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Lattices

Lattices: Z,Z2
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Lattices

Lattices: Z,Z2 and Z3
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Lattices

More lattices: triangular and honeycomb
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Lattices

More lattices: Archimedean Lattices
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Random Walk

Random Walk

Let Xi be independent random variables satisfying
P {Xi = 1} = p, P {Xi = −1} = 1− p. Then Sn =

∑n
i=1 Xi is called a

simple random walk on the one-dimensional integer lattice. We will
define S0 = 0 (meaning that the random walk starts at the origin).
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Random Walk
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Random Walk

A random walk is called recurrent if

P{Sn = 0 for some n > 0} = 1.

Let

r = P{returning to the origin} = P{Sn = 0 for some n > 0}

and
m = the expected number of returns to the origin.

The quantities r and m are related:
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Random Walk

r = P{returning to the origin} = P{Sn = 0 for some n > 0},

m = the expected number of returns to the origin.

P{returning to the origin exactly k times} = r k (1− r).

m = E[number of returns to the origin ]

= 1 ·P{returning to the origin exactly 1 time}
+ 2 ·P{returning to the origin exactly 2 times}
+ 3 ·P{returning to the origin exactly 3 times}
+ 4 ·P{returning to the origin exactly 4 times}
+ ...

= r(1− r) + 2r2(1− r) + 3r3(1− r) + 4r4(1− r) + ...

= (1− r)
(

r + 2r2 + 3r3 + 4r4 + ...
)

=
r

1− r
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Random Walk

Since
m =

r
1− r

,

we see that r = 1 if and only if m is infinite. So the walker is certain
to return to the origin if and only if m is infinite.
Let’s compute m:
We define un = P{Sn = 0},

An =

{
1, if Sn = 0
0, otherwise

and A =
∑

i≥0 Ai .
Note that E[An] = 1 · un + 0 · (1− un) = un and that A is the total
number of times the random walk is at the origin.
So

m = E[A] =
∑
i≥0

E[Ai ] =
∑
i≥0

ui .
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Random Walk

The random walk can only be at the origin at even times, so

m = u0 + u2 + u4 + u6 + ... =
∑
n≥0

u2n.

u2n =

(
2n
n

)
pn(1− p)n =

(2n)!

n!n!
pn(1− p)n.

Stirling’s formula (n! ∼
√

2πne−nnn) implies

u2n ∼
√

2π2ne−2n(2n)2npn(1− p)n

(
√

2πne−nnn)2
=

(4p(1− p))n
√
πn

.

Therefore,

m =
∑
n≥0

u2n <∞ ⇐⇒
∑
n≥0

(4p(1− p))n
√
πn

<∞.

This is infinite if p = 1
2 and finite if p 6= 1

2 .
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Random Walk

This means that r = 1 if and only if p = 1
2 , and so the random walk is

certain to come back to the origin if and only if p = 1
2 . This gives the

following result due to Pólya:

Theorem

If p = 1
2 , the random walk returns to the origin infinitely often. If p 6= 1

2 ,
the random walk returns to the origin only finitely many times.
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Simple Random Walk of 100 steps
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Random Walk

Implications for (American) Roulette
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Random Walk

Implications for (American) Roulette

Expected gains if you bet one dollar on red:

18
38
· 1 +

20
38

(−1) = − 1
19

$.

Thus on average, you will lose 1
19 dollars per game! You will of course

have the privilege of losing more (on average) if you bet more.
Polya’s theorem implies that eventually, your gains (a random walk with
p = 18

38 ) will never be 0 again.
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Random Walk

Gambler’s Ruin

Suppose you go to Las Vegas with $200 and play roulette by betting
on red at every spin. You do this until you win $200 or lose all your
money. What is the chance that you’ll win $200?

Theorem
If you start a random walk (with probability p of going up, q = 1− p of
going down by 1) at an integer x > 0 and decide to let the walk run
until it reaches a pre-determined value of y > x or 0, the probability of
reaching y before 0 is

x
y if p = 1

2 .“
q
p

”x
−1“

q
p

”y
−1

if p 6= q.

So all we have to do to answer the question is use
x = 200, y = 400,p = 9

19 ,q = 10
19 . This gives a probability of
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Random Walk

Gambler’s Ruin

≈ 7 · 10−10
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Random Walk

2 and 3 Dimensions

Let Xi be independent random vectors in Z2 satisfying
P {Xi = ±〈1,0〉} = P {Xi = ±〈0,1〉} = 1

4 . Then Sn =
∑n

i=1 Xi a
symmetric random walk in Z2. Similarly, if Xi are independent
random vectors in Z3 satisfying
P {Xi = ±〈1,0,0〉} = P {Xi = ±〈0,1,0〉} = P {Xi = ±〈0,0,1〉} = 1

6 .
Then Sn =

∑n
i=1 Xi a symmetric random walk in Z3.
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Random Walk

2 and 3 Dimensions

http://stat.math.uregina.ca/~kozdron/Simulations/
LERW/LERW.html
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Random Walk

2 and 3 Dimensions

We can use the same analysis as for the one-dimensional case:
In the 2-d case,

u2n =
n∑

k=0

(2n)!

k !k !(n − k)!(n − k)!
(
1
4
)2n

= (
1
4
)2n (2n)!

n!n!

n∑
k=0

n!n!

k !k !(n − k)!(n − k)!

= (
1
4
)2n
(

2n
n

) n∑
k=0

(
n
k

)2

=

(
(
1
2
)2n
(

2n
n

))2

.

This is the square of the 1-d case, and so

u2n ∼
1
πn
,

the sum of which diverges.
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Random Walk

2 and 3 Dimensions

For the 3d case, we get (for some constant K )

u2n ≤
K

n3/2 ,

Theorem (Pólya)
In two dimensions, the symmetric random walk returns to the origin
infinitely often. In three dimensions, the symmetric random walk
returns to the origin only finitely many times.
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Percolation

Percolation

Consider one of the lattices seen at the beginning of this talk. It is
composed of vertices and edges.
Imagine that you paint each vertex in one of two colors, randomly, and
independently for each vertex. This is called site percolation.
The same thing can be done with edges rather than vertices. This is
called bond percolation.
Often, one of the colors is the “invisible” color, that is, we either keep or
remove the vertices (or edges).
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Percolation
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Percolation

Percolation
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Percolation

When is there a path from left to right?
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Percolation

Questions

A related (but hard) question is the following:
When is there an infinite open cluster? The answer depends on the
probability p of keeping an edge.
There is a value of p called pc (p-critical) such that

If p < pc , there is no infinite cluster.
If p > pc , there is an infinite cluster.

The big questions of percolation theory are:
1 For a given lattice, what is pc?
2 Is there an infinite cluster at pc?
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Percolation

Simulations

http://www.physics.buffalo.edu/gonsalves/Java/
Percolation.html

http://www.svengato.com/forestfire.html

http://stat.math.uregina.ca/~kozdron/Simulations/
Perc.html

http://www.ibiblio.org/e-notes/Perc/perc.htm
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Percolation

Answers

1

lattice pc (site) pc (bond)

square 0.592746 1
2(Kesten,80′s)

triangular 1
2 2 sin( π18)

honeycomb 0.6962 1− 2 sin( π18)

2 There are no infinite clusters at pc in dimensions 2 and ≥ 19.
Physicists believe that it is true in all dimensions, but no rigorous
proof exists.
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