

• We still shouldn’t be completely satisfied, since we the graph is composed of lots of big
circles. We can fix the way the points are linked with the command “plot(x,y,type=“l”)”,
which says the points should be linked with a line. Now the picture looks pretty good.

Now it’s your turn. With the few basic commands from above, you can draw the pdf of any
random variable you’ve ever encountered. You can also generate large random set drawn (indepen-
dently) from those distributions.

2.3 the maximum of a sequence of random variables

It usually takes a while to grasp why the maximum of a sequence of random variables has a different
distribution from the random variables themselves. For instance if you ask someone what should
the distribution of the maximum of 10 independent standard normal random variables, most people
will at first think that it is also a standard normal. We saw in class that this is not the case. The
following example will provide further empirical evidence of this fact.

We will create a histogram designed to mimic the shape of the p.d.f. of the maximum of a certain
number of random variables. The idea is to put the random variables in a matrix as opposed to a
vector.

Suppose you have a vector of length n ·m. R allows you to transform this vector into an n×m
matrix. For instance, you can transform the vector

[a, b, c, d, e, f, g, h, i, j, k]

into the matrix  a b c d
e f g h
i j k l

 .

We will now see how to do this with a vector of independent realizations of normal random variables.
When you generate a large number of random samples form a certain distribution, the histogram
of these values looks roughly like the p.d.f. (or p.m.f. in the discrete case). So if we generate, for
instance, 1000 times 4 independent standard normal random variables and pick every one of the
1000 times the largest of the 4 values (that is, we pick the maximum), then a histogram of these
1000 maxima will look roughly like the p.d.f. of the maximum.

Here’s how to do this:

• Create 4000 independent realizations of standard normal r. v.’s by typing “N=rnorm(4000)”.

• We now want to split these random variables into 1000 groups of 4, more precisely put them
in a matrix of 1000 rows and 4 columns. To do this, type “dim(N)=c(1000,4)”.

• Now we want to create a vector that contains the 1000 maxima of the groups of 4, that is,
the maximum of every row in the matrix. To do this, we first have to define a vector that will
contain these maxima. Let’s call it M. Initially, we have to define the spaces in which to put
the maxima. One way of doing this is to initially let M be a vector containing nothing but
zeros. To do this, type “M=array(0,1000)”. Once that is done, we can ask R to put the largest
value of all the rows of N into the vector M. To do this, type “for (i in 1:1000)M[i]=max(N[i,])”.

• The vector M now contains the 1000 maxima obtained from the 4000 realizations of indepen-
dent normals. To see how they are distributed, just plot a histogram by typing “hist(M)”.



3 Importing data

Data files come in many shapes and colors. We will deal only with .txt files. In this example, we
will look at the following data set, which gives heights of men and women. The question to answer
will be: Might they be the same?

http://userhome.brooklyn.cuny.edu/cbenes/Height.txt

1. First we need to save the file on our computer, for instance in our Desktop directory. This is
something I’m sure you’ve done many times, just perhaps not with .txt files. The procedure
is of course the same. If you’re not sure how to do this, let me know.

2. Now we would like to make sure that R is able to find this file. One way to ensure this is
to put R in the same directory as the file. First, we have to find where R is sitting on our
computer. To do this, type “getwd()” (this means: “get working directory”). Everyone will
get something different (call it “X”), but in my case it was ”/Users/christian”. Now, we can
move the location of the working directory, using the command “setwd”. In my case, I had
to type

setwd(“/Users/Christian/Desktop”)

Once we’re working in the same directory where R is, we can load the file by typing

HEIGHT=read.table(“height.txt”,header=TRUE)

To now see what the file “HEIGHT” is, type “HEIGHT”. Note that the command “header=TRUE”
considers the first line of the file height.txt as being a header of the file, but not part of the
data.

3. The last preparatory step requires separating the data set into “woman” data and “man”
data. To create the “man” data set, we want to take all the elements from the first column
and rows 1 to 25 of the data set. To do this, type

man = HEIGHT[1:25,1]

and for the “woman” data set, type

woman = HEIGHT[1:23,2]

4. Now the goal is to test equality of means for the two data sets ”man” and ”woman”. First we
test that the variances are equal by typing “var.test(man,woman)”. Since there is no reason
to reject the hypothesis that variances are equal, we can perform a two-sample t-test by typing
“t.test(man, woman, var.equal=TRUE)” and we see that we should reject the hypothesis that
they are equal, since the p-value is ≈ 2.251 · 10−9

Note: An alternative to steps 1. and 2. is to load the file directly into R using the following two
commands:

> www=“http://userhome.brooklyn.cuny.edu/cbenes/Height.txt”
> HEIGHT=read.table(www,fill=TRUE)



4 Bivariate data

This section will be useful at the end of the semester when we discuss the linear model. R can
perform in a few seconds various tests which could take a huge amount of time when done by hand.
If you have a set of bivariate date (X, Y )i, in the form of two vectors X and Y of the same length,
then you can

• compute the Pearson sample correlation using the command “cor(X,Y)” and test for zero
correlation using the command “cor.test(X,Y)”.

• Find the least squares line y = a + bx by using the command “fit = lm(Y ∼ X)” and then
“fit”, which will give you the two coefficients a and b in that order. Typing “resid(fit)” will
then give you the residuals (which you can graph by typing “plot(resid(fit))”). To see the data
together with the least squares line, first type “plot(X,Y,type=“l”)” and then “abline(fit)”,
which will draw the least squares line on top of the data.

5 Assignment

This assignment is due in class on December 3 (this means you have plenty of time to do it; the
later you start, the less likely you are to complete it in time and benefit from it). It is worth a total
of 3 points. The number of points you obtain on this assignment will be added to your highest
quiz grade of the semester. Explain clearly what you did when using R (or another software). In
particular, explain which commands or buttons you used. Write down or print what answers the
software gives, and interpret them in full sentences the same way as when you perform tests by
hand. DO NOT hand in any pages and pages of data (save trees!). I will have an idea from your
graphs of what data you produced.

1. (a) Generate 10000 independent samples of U(−1, 1) random variables. Plot a histogram
and hand it in with your solutions to this assignment.

(b) Generate 10000 independent samples of the maximum of 5 independent U(−1, 1) random
variables. Plot a histogram and hand it in with your solutions to this assignment.

(c) Generate 10000 independent samples of the maximum of 10 independent U(−1, 1) ran-
dom variables. Plot a histogram and hand it in with your solutions to this assignment.

(d) Generate 10000 independent samples of the maximum of 100 independent U(−1, 1) ran-
dom variables. Plot a histogram and hand it in with your solutions to this assignment.

(e) What do you notice happens to the maximum of a set of U(−1, 1) random variables when
the size of that set increases? Explain why this happens.

2. Results of an experiment to test whether directed reading activities in the classroom help
elementary school students improve aspects of their reading ability. A treatment class of 21
third-grade students participated in these activities for eight weeks, and a control class of
23 third-graders followed the same curriculum without the activities. After the eight-week
period, students in both classes took a Degree of Reading Power (DRP) test which measures
the aspects of reading ability that the treatment is designed to improve. The scores of the
DRP test (called “response”) were the following:

http://userhome.brooklyn.cuny.edu/cbenes/Reading.txt



Test this data set for

(a) equality of variances; state what assumptions you are making, what your conclusion is
and why it is what it is.

(b) equality of means; state what assumptions you are making, what your conclusion is and
why it is what it is.

Note that you will not need to include the command “header=TRUE” when loading the file,
since the first line of the file is already part of the data set and not the header.


