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Fractals

Smooth curves

Most curves you encounter in your mathematics classes have the
same behavior when you zoom in (at least at most points).

http://www.mathopenref.com/graphfunctions.html

If you zoom in repeatedly, they eventually become completely straight.
This means you can approximate such curves locally by straight lines
and use this to calculate their length.

To calculate the length of a smooth curve, one approximates the curve
locally by progressively shorter straight lines. In the limit the
approximations converge to a real number.
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Fractals

Mandelbrot’s Observation

In 1967, Benoît Mandelbrot asked: How long is the coast of Britain?
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Fractals

Mandelbrot’s Observation

It turns out the answer is not so straightforward:

As one takes shorter and shorter lines to approximate the length, one
gets larger and larger values and there appears to be no convergence.
This suggests that the length of the coast of Britain is infinite.
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Fractals

The Koch Snowflake

Let’s look at the following simple construction:

1 Start with an equilateral triangle of side length 1.
2 Place on the middle third of each existing side of the figure an

equilateral triangle, one side of which is the middle third segment.
Remove that middle third segment.

3 Repeat Step 2, applying it to the new figure obtained.
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Fractals

How Long Is the Koch Snowflake?

snowflake approx. #(segments) length/segment length(`n)

S0 3 = 3 · 40 1 3
S1 12 = 3 · 41 1/3 4
S2 48 = 3 · 42 1/32 48/9
...

...
...

...
Sn 3 · 4n 1/3n 3(4/3)n

The Koch snowflake is defined to be the limit of the sequence of
approximations Sn. We can call it S∞. The length of S∞ is therefore

lim
n→∞

`n =∞.
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Fractals

The Koch Snowflake

The Koch snowflake satisfies the self-similarity property: It is
composed of several smaller versions of itself.

http://upload.wikimedia.org/wikipedia/commons/6/65/
Kochsim.gif
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Fractals

Fractals

Mandelbrot introduced the term fractal to characterize geometric
objects such as those we just saw. There is no absolute consensus as
to what defines a fractal, but here are some properties it should satisfy:

self-similarity (in some possibly vaguer sense than for the Koch
Snowflake)
ruggedness at all scales
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Fractals

Some Examples of Fractals
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Fractals

Some Examples of Fractals

Real World Computer Simulation
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Fractals

The Mandelbrot Set

http://vimeo.com/12185093
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Fractals

Fractal Dimension (box counting)

Lines are one-dimensional objects, planar domains are
two-dimensional, and solids are three-dimensional.
The fact that the Koch curve takes considerably more space than a line
of finite length suggests that it should perhaps be considered to be an
object of dimension > 1.
So how can we define the dimension of set? We have a very good
understanding for what dimensions 0, 1, 2, and 3 mean. Here is one
systematic way of determining the dimension of a set S:
If S is a set in Rn, we can count the number of balls of radius 1/k (or
cubes of side length 1/k ) needed to cover S, for k = 1,2,3, . . .. Let’s
do this for a few very easy sets:
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Fractals

Fractal Dimension (box counting)

[0,1] ⊂ R: A 1-dimensional cube is a segment, so how many
segments of length 1/k do we need to cover [0,1]? The answer is

k = k 1

[0,10] ⊂ R: The answer here is 10k = 10 · k 1 .

[0,1]× [0,1] ⊂ R2: Here we need k · k = k 2 squares (i.e.,
2-dimensional cubes).

Note that the boxed numbers, i.e., the exponents are the dimension of
these objects (in the classical sense). So let’s do the same thing for
the Koch curve:
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Fractals

Fractal Dimension of the Koch Snowflake

We want to know how many disks of radius 1/k are needed to cover
the Koch snowflake. Let’s simplify the problem a bit and look at Sn, the
level n approximation to the snowflake.
Sn is composed of 3 · 4n segments of length 1/3n, so we can cover Sn
with 3

24n disks (we can fit two segments in each disk) of radius 1
3n = 1

k
(we’re using 3n to play the role of k in the general setup).
Now note that

3
2

4n =
3
2

3
log 4
log 3 n

=
3
2

(3n)
log 4
log 3 =

3
2

k

log 4
log 3

.

So the box counting dimension of the Koch snowflake is log 4
log 3 . This is a

measure of how much space the curve takes. It’s more than a 1-dim.
set, but less than a 2-dim. set.
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Random Fractals Random Walk

Random Walk

Let Xi be independent random variables satisfying
P(Xi = 1) = p, P(Xi = −1) = 1− p. Then Sn =

∑n
i=1 Xi is called a

simple random walk on the one-dimensional integer lattice. We will
define S0 = 0 (meaning that the random walk starts at the origin).

(Brooklyn College Math Department) 04-29-2014 19 / 29



Random Fractals Random Walk
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Two realizations of a 100-step one-dimensional random walk.
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Random Fractals Random Walk

2 and 3 Dimensions

Let Xi be independent random vectors in Z2 satisfying
P(Xi = ±〈1,0〉) = P(Xi = ±〈0,1〉) = 1

4 . Then Sn =
∑n

i=1 Xi a
symmetric random walk in Z2. Similarly, if Xi are independent
random vectors in Z3 satisfying
P(Xi = ±〈1,0,0〉) = P(Xi = ±〈0,1,0〉) = P(Xi = ±〈0,0,1〉) = 1

6 . Then
Sn =

∑n
i=1 Xi a symmetric random walk in Z3.
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Random Fractals Random Walk

Brownian Motion

Random walk is not fractal, since it is composed of straight lines.
However, if you take a random walk, run it for a very long time and
compress it to fit on this screen, in the limit you get a process called
Brownian motion. It is a self-similar process.
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Random Fractals Random Walk

Brownian Motion

Brownian motion is a fractal. It is the ”continuum limit” of random walk.
It isn’t restricted to a lattice and is nicer to deal with in the same way
integrals are nicer to deal with than sums.
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It has been known for a long time that the fractal dimension of
d-dimensional Brownian motion is:

3/2 if d = 1 (actually this is the dimension of the graph of time
versus the Brownian motion)
2 if d ≥ 2.
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Random Fractals Percolation

Percolation

Consider a lattice composed of hexagonal faces. Suppose each
hexagon is colored red or white with probability 1/2, independently
from one hexagon to the next. The configuration you get is called
critical percolation. If you fix the right-side edges to be red and the
left-side edges to be white, you will get a top-bottom interface.
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Random Fractals Percolation

Percolation

The interface curve you get is obviously not fractal, since it’s
composed of line segments, but if you take a much larger lattice box
and shrink the picture, you will get in the limit a random curve, which it
turns out is fractal.
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Random Fractals Loop-erased Random Walk

Loop-erased Random Walk

http://stat.math.uregina.ca/~kozdron/Simulations/
LERW/LERW.html
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Random Fractals The Schramm-Loewner Evolution

SLE

The scaling limit of the critical percolation exploration path and
loop-erased random walk was not well understood until about this last
decade. It turns out that both processes (as well as many others: Ising
model, FK model, uniform spanning tree Peano curve, Gaussian free
field interface, etc.) have scaling limits that belong to a family of curves
describe by one same differential equation. This was the brilliant
discovery of Oded Schramm, around 1999.

(Brooklyn College Math Department) 04-29-2014 27 / 29



Random Fractals The Schramm-Loewner Evolution

SLE

The chordal Schramm-Loewner Evolution (SLE) is defined to be the
the curve (technical details omitted) obtained from the equation:

∂gt(z) =
2

gt(z)− Bκt
, g0(z) = z.

κ = 2 κ = 8
3 κ = 3 κ = 6
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Random Fractals The Schramm-Loewner Evolution

SLE

Wendelin Werner received a Fields Medal in 2004 for showing (with
Lawler and Schramm), among other things, that the scaling limit of
loop-erased random walk is SLE(2). Stas Smirnov received a Fields
Medal in 2008 for showing, among other things, that the scaling limit of
critical percolation is SLE(6).
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