## Assignment 2 - Some Solutions

- Exercise 1.6.14*: $\frac{y}{X} \mathbb{1}_{(X>y)} \leq 1$ and converges to 0 a.s. as $y \rightarrow \infty$, so the first result follows from the bounded convergence theorem. To prove the second result, we use our first observation to see that if $0<y<\epsilon$,

$$
E(y / X ; X>y) \leq P(0<X<\epsilon)+E(y / X ; X \geq \epsilon)
$$

On $\{X \geq \epsilon\}, y / X \leq y / \epsilon \leq 1$ and $y / X \rightarrow 0$ so the bounded convergence theorem implies

$$
\limsup _{y \rightarrow 0} E(y / X ; X>y) \leq P(0<X<\epsilon)
$$

Since $\epsilon$ is arbitrary,

$$
\lim _{y \rightarrow 0} E(y / X ; X>y)=0
$$

- Exercise 2.1.7*: $E\left[X_{n}\right]=\int_{0}^{1} \sin (2 \pi n x) d x=-\left.(2 \pi n)^{-1} \cos (2 \pi n x)\right|_{0} ^{1}=0$. Integrating by parts twice,

$$
\begin{aligned}
E\left[X_{m} X_{n}\right] & =\int_{0}^{1} \sin (2 \pi m x) \sin (2 \pi n x) d x \\
& =\frac{m}{n} \int_{0}^{1} \cos (2 \pi m x) \cos (2 \pi n x) d x=\frac{m^{2}}{n^{2}} \int_{0}^{1} \sin (2 \pi m x) \sin (2 \pi n x) d x
\end{aligned}
$$

so if $m \neq n, E\left[X_{m} X_{n}\right]=0=E\left[X_{m}\right] E\left[X_{n}\right]$.
To see that $X_{m}$ and $X_{n}$ are not independent, note that $X_{m}(x)=0$ when $x=k / 2 m, 0 \leq k<$ $2 m$, and on this set, $X_{n}(x)$ takes on the values $V_{n}=\left\{y_{0}, y_{1}, \ldots y_{2 m-1}\right\}$. Let $[a, b] \subset[-1,1] \backslash V_{n}$ with $a<b$. Continuity of $\sin$ implies that if $\epsilon>0$ is suffciently small, we have

$$
P\left(X_{m} \in[0, \epsilon], X_{n} \in[a, b]\right)=0<P\left(X_{m} \in[0, \epsilon]\right) P\left(X_{n} \in[a, b]\right)
$$

- Additional Exercise 1*

1. We need the following

Lemma: If $X_{n} \xrightarrow{P} X$, as $n \rightarrow \infty$, then there exists a subsequence $X_{n_{k}}$ such that $X_{n_{k}} \rightarrow X$, almost surely, as $k \rightarrow \infty$.

Proof. (Idea) We just need to construct a sequence $\left\{n_{k}\right\}$ such that $P\left(\left|X_{n_{k}}-X\right|>2^{-k}\right)<$ $2^{-k}$ (it's easy to show that this is possible. Then, by Borel-Cantelli,

$$
P\left(\left|X_{n_{k}}-X\right|>2^{-k}, \text { i.o. }\right)=0
$$

which implies that $X_{n_{k}} \xrightarrow{\text { a.s. }} X$.

Since $X_{n}$ is increasing, for every $\omega \in \Omega$, the sequence $\left\{X_{n}(\omega)\right\}_{n \geq 1}$ has a limit $X(\omega)$. By the lemma, there exist a sequence $\left\{n_{k}\right\}_{k \geq 1}$ such that the set $C=\left\{\omega: X_{n_{k}}(\omega)\right.$ converges $\}$ satisfies $P(C)=1$. By uniqueness of limits, for all $\omega \in C, X_{n}(\omega) \rightarrow X(\omega)$.
2. For $\epsilon>0$, define $A_{n}^{\epsilon}=\left\{\omega:\left|X_{n}-X\right| \geq \epsilon\right\}, A^{\epsilon}=\lim \sup _{n \rightarrow \infty} A_{n}^{\epsilon}$. Then

$$
\left\{\omega: X_{n} \nrightarrow X\right\}=\bigcup_{m \geq 1} A^{1 / m}
$$

So

$$
\begin{aligned}
X_{n} \rightarrow X \text { a.s. } & \Longleftrightarrow P\left(X_{n} \not \supset X\right)=0 \Longleftrightarrow P\left(\cup_{m \geq 1} A^{1 / m}\right)=0 \\
& \Longleftrightarrow P\left(A^{1 / m}\right)=0 \forall m \geq 1 \Longleftrightarrow P\left(A^{\epsilon}\right)=0 \forall \epsilon>0 \\
& \Longleftrightarrow \lim _{n \rightarrow \infty} P\left(\bigcup_{k \geq n} A_{k}^{\epsilon}\right)=0 \Longleftrightarrow \lim _{n \rightarrow \infty} P\left(\sup _{k \geq n}\left|X_{k}-X\right| \geq \epsilon\right)=0
\end{aligned}
$$

3. (a) Define $Y_{n}=X_{1}^{2} \mathbb{1}\left\{X_{1}^{2}<\epsilon n^{2}\right\}$. Then $Y_{n} \rightarrow X_{1}^{2}$, as $n \rightarrow \infty$ and $\left|Y_{n}\right| \leq X_{1}^{2}$. Since $E\left[X_{1}^{2}\right]<\infty$ (since $\left.\operatorname{Var}\left(X_{1}\right)<\infty\right)$, we can use the dominated convergence theorem to conclude that

$$
\begin{equation*}
\int Y_{n} d P \rightarrow \int X_{1}^{2} d P \tag{1}
\end{equation*}
$$

Now if we define $A_{n}=\left\{\omega:\left|X_{1}(\omega)\right| \geq \epsilon \sqrt{n}\right\}$, we get

$$
E\left[X_{1}^{2}\right]=\int_{A_{n}} X_{1}^{2} d P+\int_{A_{n}^{c}} X_{1}^{2} d P \geq \epsilon_{n}^{2} P\left(A_{n}\right)+\int Y_{n} d P
$$

Therefore, $\epsilon^{2} n P\left(A_{n}\right) \leq \int X_{1}^{2} d P-\int Y_{n} d P$, which with the help of (1) implies that $n P\left(\left|X_{1}\right| \geq \epsilon \sqrt{n}\right) \rightarrow 0$, as $n \rightarrow \infty$.
(b) This follows almost immediately from part (a):

$$
\begin{aligned}
P\left(\max _{1 \leq i \leq n} X_{i}>\epsilon \sqrt{n}\right) & =P\left(\bigcup_{1 \leq i \leq n}\left\{X_{i}>\epsilon \sqrt{n}\right\}\right) \leq \sum_{i=1}^{n} P\left(X_{i}>\epsilon \sqrt{n}\right) \\
& =n P\left(X_{1}>\epsilon \sqrt{n}\right) \leq n P\left(\left|X_{1}\right|>\epsilon \sqrt{n}\right) \xrightarrow{n \rightarrow \infty} 0 .
\end{aligned}
$$

4. Let $\phi(z)=|z| /(1+|z|)$.
(a) Since $\phi(z)>0$ for $z \neq 0, E[\phi(|X-Y|)=0$ implies $\phi(|X-Y|)=0$ a.s. and hence $X=Y$ a.s.
(b) It is obvious that $d(X, Y)=d(Y, X)$.
(c) The triangle inequality follows by noting that Exercise 4.10 in Durrett implies that $\phi(|X-Y|)+\phi(|Y-Z|) \geq \phi(|X-Z|)$ and then taking expected values.
Note that if $X_{n} \rightarrow X$ in probability, then since $\phi \leq 1$, the dominated convergence theorem implies $d\left(X_{n}, X\right)=E\left[\phi\left(\left|X_{n}-X\right|\right) \rightarrow 0\right.$. To prove the converse let $\epsilon>0$ and note that Chebyshev's inequality implies $P\left(\left|X_{n}-X\right|>\epsilon\right) \leq d\left(X_{n}, X\right) / \phi(\epsilon) \rightarrow 0$.
