Assignment 1

(Due on Monday, 09-23)

Below is the list of problems I expect you to do. Please hand in only those marked with an asterisk. All numbers refer to the fourth edition of "Probability: Theory and Examples".

- Exercise 1.1.6*
- Exercise 1.2.4*
- Exercise 1.2.7
- Exercise 1.3.3*
- Additional Exercise 1: If $\Omega = \{a, b, c\}$ and $\mathcal{A} = \{\{a\}\}$, give all σ -algebras on Ω that contain \mathcal{A} and find $\sigma(\mathcal{A})$.
- Additional Exercise 2: Suppose that (Ω, \mathcal{A}, P) is a probability space with $\Omega = \{a, b, c, d, e\}$ and $\mathcal{A} = 2^{\Omega}$. Let X and Y be the real-valued random variables defined by

$$X(\omega) = \begin{cases} 1, & \text{if } \omega \in \{a, b\}, \\ 0, & \text{if } \omega \notin \{a, b\}, \end{cases} \quad Y(\omega) = \begin{cases} 2, & \text{if } \omega \in \{a, c\}, \\ 0, & \text{if } \omega \notin \{a, c\}. \end{cases}$$

Give explicitly (by listing all the elements) the σ -algebras $\sigma(X)$ and $\sigma(Y)$ generated by X and Y, respectively.