
Math 83100 Fall 2013

Assignment 2 - Some Solutions

• Exercise 1.6.14*: y
X
1(X>y) ≤ 1 and converges to 0 a.s. as y →∞, so the first result follows from

the bounded convergence theorem. To prove the second result, we use our first observation to
see that if 0 < y < ε,

E(y/X;X > y) ≤ P (0 < X < ε) + E(y/X;X ≥ ε).

On {X ≥ ε}, y/X ≤ y/ε ≤ 1 and y/X → 0 so the bounded convergence theorem implies

lim sup
y→0

E(y/X;X > y) ≤ P (0 < X < ε).

Since ε is arbitrary,
lim
y→0

E(y/X;X > y) = 0.

• Exercise 2.1.7*: E[Xn] =
∫ 1

0
sin(2πnx) dx = −(2πn)−1 cos(2πnx)|10 = 0. Integrating by parts

twice,

E[XmXn] =

∫ 1

0

sin(2πmx) sin(2πnx) dx

=
m

n

∫ 1

0

cos(2πmx) cos(2πnx)dx =
m2

n2

∫ 1

0

sin(2πmx) sin(2πnx) dx,

so if m 6= n,E[XmXn] = 0 = E[Xm]E[Xn].

To see that Xm and Xn are not independent, note that Xm(x) = 0 when x = k/2m, 0 ≤ k <
2m, and on this set, Xn(x) takes on the values Vn = {y0, y1, ...y2m−1}. Let [a, b] ⊂ [−1, 1] \ Vn
with a < b. Continuity of sin implies that if ε > 0 is suffciently small, we have

P (Xm ∈ [0, ε], Xn ∈ [a, b]) = 0 < P (Xm ∈ [0, ε])P (Xn ∈ [a, b]).

• Additional Exercise 1*

1. We need the following

Lemma: If Xn
P→ X, as n→∞, then there exists a subsequence Xnk

such that Xnk
→ X,

almost surely, as k →∞.

Proof. (Idea) We just need to construct a sequence {nk} such that P (|Xnk
−X| > 2−k) <

2−k (it’s easy to show that this is possible. Then, by Borel-Cantelli,

P (|Xnk
−X| > 2−k, i.o.) = 0,

which implies that Xnk

a.s.→ X.



Since Xn is increasing, for every ω ∈ Ω, the sequence {Xn(ω)}n≥1 has a limit X(ω). By
the lemma, there exist a sequence {nk}k≥1 such that the set C = {ω : Xnk

(ω) converges}
satisfies P (C) = 1. By uniqueness of limits, for all ω ∈ C,Xn(ω)→ X(ω).

2. For ε > 0, define Aεn = {ω : |Xn −X| ≥ ε}, Aε = lim supn→∞A
ε
n. Then

{ω : Xn 6→ X} =
⋃
m≥1

A1/m.

So

Xn → X a.s. ⇐⇒ P (Xn 6→ X) = 0 ⇐⇒ P
(
∪m≥1A

1/m
)

= 0

⇐⇒ P (A1/m) = 0 ∀m ≥ 1 ⇐⇒ P (Aε) = 0∀ ε > 0

⇐⇒ lim
n→∞

P

(⋃
k≥n

Aεk

)
= 0 ⇐⇒ lim

n→∞
P

(
sup
k≥n
|Xk −X| ≥ ε

)
= 0

3. (a) Define Yn = X2
11{X2

1 < εn2}. Then Yn → X2
1 , as n → ∞ and |Yn| ≤ X2

1 . Since
E[X2

1 ] < ∞ (since V ar(X1) < ∞), we can use the dominated convergence theorem
to conclude that ∫

Yn dP →
∫
X2

1 dP. (1)

Now if we define An = {ω : |X1(ω)| ≥ ε
√
n}, we get

E[X2
1 ] =

∫
An

X2
1 dP +

∫
Ac

n

X2
1 dP ≥ ε2nP (An) +

∫
Yn dP.

Therefore, ε2nP (An) ≤
∫
X2

1 dP −
∫
Yn dP , which with the help of (1) implies that

nP (|X1| ≥ ε
√
n)→ 0, as n→∞.

(b) This follows almost immediately from part (a):

P ( max
1≤i≤n

Xi > ε
√
n) = P (

⋃
1≤i≤n

{Xi > ε
√
n}) ≤

n∑
i=1

P (Xi > ε
√
n)

= nP (X1 > ε
√
n) ≤ nP (|X1| > ε

√
n)

n→∞→ 0.

4. Let φ(z) = |z|/(1 + |z|).
(a) Since φ(z) > 0 for z 6= 0, E[φ(|X − Y |) = 0 implies φ(|X − Y |) = 0 a.s. and hence

X = Y a.s.

(b) It is obvious that d(X, Y ) = d(Y,X).

(c) The triangle inequality follows by noting that Exercise 4.10 in Durrett implies that
φ(|X − Y |) + φ(|Y − Z|) ≥ φ(|X − Z|) and then taking expected values.

Note that if Xn → X in probability, then since φ ≤ 1, the dominated convergence
theorem implies d(Xn, X) = E[φ(|Xn − X|) → 0. To prove the converse let ε > 0 and
note that Chebyshev’s inequality implies P (|Xn −X| > ε) ≤ d(Xn, X)/φ(ε)→ 0.


