Assignment 2

(Due on Tuesday, 10-15)

Below is the list of problems I expect you to do. Please hand in only those marked with an asterisk. All numbers of non-additional exercises refer to the fourth edition of "Probability: Theory and Examples".

- Exercises 1.6.3, 1.6.6, 1.6.14*, 1.6.15, 2.1.2, 2.1.7*
- Additional Exercise 1^{*} (Convergence: almost sure and in probability):
 - 1. Suppose $\{X_n\}_{n\geq 1}$ is an increasing sequence of r.v.'s satisfying $X_n \xrightarrow{P} X$. Show that $X_n \xrightarrow{a.s.} X$.
 - 2. Suppose $\{X_n\}_{n\geq 1}$ is a sequence of r.v.'s. Show that

$$X_n \xrightarrow{a.s.} X \iff \sup_{k \ge n} |X_k - X| \xrightarrow{P} 0, \text{ as } n \to \infty.$$

- 3. Suppose $\{X_n\}_{n\geq 1}$ is a sequence of identically distributed r.v.'s with finite variance. Show that
 - (a) for every $\epsilon > 0, nP(|X_1| \ge \epsilon \sqrt{n}) \to 0$, as $n \to \infty$
 - (b) $\max_{1 \le i \le n} |X_i| / \sqrt{n} \xrightarrow{P} 0$, as $n \to \infty$.
- 4. Given two random variables X and Y, define

$$d(X,Y) = E\left[\frac{|X-Y|}{1+|X-Y|}\right].$$

Show that d is a metric and that it metrizes convergence in probability:

$$X_n \xrightarrow{P} X \iff d(X_n, X) \to 0.$$

- Additional Exercise 2^* (L^p spaces and convergence):
 - 1. Let $\{X_n\}_{n\geq 1}$ be a sequence of nonnegative random variables such that $X_n \xrightarrow{P} X$ and $E[X_n] \to E[X]$. Show that $X_n \xrightarrow{L^1} X$.
 - 2. Give an example of a sequence $\{X_n\}_{n\geq 1}$ such that X_n converges in L^1 , but does not converge in L^2 .
 - 3. Show that if $q < \infty$, $||X||_q \le ||X||_{\infty}$.
 - 4. Show that Hölder's and Minkowski's inequalities hold also if $q = \infty$: If X, Y are r.v.'s,

 $E[|XY|] \le ||X||_1 ||Y||_{\infty}$ and $||X + Y||_{\infty} \le ||X||_{\infty} + ||Y||_{\infty}$.