Assignment 4

(Due on Monday, 12-16 (if you can't send it to me electronically, please let me know))

Below is the list of problems I recommend you do. Please hand in only those marked with an asterisk.

- 1. * Prove that if $X_n \Rightarrow X$ and X = C a.s., where C is a constant, then $X_n \xrightarrow{P} X$.
- 2. A distribution F is called *infinitely divisible* if, whenever a random variable X has distribution F, for every $n \in \mathbb{N}$, there exists a family of n i.i.d random variables $\{X_i\}_{i=1}^n$ such that X has the same distribution as $\sum_{i=1}^n X_i$.
 - (a) * Use characteristic functions to show that if $X \sim Po(\lambda)$, then X is infinitely divisible. [Note: You may use the characteristic function of the Poisson distribution, without deriving it.]
 - (b) * Let Y_n be a Poisson random variable with parameter n. Show that

$$\frac{Y_n}{n} \to 1$$
, a.s

- (c) * Prove that the Cauchy distribution is infinitely divisible. [Note: You may use the characteristic function of the Cauchy distribution, without deriving it.]
- (d) A random variable X has the gamma distribution with parameters $\alpha, \beta > 0$ if it has density

$$f(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x}, x > 0.$$

Use contour integration on the boundary of the bounded region determined by the curves $y = 0, x = c, y = -\frac{tx}{a}, x = d$, where 0 < c < d, to show that

$$\phi_X(t) = \frac{\beta^{\alpha}}{(\beta - it)^{\alpha}}$$

Use this to prove that X is infinitely divisible. [Note: Two particular cases of the gamma distribution are the exponential distribution (when $\alpha = 1$) and the chi-square distribution with k degrees of freedom (when $\alpha = k/2, k \in \mathbb{N}$ and $\beta = 1/2$).]

3. A distribution F is called *stable* if for every $n \in \mathbb{N}$, there exist constants a_n, b_n such that if $\{X_i\}_{i=1}^n$ is a family of n i.i.d random variables with distribution F, then

$$b_n + a_n^{-1} \sum_{i=1}^n X_i$$

also has distribution F.

- (a) Show that a stable law is infinitely divisible.
- (b) Show that an infinitely divisible law is not necessarily stable.
- (c) Show that the Cauchy distribution is stable.
- (d) Show that the normal distribution is stable.
- 4. Suppose S and T are stopping times with respect to a same filtration \mathcal{F}_t . Prove that $S \vee T$ is a stopping time with respect to \mathcal{F}_t .
- 5. Suppose that $\{X_i\}_{i\geq 1}$ are independent standard normal random variables. Show that the process M defined by

$$M_n = \exp\left\{\left(\sum_{i=1}^n X_i\right) - n/2\right\}$$

is a martingale with respect to the filtration generated by $\{X_i\}_{i\geq 1}$.

- 6. * Suppose that $\{X_i\}_{i\geq 1}$ are independent and identically distributed random variables with $P\{X_1 = 1\} = 1 P\{X_1 = -1\} = p$ for some $0 . Let <math>S_n = \sum_{i=1}^n X_i$ and define $T = \inf\{n \geq 0 : S_n = 1\}.$
 - (a) Give a heuristic argument for whether $E[T] < \infty$ or $E[T] = \infty$.
 - (b) Give a rigorous argument.
- 7. * Let $\{X_n\}_{n\geq 0}$ be a sequence of random variables with $P(X_0 = 0) = 1$ and for all $n \geq 1, \mathcal{F}_n = \sigma(X_1, \ldots, X_n)$ and

$$P(X_{n+1} = X_n + \frac{1 - |X_n|}{2} | \mathcal{F}_n) = P(X_{n+1} = X_n - \frac{1 - |X_n|}{2} | \mathcal{F}_n) = \frac{1}{2}$$

- (a) Prove that X is a martingale.
- (b) Prove that X converges almost surely.
- (c) What is the distribution of $X_{\infty} := \lim_{n \to \infty} X_n$?