
Math 83100 Fall 2013

Assignment 3 - Some Solutions
These solutions are written with varying levels of detail. They are meant to give you the key

ideas needed to solve some of the problems. If you’d like more details, let me know and we can talk
about the problems.

• Exercise 2.2.1: First note that V ar(Xm)/m→ 0 implies that for any ε > 0, there is an A <∞

so that V ar(Xm) ≤ A+εm. Using this estimate and the fact that
n∑

m=1

m ≤
n∑

m=1

(2m− 1) = n2,

E[(Sn/n− νn)2] =
1

n2

n∑
m=1

V ar(Xm) ≤ A/n+ ε.

Since ε is arbitrary, this shows the L2 convergence of Sn/n − νn to 0, and since L2 conver-
gence implies convergence in probability, we have that type of convergence as well. [Note:

Alternatively, you can apply Toeplitz’s lemma to estimate 1
n2

n∑
m=1

V ar(Xm).]

• Exercise 2.2.2: Let ε > 0 and pick K so that if k ≥ K, then r(k) ≤ ε. Noting that Cauchy-
Schwarz implies E[XiXj] ≤ (E[X2

i ]E[X2
j ])1/2 = E[X2

k ] = r(0) and breaking the sum into
|i− j| ≤ K and |i− j| > K, we have

E[S2
n] =

∑
1≤i,j≤n

E[XiXj] ≤ n(2K + 1)r(0) + n2ε.

Dividing by n we see lim sup E[S2
n/n

2] ≤ ε. Since ε is arbitrary we have Sn/n→ 0 in L2 and
therefore in probability.

• Exercise 2.2.6: Clearly, X =
X∑

n=1

1 =
∞∑

n=1

1{X ≥ n}, so taking expected values proves (i). For

(ii), we consider the squares [0, k]2 to get X2 =
∞∑

n=1

(2n− 1)1{X ≥ n} and then take expected

values to get E[X2] =
∞∑

n=1

(2n− 1)P (X ≥ n).

• Exercise 2.3.9: Pick Nk so that if m,n ≥ Nk, then d(Xm, Xn) ≤ 2−k. Given a subsequence
Xn(m), pick mk increasing so that n(mk) ≥ Nk. Using Chebyshevs inequality with φ(z) =
z/(1 + z), we have

P (|Xn(mk) −Xn(mk+1)| > k−2) ≤ (k2 + 1)2−k.

The right hand side is summable so the Borel-Cantelli lemma implies that for large k, we have

|Xn(mk) − Xn(mk+1)| ≤ k−2. Since
∑

k

k−2 < ∞, this and the triangle inequality imply that



Xn(mk) converges a.s. to a limit X . To see that the limit does not depend on the subsequence
note that if Xn′(m′

k) → X ′, then our original assumption implies d(Xn(mk), Xn′(m′
k)) → 0, and

the bounded convergence theorem implies d(X,X ′) = 0. The desired result now follows from
Theorem 2.3.2 in Durrett.

• Exercise 2.3.16: Note that we can pick δn → 0 so that P (|Xn−X| > δn)→ 0. Let ω ∈ Ω with
P (ω) = p > 0. For large n we have P (|Xn−X| > δn) ≤ p/2, so |Xn(ω)−X(ω)| ≤ δn → 0. If
Ω0 = {ω : P (ω) > 0}, then P (Ω0) = 1 so we have proved the desired result.

Proof of Lemma 7.4 from the lecture notes:

We prove this in several steps:

First let’s show that

Xn → X, a.s. ⇐⇒ P{ω : Xn(ω) is a Cauchy sequence } = 1. (1)

Indeed,
sup
k,l≥n
|Xk −Xl| ≤ sup

k≥n
|Xk −X|+ sup

l≥n
|Xl −X|,

so if Xn → X, a.s., then {Xn} is a Cauchy sequence, a.s.

Now suppose that {Xn} is a Cauchy sequence, a.s. LetA = {ω : {Xn(ω)} is not a Cauchy sequence}.
Then on Ω \ A,Xn is a Cauchy sequence, which converges since R is complete. Since
P (Ω \ A) = 1, Xn converges almost surely. This proves (1)

Second,

P{ω : Xn(ω) is a Cauchy sequence } = 1 ⇐⇒ P

(
sup
k,l≥n
|Xk −Xl| ≥ ε

)
n→∞→ 0∀ ε > 0. (2)

Indeed,

{ω : Xn(ω) is not a Cauchy sequence } =
⋃
m≥1

⋂
n≥1

⋃
k,l≥n

{
ω : |Xk −Xl| ≥

1

m

}
.

So

P{Xn Cauchy} = 1 ⇐⇒ P

(⋃
m≥1

⋂
n≥1

⋃
k,l≥n

{
ω : |Xk −Xl| ≥

1

m

})
= 0

⇐⇒ P

(⋂
n≥1

⋃
k,l≥n

{
ω : |Xk −Xl| ≥

1

m

})
= 0∀m ≥ 1

⇐⇒ P

( ⋃
k,l≥n

{
ω : |Xk −Xl| ≥

1

m

})
n→∞→ 0 ∀m ≥ 1

⇐⇒ P

(
sup
k,l≥n
|Xk −Xl| ≥ ε

)
n→∞→ 0∀ ε > 0

Finally,

P

(
sup
k,l≥n
|Xk −Xl| ≥ ε

)
n→∞→ 0 ⇐⇒ P

(
sup
k≥0
|Xn+k −Xn| ≥ ε

)
n→∞→ 0. (3)



This just follows from

sup
k≥0
|Xn+k −Xn| ≤ sup

k,l≥0
|Xn+k −Xn+l| ≤ 2 sup

k≥0
|Xn+k −Xn|.

Now one just needs to combine (1), (2), and (3)


